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Abstract Ant colony systems (ACS) have been success-

fully applied to solving optimization problems. Especially,

they are efficient and effective in finding nearly optimal

solutions to discrete search spaces. When the solution

spaces of the problems to be solved are continuous, it is not

so appropriate to use the original ACS to solve it. This

paper thus proposes a dynamic-edge ACS algorithm for

solving continuous variables problems. It can dynamically

generate edges between two nodes and give a pheromone

measures for them in a continuous solution space through

distribution functions. In addition, it maps the encoding

representation and the operators of the original ACS into

continuous spaces easily. The proposed algorithm thus

provides a simple and standard approach for applying ACS

to a problem that has a continuous solution space, and

retains the original process and characteristics of the tra-

ditional ACS. Several constrained functions are also eval-

uated to demonstrate the performance of the proposed

algorithm.

Keywords Ant colony system � Constrained function �
Continuous space � Distribution function � Dynamic edge

Abbreviations

AS Ant system

ACS Ant colony system

ACOR Ant colony optimization for continuous domains

DEACS Dynamic-edge ant colony system

CACO Continuous ant colony optimization

API Pachycondyla apicalis

GA Genetic algorithm

CIAC Continuous interacting ant colony

1 Introduction

Ant colony systems (ACS) have been widely applied to

find near-optimal solutions for NP-hard problems. An ACS

adopts distributed computation and uses a constructive

greedy heuristic algorithm (Jiang et al. 2005) with positive

feedback to search for solutions. It is a powerful approach

inspired by the behavior of ants. Ants deposit chemical

trails (pheromone) on the ground to communicate with

each other. This allows them to find the shortest paths

between nests to destinations. ACS algorithms have thus

been used to discover good solutions to many applications

(Chang and Lin 2013; Gambardella et al. 2012; Hong et al.

2009, b; Madureira et al. 2012; Verma et al. 2012; Yan and

Shih 2012). They are also adopted to solve algebraic

equations in mathematics (Pourtakdoust and Nobahari

2004).

Unfortunately, ant-related algorithms are originally

designed for a discrete solution space. Therefore, continuous

& Min-Thai Wu

d953040015@student.nsysu.edu.tw

Tzung-Pei Hong

tphong@nuk.edu.tw

Chung-Nan Lee

cnlee@cse.nsysu.edu.tw

1 Department of Computer Science and Engineering, National

Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424,

Taiwan

2 Department of Computer Science and Information

Engineering, National University of Kaohisung, 700

Kaohsiung University Rd., Kaohsiung 81148, Taiwan

123

Nat Comput (2017) 16:339–352

DOI 10.1007/s11047-015-9537-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9537-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9537-y&amp;domain=pdf


solution spacesmust be encoded into discrete solution spaces

for ant-related algorithms to execute. In this case, it is hard

for the global optima of continuous variables problems to be

contained in an encoded discrete solution space. Improving

the ant-related algorithm precision to approach the global

optima needs to increase encoding length aswell. It causes an

ant needs to select more nodes to finish its path, ant-base

algorithm needs to spend more computation time to train a

path and approach to the optima solution.

Ant-related methods were thus extended to support

continuous solution spaces (Kuhn 2002; Li and Xiong

2008; Monmarche et al. 2000). In general, the whole pro-

cess was modified to make the methods work well in a

continuous solution space. However, these methods pre-

served few characteristics of the original ant-related algo-

rithm, losing a lot of its advantages. For example, some

approaches just get the concept of pheromone, but an ant-

base algorithm always refer to previous selected node when

an ant chooses an edge. In addition, ACS has good searing

behavior by the well-defined pheromone updating policy

(local updating and global updating). But these algorithms

don’t implement these operators. The paper thus proposes

for continuous solution spaces an ant-related algorithm

which retains the process of the original ant-related algo-

rithm to preserve its good characteristics. The proposed

algorithm recommends a new concept of representing the

pheromone by a distribution function for ACS, such that it

can easily simulate and handle a continuous search space.

It can dynamically generate edges between two nodes and

give pheromone measures for them in the solution space. In

addition, it can easily extend the originally discrete oper-

ators of ACS for dispersed possible solutions in the con-

tinuous version directly. Experiments on maximizing

several constrained functions are also made, and the results

show that the proposed approach works well in solving

continuous variables problems.

2 Review of ant colony systems

This section reviews work related to ACS. The concepts of

the ant algorithm and ACS, and some previous approaches

for using ACS in a continuous solution space are briefly

described.

2.1 Ant system

The ant system which was first introduced by Colorni et al.

(1991) and Dorigo et al. (1996) is based on observations of

real ant colonies searching for food. Ants are capable of

cooperating to solve complex problems, such as searching

for food and finding the shortest paths between their nests

and their destinations. When ants move, they deposit

pheromone on the path. Subsequent ants determine the next

direction on the route according to the pheromone density.

Once all the ants have terminated their tours, the amount of

pheromone on the tours will have been modified. The

traditional ant system is shown in Fig. 1.

2.2 Ant colony system

ACS proposed by Dorigo and Gambardella (1997), is an

algorithm for finding solutions to optimization problems. It

modified the pheromone updating policies (local updating

rule and global updating rule) and state transition rule from

the original ant system in order to increase the speed of

convergence and the ability of exploration and exploita-

tion. The detailed process is shown in Fig. 2.

Details of the algorithm are described below.

