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Abstract A hybrid network of evolutionary processors

(HNEP) is a graph where each node is associated with a

special rewriting system called an evolutionary processor,

an input filter, and an output filter. Each evolutionary

processor is given a finite set of one type of point mutations

(insertion, deletion or a substitution of a symbol) which can

be applied to certain positions in a string. An HNEP

rewrites the strings in the nodes and then re-distributes

them according to a filter-based communication protocol;

the filters are defined by certain variants of random-context

conditions. HNEPs can be considered both as languages

generating devices (GHNEPs) and language accepting

devices (AHNEPs); most previous approaches treated the

accepting and generating cases separately. For both cases,

in this paper we show that five nodes are sufficient to

accept (AHNEPs) or generate (GHNEPs) any recursively

enumerable language by showing the more general result

that any partial recursive relation can be computed by an

HNEP with (at most) five nodes with the underlying graph

structure for the communication between the evolutionary

processors being the complete or the linear graph with five

nodes, whereas with a star-like communication graph we

need six nodes. If the final results are defined by only

taking the terminal strings out of the designated output

node, then for these extended HNEPs we can prove that

only four nodes are needed in all cases—for computing any

partial recursive relation as well as for generating and

accepting any recursively enumerable language—and the

underlying communication structure can be a complete or a

linear graph, but now even a star-like graph, too.

Keywords Circular Post machines � Communication

graph � Computational completeness � Hybrid networks of

evolutionary processors

1 Introduction

Networks of evolutionary processors (NEPs) were intro-

duced in Castellanos et al. (2001) as a model of string

processing devices distributed over a graph. The nodes of

the graph contain the processors that carry out operations

of insertion, deletion, and substitution, which reflect basic

biological processes known as point mutations. Models

based on these operations are of particular interest in for-

mal language theory due to the simplicity of these opera-

tions. In NEPs, an evolutionary processor is located at

every node of a graph and processes objects, for example

(finite sets of) strings. The system functions by rewriting

the collections of objects present in the nodes and then re-

distributing the resulting objects according to a communi-

cation protocol defined by the underlying communication
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structure and a specific filtering mechanism. The language

determined by the network is defined as the set of objects

which appear in some distinguished node in the course of

the computation.

NEPs are models inspired by cell biology, since each

processor represents a cell performing point mutations of

DNA and controlling its passage out of and into the cell

through a specific filtering mechanism. An evolutionary

processor corresponds to a cell, the generated string to a

DNA strand, and the operations insertion, deletion, and

substitution of a symbol correspond to the point mutations.

By using an appropriate filtering mechanism, NEPs with a

very small number of nodes are very powerful computa-

tional devices: already with two nodes, they are as pow-

erful as Turing machines, see Alhazov et al. (2006, 2007,

2009b).

Special variants of these devices are the so-called hybrid

networks of evolutionary processors (HNEPs), where each

language processor performs only one of these operations

on a certain position of the strings in that node. Further-

more, the filters are defined by some variants of random-

context conditions, i.e., they check the presence and the

absence of certain symbols in the strings. Hybrid networks

of evolutionary processors can be considered both as lan-

guage generating and accepting devices: the notion of an

HNEP as a language generating device (GHNEP) was

introduced in Martı́n-Vide et al. (2003), and the concept of

an accepting HNEP (AHNEP) was defined in Margenstern

et al. (2005).

Csuhaj-Varjú et al. (2005) it was shown that GHNEPs

with 27þ 3 � cardðVÞ nodes are computationally complete,

with V being the underlying alphabet. For specific variants

of AHNEPs, in Manea et al. (2007) it was shown that 31

nodes are sufficient for recognizing any recursively enu-

merable language (irrespectively of the size of the alpha-

bet); the result was improved considerably in Manea and

Mitrana (2007) where the number of necessary nodes was

reduced to 24. In the following, the results were further

improved significantly: AHNEPs and GHNEPs of the

specific types as defined above were shown to be compu-

tationally complete already with 10 nodes in Alhazov et al.

(2008a) and only 7 nodes in Alhazov et al. (2008b, 2009a).

Then, in Loos et al. (2010) it was already claimed that

acceptance can be done with (at most) 6 nodes, as there the

authors showed that AHNEP of size 6 are universal by

giving a construction of an AHNEP simulating a 2-tag

system.