2.2.1 State transition rule

The state transition rule is used by an ant to probabilisti-

cally decide its next state. Take the travelling salesman

problem as an example. Assume the kth ant is currently in

the city (node) j. The next city (node) s for the kth ant to

visit to form a partial solution is:

s ¼ argmaxn �Rk jð Þ s j; nð Þ½ �a� g j; nð Þ½ �b
n o

; if q� q0

i with a probability Pk j; ið Þ; if q[ q0

(
ð1Þ

where Rk(j) is the set of cities that have not been visited by

the ant, s(j, n) is the pheromone intensity which expresses

the history of previous successful moves on the edge from

city j to city n, g(j, n) is the inverse of the distance between
the cities j and n, and a and b ([0) are two parameters that

determine the relative importance of pheromone versus

distance in the problem. In addition, the parameter q is a

random number uniformly distributed between 0 and 1, q0
is a parameter (0 B q0 B 1) predefined by users, and

Initialize 
 Set the size of the ant colony’s population and put each ant on the starting node 

do
while (there are some ants which have not already built their solution)

   Choose an ant which has not finished its trip 
The ant applies a state transition rule to incrementally build a solution 

end 
  Update the pheromone for all completed trips in this iteration 

while (end conditions are not met) 
 Output the best solution 
End 

Fig. 1 AS algorithm for an optimization problem
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Pk(j, i) is the transition probability from city (node) j to city

(node) i, calculated as follows:

Pk j; ið Þ ¼
s j; ið Þ½ �a� g j; ið Þ½ �bP

n2Rk jð Þ s j; nð Þ½ �a� g j; nð Þ½ �b
; if i 2 Rk jð Þ

0; otherwise

8><
>:

ð2Þ

q0 is used to balance exploration and exploitation, i.e. if

q B q0, the ACS algorithm exploits the search space by

favoring the best edge; otherwise, the algorithm more

explores the search space.

If the value of the random variable q is less than the pre-

defined parameter q0, the state transition rule selects the

node with the highest s j; ið Þ½ �a � g j; ið Þ½ �b to follow.

Otherwise, it probabilistically selects a node according to

Eq. (2). The above selection method is called the pseudo

random proportional rule.

In the general case, the function g(j, n) is a heuristic

function which expresses desirability of the move related to

the optimization. It is an important and useful design for

ACS. An appropriate heuristic function is set according to

the domain knowledge of the given application. Because of

the local updating rule (described below) for pheromone,

the influence of pheromone on local trap will be reduced if

most ants pass the same edge. It could guide an ant pop-

ulation to a good solution effectively and efficiently and

lead the population to escape local optima.

2.2.2 Global updating rule

After all the ants have completed their tours, the pher-

omone density of the best tour passed is updated. There are

two kinds of global update. The first kind takes the best

tour among the ones passed by the ants in all the so far

executed iterations and then updates the amount of pher-

omone on the edges of the best tour. Formally, it is stated

as follows:

s tþ1ð Þ j; sð Þ ¼ 1� qð Þ � st j; sð Þ þ q� Ds j; sð Þ; and

Ds j; sð Þ ¼
1=LGBestð Þ; if j; sð Þ 2 Global best tour

0; otherwise

� ð3Þ

where t is the current time (iteration), q is the evaporation

parameter of pheromone, 0\q\ 1, and LGBest is the

length of the globally best tour finished by the ants from the

beginning to the current iteration. The other kind of global

update takes the best tour among the ones passed by the

ants in each individual iteration. The amount of pheromone

on the edges of the best tour is updated as follows:

s tþ1ð Þ j; sð Þ ¼ 1� að Þ � st j; sð Þ þ a� Ds j; sð Þ; and

Ds j; sð Þ ¼
ð1=LIBestÞ; if j; sð Þ 2 Iteration-best tour

0; otherwise

�

ð4Þ

where LIBest is the length of the best tour finished by the

ants in each iteration. The global updating rule will provide

a greater increase of pheromone to a shorter best tour.

2.2.3 Local updating rule

When an ant chooses an edge between nodes j and s, it

immediately updates the pheromone density of the edge to

avoid local optimum as follows:

s tþ1ð Þ j; sð Þ ¼ 1� qð Þ � st j; sð Þ þ q� s0 ð5Þ

where s tþ1ð Þ j; sð Þ and st j; sð Þ are the pheromone amounts on

the edge from city j to city s in the ith and the (i ? 1)th

iterations, respectively, and q is a parameter for adjusting

the pheromone density of the edge, 0\q\ 1. If the

pheromone density st j; sð Þ on the constructed path is higher

than the initial value s0; the local updating rule decreases

the pheromone density to reduce repeated visiting proba-

bility from the edge. Otherwise, it increases the pheromone

density.

The local updating rule gives a reasonable probability to

any possible solution. An edge, which is the local optima

for an ant but not global optima for all the ants, will

decrease its pheromone, causing the ant to explore the

other edges with higher probabilities and thus avoiding

local optima. According to the local updating process

above, an ant usually decreases the pheromone density of

the edge which it chooses. It prevents the ant population

from selecting similar paths and makes sure that other

possible solutions have a good chance to be selected.

2.3 Existing ant-related algorithms for continuous

solution spaces

Traditionally, ant-related algorithms are applied to discrete

problems, which are represented as a graph with nodes and

Initialize 
 Set the size of the ant colony’s population and put each ant on the starting node 

do
while (there are some ants which have not already built their solution)

   Choose an ant which has not finished its trip 
The ant applies a state transition rule to incrementally build a solution 

   Update the pheromone using the local updating rule 
end 

  Update the pheromone using the global updating rule 
while (end conditions are not met) 

 Output the best solution 
End 

Fig. 2 ACS algorithm for an optimization problem
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edges. When an ant finishes its trip from start to destina-

tion, a feasible solution is produced immediately. The

advantage of an ant-related algorithm is that it is a con-

structive algorithm, which is different from genetic algo-

rithms (GAs). An ant-related approach will refer to

previous selected edges (nodes) according to a heuristic

function and the information of pheromone to choose the

next edge, thus being able to produce a suitable partial

solution. The ants then choose better edges and a better

solution can thus be found. For the above reasons, an ant-

related algorithm is suitable for problems in which good

solutions (not necessarily optimal) can be found using local

search algorithms.