Variants of the underlying graph structure—star net-

works, ring networks, and grid networks—were considered

(Dassow and Manea 2010), with 13 nodes needed for the

star-like variant. Truthe (2013), AHNEPs in the form of a

chain or a ring (with each processor having at most two

neighbours) and ANEPs in the form of a wheel with 56

processors were shown to be computationally complete;

these numbers were improved to 29 in Dassow et al. (2015)

for the cases of a chain, a ring, or a wheel. As a small

technical detail we have to mention that for an input string

w the input to the HNEPs we will construct in this paper is

q1w where q1 is the initial state, whereas in the papers

mentioned before, the input to the system is the pure input

string w. On one hand, it is common in the area of

molecular computing to supplement the input with some

additional symbol(s) on the left and/or on the right; on the

other hand, adding one symbol on the left only needs one

additional insertion node. Hence, the results in this paper,

even taking into account this difference, constitute a con-

siderable improvement in comparison with the results

established in Dassow et al. (2015).

In this paper, we improve previous results by showing

that HNEPs are computationally complete with five nodes,

i.e., any recursively enumerable language can already be

generated or accepted by an HNEP having at most five

nodes, with the underlying communication structure being

a complete graph. In fact, we even show that any partial

recursive relation can be computed by an HNEP with at

most five nodes.1 As it is known that the families of HNEPs

with two nodes are not computationally complete (see

Alhazov et al. 2009a), the gap for HNEPs between being

computationally complete or not now has already become

pretty small.

We also investigate different graph structures. Complete

graphs as the underlying communication structure first are

assumed to have no loops in the nodes, yet we will show

that loops do not affect the results. Moreover, all our

computational completeness results—computing any par-

tial recursive relation, generating or accepting any recur-

sively enumerable language—also hold true for the

underlying structure being a linear graph. With the com-

munication structure being a star-like graph we need one

node more, i.e., in this case computational completeness

could only be obtained with using six nodes.

Moreover, we will show that we can even save one more

node, i.e., we can get computational completeness with

only four nodes, if we extract the final results from the

designated output node by only taking the terminal strings

appearing in this node as the results of a computation. In

this case, for extended HNEPs (HNEPs with extracting the

terminal strings from the output node), all our computa-

tional completeness results can even be obtained with the

underlying communication graph between the evolutionary

processors being a star-like graph, too.

1 These results were already claimed in the original paper (Alhazov

et al. 2014b) presented at UCNC 2014; in this paper we not only

establish a new extended proof of these results, but also consider the

variants with terminal extraction and with linear and star-like

communication structures.
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Finally, all the computational completeness results

proved in this paper, for HNEPs and extended HNEPs, hold

true for two different variants chosen for the definition of

the effect of substitutions or deletions on a string in a given

node: the original definition as used in Alhazov et al.

(2014b) also yields the underlying string as a result of a

computation step whenever at least one rule assigned to the

node cannot be applied to this string; the definition we have

in mind first when elaborating our main proofs does not

yield the underlying string as a result of a computation step

in this case, which is a variant already used in the so-called

obligatory HNEPs (for example, see Alhazov et al. 2011a,

2014a). Yet as we also show that all our constructions still

work when using the original definition, our results remain

directly comparable with previous results obtained for

HNEPs.

2 Definitions

We start by recalling some basic notions of formal lan-

guage theory. An alphabet is a non-empty finite set. A finite

sequence of symbols from an alphabet V is called a string

over V. The set of all strings over V is denoted by V�; the
empty string is denoted by k; moreover, we define

Vþ ¼ V�nfkg. The length of a string x is denoted by |x|,

and by jxja we denote the number of occurrences of a letter

a in a string x. For a string x, alphðxÞ denotes the smallest

alphabet R such that x 2 R�. For more details of formal

language theory the reader is referred to the monographs

and handbooks in this area as Salomaa (1973) and

Rozenberg and Salomaa (1997).

Remark 1 In this paper, string rewriting systems as Tur-

ing machines, Post systems, etc. are called computationally

complete if these systems are able to compute any partial

recursive relation R on strings over any alphabet U, i.e.,

R � ðU�Þm � ðU�Þn, for some m; n� 0. As input and output

alphabet for these systems we assume to take T ¼ U [ f$g,
where $ is a special delimiter separating the components of

an input vector ðw1; . . .;wmÞ and an output vector

ðv1; . . .; vnÞ, wi 2 U�, 1� i�m, vj 2 U�, 1� j� n. In that

sense, any relation R � ðU�Þm � ðU�Þn can also be con-

sidered as a special relation R0 � T� � T�.