In the past, it was difficult to use ant-related algorithms

to solve problems with a continuous solution space due to

the coding restriction. A common way to deal with this

issue is to map a continuous solution space to its simplified

discrete solution space. However, this creates the following

two problems. Firstly, a continuous solution space cannot

be totally mapped to a discrete solution space, such that the

global optimum may not exist in the encoded space. Sec-

ondly, if the minimal discrete distance scale of the encoded

space is reduced, the coding length increases, and it lowers

the performance of ant-related algorithms.

Bilchev and Parmee (1995) applied an ant algorithm

called continuous ant colony optimization (CACO) to a

continuous solution space and some other related approa-

ches were proposed in Dreo and Siarry (2004), Kuhn

(2002), Li and Xiong (2008) and Monmarche et al. (2000).

In CACO, the solution space is defined as a plane (2-di-

mensional solution space) and each point in the plane is a

possible solution. A nest is a point in the plane and all the

ants start their tours there. In each iteration, the population

may or may not move its nest to a new place, depending on

whether the new place approaches the global optimum.

However, these methods are more similar to particle swarm

optimization (PSO) than to the original ant algorithm. Each

position of an ant indicates a suitable solution in the

solution space. When an ant moves to another position, it

generates a solution immediately. It is very different with

traditional ant-base algorithm. An ant-based algorithm will

construct its own solution step by step, moreover a well-

defined heuristic function will guide ants to select the more

reasonable edges to build a solution. CACO just utilizes the

concept of pheromone but not implements other essential

operators for ant-based algorithm. Thus, this paper focuses

on proposing a method which has the same process and

operators with the traditional ACS and supports the con-

tinuous space.

Pourtakdoust and Nobahari (2004) then proposed an

extended ACS algorithm to solve the math equation. Its

process is similar to that of traditional ACS. However, it is

not a general algorithm for all problems with a continuous

solution space. In this approach, the operators are designed

by depending a mathematics equation. In other words, this

algorithm is just suitable to be applied an application which

has a mathematics equation as fitness function. The paper

thus proposes a continuous ACS algorithm that retains

benefits and characteristics of the original ACS algorithm

and can be easily applied to problems with a continuous

solution space.

Socha and Dorigo (2008) proposed another ACO algo-

rithm (ACOR) in continuous domains. In their algorithm,

the probability density function (PDF) is designed for

sampling candidate nodes and keeping the information of

pheromone. The PDF for each dimension of variable in the

continuous space is defined as a Gaussian function. Their

experiments show the well-defined algorithm can get good

performance in mathematical equations.

In our proposed algorithm, the PDF is simplified as a

pheromone distribution function but there are several dif-

ferent points between our proposed ACS and Socha et al’s

ACOR. First, the proposed algorithm is designed to apply

the original ACS into continuous space. It not only corre-

sponds to the classical process and operators from ACO,

but also uses both the global and local pheromone updating

processes in ACS, ACOR designed its pheromone updating

policy in a solution pool (table) and could not perform

global and local pheromone updating processes. Second,

the pheromone information in ACOR is stored in a

table which is generated by the top-k solutions in the recent

iteration. In our proposed algorithm, the concept of pher-

omone is similar to the traditional ACO. That is, the

amount of pheromone is derived based on accumulation

and evaporation by the pheromone updating operators. It

can retain the experience of ants from the previous itera-

tions. Third, ACOR will generate the PDF by all of the

variables in the resolved formula for each solution in a

table. In the process of ACOR, an ant will generate a fixed

number of variables from its path. That is, ACOR is suit-

able for solving a problem which solution has a fix number

of variables like finding solution for a mathematics for-

mula. On the other hand, the behaviors of the proposed

algorithm are like those of the original ACO. It is more

flexible and can own a complicated searching map with

different topologies by applied solution, ants construct their

own path by passing different number of nodes. Thus, the

proposed algorithm is more suitable for different kind of

real applications in continuous space, not only solving a

mathematics formula.

In the proposed algorithm, the information of pher-

omone is stored in the nodes, the relationship between two

nodes is weak. It cannot indicate the relationship (searching

map) among the nodes as the traditional ant-related algo-

rithms can. No matter what is the value obtained from the

previous selection process, it doesn’t affect the function

342 M.-T. Wu et al.
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which is used to generate the pheromone content in the

current selection. We will discuss how to enhance the

relationship by the pheromone distribution function in the

section below.

3 Dynamic-edge ACS algorithm

This section describes the proposed ACS-based algorithm

for continuous solution spaces. It is called the dynamic-

edge ant colony system (DEACS), and preserves but gen-

eralizes all of the operators in the original ACS, including

the state transition rule, local updating process and global

updating process. The continuous version of each operator

is defined by pheromone distribution functions, which are

explained below.

3.1 Pheromone distribution functions

In traditional ACS algorithms, an edge that can be selected

includes an amount of pheromone. Unfortunately, it is not

available in the continuous space since the numbers of

edges and nodes are infinite in a continuous search space.

The proposed DEACS algorithm thus adopts a new

mechanism to store the pheromone information for

resolving the issue. Assume a possible solution is com-

posed of several variables. The proposed approach defines

a function called pheromone distribution function onto the

domain of each variable. Thus, each possible value of a

variable will be assigned a content of pheromone by this

distribution function.

DEACS works like the conventional ACS. The initial

content of pheromone is defined before the first iteration.

This means that the initial pheromone distribution function

may be set as a constant function. After several iterations,

some influence functions that are produced by the global

updating process will be added onto the initial pheromone

distribution function. These influence functions and the

initial pheromone distribution function will combine and

form a new pheromone distribution function. An example

is shown in Fig. 3.

In Fig. 3, the initial pheromone distribution function is a

constant function of 1.3. A part of the pheromone distri-

bution is a trapezoid function (called an influence function)

generated by the updating rules, which will be introduced

later. In Fig. 3, the initial pheromone density is 1.3. The

increase is caused from a previous route being selected by

an ant. In this example, the node with the value 1.0 has a

pheromone density of 1.3, and the one with 2.6 has a

pheromone density of 2.5. Since DEACS works in a con-

tinuous environment, there will be infinite edges and nodes.

The influence functions cannot only provide the

information of pheromone but also are used to produce

dynamic edges.

Different variables have their own pheromone distribu-

tion functions. For example, if a solution is composed of

x and y, an ant will produce several dynamic edges using

the pheromone distribution function of the x variable. After

it selects a dynamic edge (value) of x, it then applies y’s

pheromone distribution function for determining the value

of y. The length of the bases is a parameter in the DEACS,

it means the range of influence from pheromone. Actually,

the pheromone influence function (distribution function) is

not a fixed trapezoid function. It even does not need to be a

trapezoid function. The meaning of the influence function

is the influential area of the selected node. If an influence

function is set as a trapezoid function with wider parallel

side, it has more affection of nearly area. This kind of

influence functions is suitable to be applied in a smooth

fitness function.

3.2 Global updating rule in DEACS

In traditional ACS, the global updating rule increases the

pheromone value of the best tour and decreases those of the

others. This concept is extended to DEACS in which the

update is not performed only on a node (a single value of a

variable), but on a set of neighboring nodes (a range of

values of a variable). An influence (update) function on

pheromone update is defined for achieving this task.

DEACS not only increases the pheromone value of the best

tour but also influence the content of pheromone in the

nearby area. Therefore, the influence function is not only a

single value, but more like a distribution function. The

center of the function is the next node (value) selected. It

indicates the influence of an ant passing the selected node

on the update of the pheromone. The function can be of any

type, and the flexibility is left to users. An example of a

trapezoid influence function is shown in Fig. 4.

2.5

1.3

2.0 2.6 6.5

value of a variable

Init. 
Pheromone

1.3

1.0

Fig. 3 Example of pheromone distribution for a variable
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finf xð Þ¼
h; forp� s\x\pþ s

max h�d x�p� sð Þ;0ð Þ; for x� pþ x

max h�d p� s� xð Þ;0ð Þ; for x� p� x

8<
:

ð6Þ

In Fig. 4, the shape of the influence function is a

trapezoid, and can be described as finf in formula (6), where

h is the height of the trapezoid, p is the center of the

influence function, s is the half of the upper line of the

trapezoid and d is the decayed ratio for influence of pher-

omone. The value of the variable appearing at the center of

the trapezoid represents the chosen (continuous) node of

the best tour at a certain stage. Just like in traditional ACS,

two kinds of global update may be used. The first one

updates the pheromone distribution of the best tour among

the ones passed by the ants in all the iterations, whereas the

other updates that in each iteration.

When global update is executed, the influence function

whose center is at the chosen value of a variable is

superimposed on the original distribution function of the

pheromone for the variable. For example, if the initial

pheromone distribution is a uniform one, after an influence

function with its center 2.6 is added, the new distribution

function of pheromone becomes the one shown in Fig. 3.

Assume the trapezoid type is selected as the influence

function. Two parameters may be used to define a trape-

zoid shape, the span and the angle. The span defines the top

flat segment of the trapezoid and the angle determines the

two oblique lines, which represent the influence range of a

best tour.

After some influence functions are added, the distribu-

tion function will have several summits. For example,

when an influence function shown on the left of Fig. 5 is

superimposed on the distribution function on the right of

the figure, the result is shown in Fig. 6. If the initial

pheromone is finit(x), which is a constant, the influence

function 1 is finf1(x) and the influence function 2 is

finf2(x). The previous pheromone distribution functions is

fdis(x) = finit(x) ? finf1(x) and the updated pheromone dis-

tribution function is f0dis(x) = finit(x) ? finf1(x) ? finf2(x).

In real implementation, DEACS maintains a table to

record the influence functions attached to each pheromone

distribution function. For example, assume that the initial

pheromone density is 2.0 and that there is one influence

function with center = 3.5 and height = 5. A record of the

influence function is then put in the table, as shown on the

left of Fig. 7. If another influence function is generated, the

corresponding center and height are stored in the second

record. The DEACS approach can thus easily calculate the

actual distribution function from the initial function and the

pheromone influence functions stored in the table.

As mentioned above, during the global updating pro-

cess, the value of each node selected in the global best

solution is inserted into the first column (center) of the

corresponding influence table. The height value of the

influence function caused from the node is calculated as:

Height ¼ Pheromoneinitial þ Pheromoneincreased ð7Þ

where Pheromoneinitial is the initial pheromone density for

the node and Pheromoneincreased is the increased pher-

omone due to the selection of the node value.

Pheromoneincreased may be a fixed value or a value that

depends on a fitness function by which a better solution

will cause larger pheromone increase. In the example of

selected node

Influence function

value of a variable

Pheromone

Fig. 4 Example of a trapezoid influence function

value of a variable

Influence function 2Pheromone

value of a variable

Pheromone

Init. Pheromone

Influence function 1

+

Fig. 5 Superimposition of an

influence function onto a

distribution function
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Fig. 7, assume that Pheromoneincreased is set at 3. Thus,

when the node value of 3.5 is selected, the height of the

influence function for the selected node value is 2 ? 3,

which is 5. It is then inserted into the second column of the

first record in the influence table. As in traditional ACS-

based algorithms, a pheromone density decreases due to

volatilization or a local update. The height of an influence

function is then reduced. In the example above, assume that

the height of the first influence function is reduced to 1.22

from the local update (described later). The result is shown

in Fig. 8.