Remark 2 Computational completeness in the usual sense

with respect to acceptance and generation directly follows

from this general kind of computational completeness, as

any recursively enumerable language L can be viewed as

partial recursive relation L� fkg (acceptance) and fkg � L

(generation); k can be replaced by any arbitrary string. For

the accepting case, we can even take any relation R whose

first component is L, which corresponds to taking fu 2

U� j uRv; v 2 U�g as the accepted language and also is the

usual way how acceptance is defined in the previous papers

on networks of evolutionary processors. The results proved

in this paper, establishing acceptance even when restricting

the second component, obviously also hold true for the case

when taking the more relaxed original definitions.

2.1 Hybrid networks of evolutionary processors

For introducing the notions concerning evolutionary pro-

cessors and hybrid networks, we mainly follow (Csuhaj-

Varjú et al. 2005). These language processors use so-called

evolutionary operations, simple rewriting rules which

abstract local gene mutations.

Definition 1 For an alphabet V, let a ! b be a rewriting

rule with a; b 2 V [ fkg, and ab 6¼ k; we call such a rule a

substitution rule if both a and b are different from k; such a

rule is called a deletion rule if a 6¼ k and b ¼ k, and it is

called an insertion rule if a ¼ k and b 6¼ k. The set of all

substitution rules, deletion rules, and insertion rules over an

alphabet V is denoted by SubV ;DelV , and InsV ,

respectively.

Given such rules p � a ! b 2 SubV , q � a ! k 2
DelV , and r � k ! a 2 InsV as well as a string w 2 V�,
we define the following actions of p, q, and r on w:

p�ðwÞ ¼ ubv j w ¼ uav; u; v 2 V�f g;
plðwÞ ¼ bv j w ¼ avf g;
prðwÞ ¼ ub j w ¼ uaf g;
q�ðwÞ ¼ uv j w ¼ uav; u; v 2 V�f g;
qlðwÞ ¼ v j w ¼ avf g;
qrðwÞ ¼ u j w ¼ uaf g;
r�ðwÞ ¼ uav j w ¼ uv; u; v 2 V�f g;
rlðwÞ ¼ fawg;
rrðwÞ ¼ fwag:

The symbol a 2 f�; l; rg denotes the mode of applying a

substitution, insertion or deletion rule to a string, namely,

at any position ða ¼ �Þ, on the left-hand end ða ¼ lÞ, or on
the right-hand end ða ¼ rÞ of the string, respectively.

Remark 3 The definitions given above coincide with the

definitions of the evolutionary operations given for the so-

called obligatory HNEPS, for example, see Alhazov et al.

(2011a) and Alhazov et al. (2014a). In the original defini-

tions given in the literature, even in Alhazov et al. (2014b),

a slightly modified version of these definitions is used: if

any of these sets results to be empty, which may happen for

plðwÞ, prðwÞ, p�ðwÞ, qlðwÞ, qrðwÞ, q�ðwÞ, i.e., if no strings

v or u or u and v satisfy the indicated condition, because the

symbol a to be substituted or deleted is not present in w or

it is not found at the expected position, the resulting set for
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the corresponding operation is defined to contain its argu-

ment, i.e., it equals fwg.
The proofs for all the theorems established in this paper

will first be only argued for the variant given in Definition

1, yet in order to make our results comparable with

previous results, we then always will add the arguments

needed to show that they also hold if the original definition

for the results of the actions p; q; r on w is used.

For any rule b, b 2 fp; q; rg, any mode a 2 f�; l; rg,
and any L � V�, we define the a-action of b on L by

baðLÞ ¼
S

w2L b
aðwÞ. For a given finite set of rules M , we

define the a-action of M on a string w and on a language L

by MaðwÞ ¼
S

b2M baðwÞ and MaðLÞ ¼
S

w2L M
aðwÞ,

respectively.