In the next iteration, assume that the node value in the

new best global solution is 7. A new influence function

with center = 7 and height = 2 ? 3 (=5) is then inserted

into the second record of the influence table for the variable

under consideration. The final distribution function and the

corresponding influence table are shown in Fig. 9.

3.3 Local updating rule in DEACS

When an ant constructs a path, the local updating rule

immediately reduces (volatilizes) the pheromone of the

nodes on the path to prevent all ants in the population from

searching toward similar solutions. This can be easily

achieved by reducing the height values of the matched

influence function representing the node. An influence

function is matched if the value selected falls within the

range of the influence function. If the reduced height value

of an influence function is less than the initial amount of

pheromone, the influence function is removed from the

distribution function. In this way, DEACS removes some

unimportant information, and thus reduces the storage

space required. The new height value due to the local

update is calculated as:

value of a variable

Influence function 1

Influence function 2

Initial pheromone

Fig. 6 Superimposition results from Fig. 5

3.5

5

Init. Pheromone = 2

Solution space 

Fig. 7 Table for recording the

influence functions of a variable

3.5

3.78

Init. Pheromone = 2

Solution space 

Fig. 8 Result of reducing an

influence function
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Heightnew ¼ 1 � pð Þ � Heightold þ p� Pheromonebase;
0\ p\ 1

ð8Þ

where Heightnew is the new height value of the processed

influence function after the local update, Heightold is the

height value before the local updating process,

Pheromonebase is a parameter value less than

Pheromoneinitial, and p is a weight constant controlling the

two items. The parameter Pheromonebase allows the height

value of an influence function possibly less than

Pheromoneinitial such that unimportant influence functions

may be removed. Figure 10 shows an example of the

change of the distribution function in Fig. 7 during the

local updating process. An ant selects a value that falls

within the range of the influence function. Assume that

Pheromonebase is set at 1.95 and p is set at 0.4. The new

height value of the influence function is updated to

(1 - 0.4) 9 5 ? 0.4 9 1.95, which is 3.78. The resulting

influence function is then a smaller trapezoid with the same

angle, as shown at the bottom of Fig. 10.

Note that the number of records in the influence table is

efficiently controlled by the local updating process. After a

few iterations, some records are stored in the table, some of

which may be located close by. Therefore, when an ant

chooses an edge to go, it is quite possible that the edge

intersects several influence functions at the same time. In

this case, the local updating process reduces all of them,

and when the height of an influence function is below

Pheromoneinitial after the update, it is removed from the

table. Thus, the records in the table do not always grow.

3.4 Generating dynamic edges

When a value (node) of a variable is to be selected, there

are an infinite number of choices due to the continuous

space. It also means there are an infinite number of edges to

be selected. Each edge starts from the node selected for the

previous variable and ends at a certain value (node) of the

current variable. Since there are numerous edges, the pro-

posed approach thus dynamically generates an edge

whenever necessary. It first calculates the total area A of

the pheromone distribution function for the variable (di-

mension) being currently processed. The area A thus rep-

resents the current total amount of pheromone for the

variable in solving the problem. The proposed approach

then generates a random number r, whose range is among 0

to A. It then finds the value of the horizontal axis to which

the integral of the distribution function from the minimum

value of the variable equals r. For instance, in order to find

a candidate node w, 0 � r �
R
x
f tð Þ ¼ A; where x is the

solution space [vi, vu], r is a random number and f is a

distribution function, the goal is to find a new w = vu
0 such

that
R
x
f tð Þ ¼ r where x 2 [vi, w]. The value of the hori-

zontal axis can be thought of as a dynamic node for the

variable, and a dynamic edge is formed between the node

3.5

3.78

Solution space 

7

5Fig. 9 Distribution function

after two global updating

iterations

Solution space 

3.5

5

Init. Pheromone = 2

Solution space 

3.5

3.78
Init. Pheromone = 2

Fig. 10 Example of changing a distribution function by the local

updating process
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selected for the previous variable and the current node.

DEACS will generate several random numbers, each cor-

responding to a dynamic node and edge. It then selects one

edge according to the pseudo-random proportional rule.

Figure 11 shows an example of the above process.

Assume in Fig. 11, there is only one influence function

(Center: 3.5, Height: 5) for the variable to be processed.

The total amount A of pheromone in the distribution

function is calculated as 26 by integral. After that, a ran-

dom number within 0 to A is generated. Assume the gen-

erated number is 20. The horizontal axis value in the

distribution function obtained by the proposed approach

with an integral of 20 from the start is 7 as Fig. 11 shows.

The ant thus generates a dynamic node with 7 for the

variable (Fig. 12).

According to the characteristic of the integral function,

most of the nodes generated in this way will be located in

areas with high pheromone density. Moreover, no matter

where a point is located in the solution space, its chance to

be selected is bigger than zero. This behavior is very

consistent with that of the original ACS.

3.5 Dependency between variables

In the process of node selection, each variable is handled

according to its own pheromone distribution function.

However, variables may depend on each other. That is,

when a node of a variable is selected, it may influence the

choice of the next node. The problem does not exist in

traditional ant-related algorithms because pheromone is

stored on edges.

For example, for finding a feasible solution of the

problem x ? y = 100, 0\ x, y\ 100 using DEACS, an

ant will first select the value of x and then the value of y. If

the ant selects the value 10.5 for x, then the best value of

y will be 89.5. However, if the ant selects 95.1 for x, the

best value of y will be 4.9. The variables x and y are thus

closely related to each other. In this case, it is inappropriate

to just choose the value of y according to its own distri-

bution function without referring to the selected value of

x. Taking this into consideration, DEACS adopts an

optional mechanism for improving its flexibility in han-

dling this kind of problems. It splits the solution space of

each variable A into nA equal portions, where nA is pre-

defined. Each portion is then attached with an individual

pheromone distribution function of its next variable. For

example in Fig. 13, the values of the variable x are divided

into three equal intervals, and each one is linked to a dif-

ferent pheromone distribution function of the same next

variable y.

In Fig. 13, when an ant chooses a value of x, it uses the

corresponding distribution function of y according to the

portion in which x is located. When more portions are

adopted, the relationship between the two variables will be

strengthened, but the algorithm will become more complex

and need more storage.

3.5

5

Init. Pheromone = 2

Solution space 

2

Fig. 11 Example of a distribution function with an influence function

5

Init. Pheromone = 2

Solution space 
0 10

20

Candidate node 7

Fig. 12 Example of generating a dynamic node

Fig. 13 Different distribution functions of y for portions of x
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The strategy considers the dependency of the variables

and can thus effectively improve the relationship between

pheromone and chosen paths.

3.6 DEACS algorithm

The proposed DEACS algorithm incorporates the strategies

mentioned above and is described as follows.

The DEACS algorithm:

INPUT: A problem to be solved, a number q of ants, an

initial pheromone density s0, a number d of dynamic

edges, a number k of portions for considering variable

dependency, a maximum number G of iterations, a

current best solution Sc = Ø (empty) and give the

predefined base pheromone density local updating ratio

and global updating ratio.

OUTPUT: A nearly optimal solution to the problem.

STEP 1: Define the order of the variables as the stage

order in the search graph.

STEP 2: Define an appropriate fitness function for

evaluating paths.

STEP 3: Initially set the pheromone distribution func-

tion of each variable as the given initial pheromone

density s0.
STEP 4: Set the initial generation number g = 1.

STEP 5: Build a complete route for each artificial ant by

the following substeps.

STEP 5.1: Set s = 1, where s is used to keep the

identity number of the current variable (stage) to be

processed in the graph.

STEP 5.2: Get the corresponding pheromone distri-

bution function of the sth variable among the

k pheromone distribution functions for the sth variable

by using the method in Sect. 3.5.

STEP 5.3: Produce d dynamic edges according to the

method in Sect. 3.4.

STEP 5.4: Select a path from the d dynamic edges

according to the pseudo-random proportional rule.

STEP 5.5: Initialize the tables of influence functions

for current variable xs, where s is the index for the

current variable if the tables isn’t exist.

STEP 5.6: Update the pheromone distribution func-

tion by modifying the record value in the table of

influence functions from the selected edge according

to the local updating rule mentioned in Sect. 3.3.

STEP 5.7: Set s = s ? 1.

STEP 5.8: If the ant has not constructed its own

solution (that is, s is equal to or less than the number

of variables for the problem), go to STEP 5.2.

STEP 6: Evaluate the fitness value of the solution

obtained by each artificial ant according to the fitness

function defined in STEP 2. If Sc is Ø (the first

generation) or the best solution in this iteration is better

than Sc, set Sc as the best solution.

STEP 7: Find the one with the highest fitness value

among the q ants, and get the values of the variables for

the best ant.

STEP 8: Generate the corresponding influence functions

for the variable values found in STEP 7 and then update

the distribution functions (the table of influence func-

tions) of the variables according to the global updating

process mentioned in Sect. 3.2.

STEP 9: If g = G, output the current best solution;

otherwise, g = g ? 1 and go to STEP 5.

The best solution Sc obtained by the algorithm is thus

output after STEP 9.

4 Experimental results

Experiments were made to show the performance and

behavior of the proposed DEACS. The experiments were

implemented in C/C?? on a personal computer with an

Intel Core 2 Quad 6600 CPU and 4 GB of RAM. Several

mathematical functions with constraints for maximum

values were used in the experiments. The experiments were

divided into three parts. First, the experimental results

show that the basic characteristics of DEACS and the

difference performance between DEACS and traditional

ACS by several simple tests, a traditional ACS was

designed for calculating its maximum and its performance

was compared to that of the proposed DEACS for showing

its benefits and characteristics. The traditional ACS is

designed to have a multi-stage graph, with each stage

having four nodes (00, 01, 10, 11), as shown in Fig. 14.

Each node represents a part of whole binary code that mean

as a possible solution. For example, the ant selected the

first 3 nodes are (0, 0), (0, 0) and (1, 1) in the Fig. 14. It

means the ant produced a 00 00 01 which is a part of whole

binary string be the head of the total encoding code. The

parameters used in the two approaches were set as follows.

The number of ants was 10, the initial pheromone density

was 1.0, the base pheromone density was 0.8, the local

updating ratio was 0.2, and the global updating ratio was

0.8, the number of dynamic edges is 5. The results were

averaged by 1000 runs.

The following two functions were used to find the

maximum result and x, y are between 0 and 100 for testing:

(A) 100 - (x - 35.52)2 - (y - 13.11)2, x, y 2 [0, 100]

and

(B) 100 - (35.52 - (x ? y))4 - (x - 5.35)2

- (y - 30.17)2, x, y 2 [0, 100].
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The two functions had two variables, x and y. In the first

one, the two variables were independent, and in the second

one, they are dependent. Experiments were first made to

show the evolution of the fitness values, which is function

(A) to find the maximum result by DEACS and ACS. The

average fitness values (maximum function results) of the

ten artificial ants along with the number of generations are

shown in Fig. 15.