We notice that, as in previous papers on HNEPs, sub-

stitutions in the following will only be used at arbitrary

positions, i.e., with a ¼ �.
For two disjoint finite subsets P and F of an alphabet V

and any string w over V, the two predicates uð1Þ and uð2Þ

are defined as follows:

uð1Þðw;P;FÞ � ðP � alphðwÞÞ ^ ðF \ alphðwÞ ¼ ;Þ;
uð2Þðw;P;FÞ � ððP ¼ ;Þ _ ðalphðwÞ \ P 6¼ ;ÞÞ^

ðF \ alphðwÞ ¼ ;Þ:

The idea of these predicates is based on random-context

conditions defined by sets P (permitting contexts) and F

( forbidden contexts). Moreover, for any L � V�, we define

uiðL;P;FÞ ¼ fw 2 L j uiðw;P;FÞg; i 2 f1; 2g:

An evolutionary processor consists of a set of evolu-

tionary operations (substitutions, insertions, deletions) and

a filtering mechanism, i.e., we define an evolutionary

processor over V as a 5-tuple (M, PI, FI, PO, FO) where

– either M � SubV orM � DelV orM � InsV , i.e., the set

M represents the set of evolutionary rules of the

processor (notice that every processor is dedicated to

only one type of the evolutionary operations);

– PI;FI � V are the input permitting and forbidden

contexts of the processor and PO;FO � V are the

output permitting and forbidden contexts of the

processor.

The set of evolutionary processors over V is denoted by

EPV .

We now are able to formally define the main compu-

tational models considered in this paper, i.e., obligatory

hybrid networks of evolutionary processors (OHNEPs) and

hybrid networks of evolutionary processors (HNEPs). In

order to keep notations concise, we will use the bracket

notation [O]HNEP to indicate that the definitions or the

results stated in a theorem or corollary are valid no matter

whether in the nodes of the HNEP we obtain the results of

applying the rules to a string according to Definition 1

(which is indicated by writing OHNEP) or according to

Remark 3 (which is indicated by writing HNEP as usual).

Definition 2 An obligatory hybrid network of evolution-

ary processors (an OHNEP for short) or a hybrid network

of evolutionary processors (an HNEP for short) over V is a

construct

C ¼ ðV; T ;H;N ;Cinit; a; b;Cinput; i0Þwhere

– V is the alphabet of the network;

– T is the input/output alphabet, T � V;

– H ¼ ðXH ;EHÞ is an undirected graph with the set of

vertices or nodes XH and the set of (undirected) edges

EH ; H is called the underlying communication graph of

the network;

– N : XH 	! EPV is a mapping which with each node

x 2 XH associates the evolutionary processor

NðxÞ ¼ ðMx;PIx;FIx;POx;FOxÞ;
– Cinit : XH ! 2V

�
is a mapping which identifies the

initial configuration of the network; it associates a finite

set of words with each node of graph H;

– a : XH 	! f�; l; rg; aðxÞ defines the action mode of the

rules performed on the strings occurring in node x;

– b : XH 	! fð1Þ; ð2Þg defines the type of the input and

output filters of a node; for every node x, x 2 XH , and

for any language L we define lxðLÞ ¼ ubðxÞðL;PIx;FIxÞ
and sxðLÞ ¼ ubðxÞðL;POx;FOxÞ, i.e., lxðLÞ and sxðLÞ
are the sets of strings of L that can pass the input and

the output filter of x, respectively;

– Cinput : XH 	! 2V
�
defines a finite set of ‘‘initial strings

for the input’’: for any ðx;w0ðxÞÞ 2 Cinput, the input

string is concatenated to w0ðxÞ and added to node x of

the graph H, as described below;

– i0 2 XH is the output node of C.

The size of C is defined to be the number of nodes in

XH . An [O]HNEP is said to be a complete [O]HNEP if its

underlying communication graph is a complete graph; it

is called a linear [O]HNEP if its underlying communi-

cation graph is linear, and a star-like [O]HNEP if its

underlying communication graph is a star-like graph, i.e.,

only the central node is connected with each of the other

nodes.

Looking at [O]HNEPs as devices computing partial

recursive relations R on an alphabet U, i.e., R � ðU�Þm�
ðU�Þn, for some m; n� 0, we take T ¼ U [ f$g, where $ is

a special delimiter separating the components of an input

vector ðw1; . . .;wmÞ and an output vector ðv1; . . .; vnÞ,
wi 2 U�, 1� i�m, vj 2 U�, 1� j� n.
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A configuration of an [O]HNEP C, as defined above, is a
mapping C : XH 	! 2V

�
which associates a set of strings

over V with each node x of the graph. A component C(x) of

a configuration C is the set of strings that can be found in

the node x of this configuration, hence, a configuration can

be considered as a list of the sets of strings which are

present in the nodes of the network at a given moment. For

a given input vector ðw1; . . .;wmÞ, wi 2 U�, 1� i�m, the

initial configuration C0 of the [O]HNEP is obtained by

adding to Cinit the strings w0ðxÞw1$. . .$wm in each node x,

for any ðx;w0ðxÞÞ 2 Cinput, i.e., we define C0ðxÞ ¼
CinitðxÞ [ fw0ðxÞw1$. . .$wm j ðx;w0ðxÞÞ 2 Cinputg.