The figure shows that the average fitness values obtained

by DEACS were better than those obtained by ACS.

Besides, DEACS obtained good results even in the early

stage of the process because the length of the search graph

was short. Thus, the ants just need to select fewer edges

then traditional ACS to finish their trip. Then it can find a

good trip between start point and destination easily. The

average fitness values for ACS and DEACS for function

(B) are shown in Fig. 16.

Figure 16 also shows that the average fitness values

obtained by DEACS were better than those obtained by

ACS. DEACS did not approach the global best solution in

the first 50 generations because x and y were dependent.

Section 3.5 introduced a strategy for increasing the asso-

ciation between two variables. For verifying the effec-

tiveness of that strategy, the solution space of each variable

was split into 1 (original), 2 and 4 partitions. The average

fitness values for Functions (B) are shown in Fig. 17,

respectively, where DEACS(n) indicates that the solution

space of the variables x and y where split into n portions.

The figures show that DEACS(2) had the best perfor-

mance among the three. Even though the association of the

Fig. 14 Multi-stage graph for

the traditional ACS algorithm
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two variables in DEACS(4) was stronger than that in

DPACS(2), more pheromone distribution functions needed

to be trained in DPACS(4). DEACS(4) needs more gen-

erations to find the suitable variables in more separated

distribution functions. Therefore, the performance of

DEACS(4) was poorer than that of DEACS(2). The number

of dynamic edges is a parameter (option) in the proposed

algorithm. If the number of dynamic edges is too large, it

will increase the computation time and the memory usage.

If the number of dynamic edges is too small, it will reduce

the explorative ability of the proposed algorithm. There-

fore, DEACS needs to be set a suitable number of dynamic

edges according to the scale of solution space. If a program

has a complicated and large scale solution space, it need to

generate more dynamic edges to discover the best solution.

Experiments were made to compare the average exe-

cution time for function A of DEACS and ACS. The results

are shown in Fig. 18.

The figure shows that DEACS spent less execution time

than ACS. The reason was that the stages from the start to

the end in DEACS are few. Note that the traditional ACS

needed several nodes (stages) to encode a variable, but

DEACS just needed one stage for a variable. Thus, the total

stage number of DEACS is only 1/n of that of the tradi-

tional ACS.

In the second part, DEACS was then compared to some

existing approaches including API (Monmarche et al.

2000), GA, and CACS (Pourtakdoust and Nobahari 2004)

with seven benchmark functions. The functions and

experimental results referred from Pourtakdoust and

Nobahari (2004). The benchmark functions are tabulated in

Table 1.

All of the results of formulas have a minimum value of

0. The algorithms calculated these formulas and try to find

the minimum value. Thus the more minimum value of

results (close to zero) means the better preference of these

methods. The experimental results are summarized in

Table 2.

CACS is a special-purpose ACS for resolving mathe-

matical formulas. It uses some complex designs to

approach the optimal solution for a formula. For example,

it applies a normal probability distribution function to

calculate the content of pheromone and adjusts the

parameters by using the best fitness value. GA is the tra-

ditional genetic algorithm and it decodes the solution space

as a binary string. API is a method, which is inspired by a

primitive ant’s recruitment behavior. The process performs

two ants and leads them to gather on a same hunting site.

The recruitment technique makes the population proceed

towards the optimum solution. In this experiment, no

heuristic function was designed. The same parameter set-

tings from the previous experiments were used. From

Table 2, it could be observed that DEACS and CACS

could obtain satisfactory solutions for these formulas when

compared to the others. Because of the encoding spaces are

dispersed in GA and API and formulas 1 and 2 are simple

formulas, GA and API can obtain the minimum value 0 as

results in these two formula. DEACS and CACS just get

the values that are very close to 0. In the other complex

formulas, DEACS and CACS can obtain better perfor-

mance than other two methods. CACS has shown good

performance in resolving formulas. In contrast, DEACS is

a general continuous ACS for any problem and it can also

obtain well results in resolving formulas. Thus, DEACS is

as flexible as traditional ACS, but can also have good

performance in the continuous problem.

In the last part of experiments, DEACS was compared

with some other previous ant-related continuous algorithms

(Bilchev and Parmee 1995; Dreo and Siarry 2004; Mon-

marche et al. 2000) according to the same test in Socha and

Dorigo (2008). The same stopping criterion was used as

follows:

f � f �j j\ �1f þ �2 ð9Þ

where f is the value of the best solution found by a method

and f* is the optimal value for the given test problems. �1
and �2 are set as 10

-4. The benchmark functions are shown

in Table 3.

Table 4 shows the performance of these algorithms for

the benchmark functions. Note that Function 7 uses ten

variables. The value in the table represents the relative ratio

of the mean number of function evaluations by an approach

over that of the best one. The best performing algorithm on

a given problem was thus recorded as 1.0, and the others

were counted as a multiple of it. The actual mean number

of function evaluations is given in parentheses only for the

best performing algorithm on a given problem. The value

in a square bracket indicates the percentage of successful
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runs. These experiments could estimate the convergence

speed of the proposed DEACS.

It could be observed from Table 4 that the number of

convergence generations of DEACS was similar to that of

ACOR. These two approaches were better than the other

compared methods. Besides, there was no absolute rank

between DEACS and ACO. Due to different pheromone

policies between DEACS and ACOR, DEACS usually

performed more rough searches in a complex problem. The

local pheromone updating rule, however, caused ants to

escape from local traps easily. For example, DEACS could

stably approach the global optimal solution in Function 4

even it used more function evaluations.

The experimental results showed that DEACS could

obtain good performance in some formulas in which there

is weak relationship among variables. For example, it

Table 1 Seven benchmark

functions in part 2
1. x21 þ x22 þ x23; xi 2 �5:12; 5:12½ � (Sphere Function)

2. 100 x21 � x2
� �2þ 1� x1ð Þ2; xi 2 �5:12; 5:12½ � (Rosenbrock)

3. 50þ
P5

i¼1 x2i � 10cos 2pxið Þ
� �

; xi 2 �5:12; 5:12½ � (Rastrigin)

4. 1þ
P2

i¼1

x2i
4000

�
Q2

i¼1 cos
xiffi
i

p
� �

; xi 2 �5:12; 5:12½ � (Griewank with 2 variables)

5. 1þ
P5

i¼1

x2i
4000

�
Q5

i¼1 cos
xiffi
i

p
� �

; xi 2 �5:12; 5:12½ � (Griewank with 5 varables)

6. 0:5þ sin2 x21 þ x22
� �1=2� 0:5

� �
= 1þ 0:001 x21 þ x22

� �� �
; xi 2 �100; 100½ �

7. x21 þ x22
� �0:25

1þ sin250 x21 þ x22
� �0:1� �

; xi 2 �100; 100½ �

Table 2 Comparison of

DEACS and three other

methods

Method min(f1) min(f2) min(f3) min(f4) min(f5) min(f6) min(f7)

DEACS 3.11e-7 5.33e-8 3.3e-2 3.6e-3 5.9e-7 4.2e-3 4.5e-2

CACS 1.5e-67 1.2e-31 4.8 5.0e-3 1.1e-2 4.6e-3 4.2e-6

API 0.0 0.0 7.47651 0.00413 0.25034 0.00659 0.09307

GA 0.0 0.0 2.12457 0.03095 0.13955 0.07376 0.13358

Table 3 Six benchmark

functions in part 3 1.
P2

i¼1 100 x2i � xiþ1

� �2þ xi � 1ð Þ2; xi 2 �5; 5½ � (Rosenbrock R2)

2. x21 þ x22 þ x23 þ x24 þ x25 þ x26; xi 2 �5:12; 5:12f g (Sphere)

3. 1þ x1 þ x1 þ 1ð Þ2 19� 14x1 þ 13x21 � 14x2 þ 6x1x2 þ 3x22
� �� �

� 30þ 2x1 � 3x2ð Þ2 18� 32x1 þ 12x21 � 48x2 � 36x1x2 þ 27x22
� �� �

; xi 2 �5:12; 5:12f g
(Goldstein and Price)

4. x1 � x2ð Þ2þ x1þx2�10
3

� �2
; xi 2 �20; 20f g (Martin and Gaddy)

5. x21 þ 2x22 � 3
10
cos 3px1ð Þ � 2

5
cos 4px2ð Þ þ 7

10
; xi 2 �100; 100f g (B2)

6.
P5

i¼1 100 x2i � xiþ1

� �2þ xi � 1ð Þ2; xi 2 �5; 5f g (Rosenbrock R5)

7. 1þ
Pn

i¼1

x2i
4000

�
Qn

i¼1 cos
xiffi
i

p
� �

; xi 2 �5:12; 5:12f g; n ¼ 10 (Griewangk GR10)

Table 4 Comparison of

DEACS and the other four

methods

Method f1 f2 f3 f4 f5 f6 f7

DEACS 1.0 (766) 1.0 (546) 1.35 1.22 1.0 1.57 1.0 (1156)

ACOR 1.07 1.43 1.0 (384) 1.0 (345) 1.06 1.0 [97 %]

(2487)

1.2 [61 %]

CACO 8.88 40 14 5 – – 36

API 12.84 18.59 – – – – –

CIAC 14.98 91.52 61 [56 %] 34 [20 %] 23.32 16 [90 %] 36 [52 %]
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performs well in Function 7 because if the value of a

variable approaches zero, the result of this function will

approach zero no matter what the values of other variables

are. Besides, DEACS retains the ability of escaping from

local optimal solutions because it keeps the original pro-

cess and characteristics of ACS. It can usually obtain a

solution near a global optimal solution, even though the

number of variables is large.

5 Conclusion and future work

This work proposed an extended ACS algorithm for solv-

ing continuous variables problems. The proposed algorithm

is different from the existing ant-related algorithms in that

it does not have fixed paths and nodes. Instead, it dynam-

ically produces paths in the continuous solution space by

applying distribution functions of the pheromone. The

proposed DEACS algorithm retains all the benefits and the

operators (including the policy of pheromone update and

state transition rule) of the traditional ACS algorithm. The

experimental results show that DEACS is very competitive

to the existing ACS and some other evolutionary algo-

rithms. In addition, it is a general algorithm that can easily

be applied to a wide range of continuous optimization

problems.

Even though the performance of the proposed DEACS is

good and is very similar to the traditional ACS algorithm,

there are still some issues to be further explored. First, it

simply stores pheromone in nodes, which weakens the

relationship between two nodes. Although the method of

dividing the solution space is used to resolve this problem,

it does not completely resolve the problem as the searching

process becomes not very smooth. When the process

chooses a new, untrained partition, it has to start training all

over again.

Second, influence function represents the impact of the

path on the surrounding area. However, we haven’t had

discussion about the impact of different process. In the

future, the structure of DEACS will be further improved.

For example, pheromone can be stored somewhere

between two nodes to further represent the relations

between them. The applications of various types of influ-

ence functions to different kinds of problems may also be

discussed. Finally, DEACS retains the operators and the

process of the traditional ACS. It obtains good performance

in some formulas in which there is weak relationship

among variables. Besides, it is more flexible to other real

applications (in addition to mathematical formulas) than

the compared ant-based algorithms. as long as a suit-

able heuristic function is designed. Thus, we will apply it to

some applications with reality in the future.
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