A configuration can change either by an evolutionary

step or by a communication step.

When the configuration changes by an evolutionary step,

then each component C(x) of the configuration C is altered

in accordance with the set of evolutionary rules Mx asso-

ciated with the node x and the way of applying these rules,

aðxÞ, according to Definition 1 for an OHNEP and

according to Remark 3 for an HNEP. Formally, the con-

figuration C0 is obtained in one evolutionary step from the

configuration C, written as C ¼) C0, if and only if C0ðxÞ ¼
M

aðxÞ
x ðCðxÞÞ for all x 2 XH . We observe that C0ðxÞ ¼ ; if

Mx ¼ ; for both variants of getting the result of applying

the rules in Mx in mode aðxÞ.
When the configuration changes by a communication

step, then each language processor NðxÞ, where x 2 XH ,

sends a copy of each of its strings to every node y the node x is

connected with, provided that this string is able to pass the

output filter of x, and receives all the stringswhich are sent by

the processor of any node y connected with x provided that

these strings are able to pass the output filters of y and the

input filter of x. Those strings which are not able to pass its

output filter, remain in the node x. Formally, we say that

configurationC0 is obtained in one communication step from

configuration C, written as C ‘ C0, if and only if

C0ðxÞ ¼ ðCðxÞnsxðCðxÞÞÞ[
[

ðx;yÞ2EG

ðsyðCðyÞÞ \ lxðCðyÞÞÞ

holds for all x 2 XH .

A computation in C is a sequence of configurations C0,

C1, C2; . . . where C0 is the initial configuration of C, C2i ¼
) C2iþ1 and C2iþ1 ‘ C2iþ2, for all i� 0. Note that each

configuration Ciþ1 is uniquely determined by the configu-

ration Ci, i� 0. The result of a computation in C for an

input vector ðw1; . . .;wmÞ, wi 2 U�, 1� i�m, i.e., for the

initial configuration C0 with C0ðxÞ ¼ CinitðxÞ[
fw0ðxÞw1$. . .$wm j ðx;w0ðxÞÞ 2 Cinputg for x 2 XH , is the

set of all strings of the form v1$. . .$vn, vj 2 U�, 1� j� n,

arriving in the output node i0 at any computation step of C,
i.e.,

LðCÞððw1; . . .;wmÞÞ ¼fðv1; . . .; vnÞ j
vj 2 U�; 1� j� n;

v1$. . .$vn 2 Csði0Þ; s� 0Þg:

Remark 4 Consider any input win ¼ w1$. . .$wm. We first

note that, since different strings do not influence each

other, the strings in Cinit do not affect the evolution of the

strings in Cinput concatenated with win and vice-versa. The

results thus are the union of the strings obtained from Cinit,

which do not depend on the input, and the strings obtained

from win, which do not depend on the strings in Cinit.

Therefore, for the results elaborated in this paper we

may always assume Cinit to be empty, and even exclude it

from the tuple defining the network. Moreover, we may

also assume that Cinput only consists of one string in one

node, i.e., Cinput ¼ fðx0;w0Þg.

As special cases, [O]HNEPs can be considered either as

language generating devices (generating hybrid networks

of evolutionary processors or G[O]HNEPs) or language

accepting devices (accepting hybrid networks of evolu-

tionary processors or A[O]HNEPs). In the case of

G[O]HNEPs, the relation to be computed is fkg � L, i.e.,

the initial configuration always equals fðx0;w0Þg; the

generated language is the set of all strings which appear in

the output node at some step of the computation, i.e., the

language generated by a generating hybrid network of

evolutionary processors C is LgenðCÞ ¼
S

s� 0 Csði0Þ. In the

case of A[O]HNEPs, the relation to be computed is

L� fkg, i.e., starting from the initial configuration

fðx0;w0w1Þg, we accept the input string w1 if and only if at

some moment of the computation the empty string appears

in the output node (and never any other string is com-

puted), i.e., the language accepted by C is defined by

LaccðCÞ ¼ fw1 2 V� j 9s� 0ðCsði0Þ ¼ fkgÞg.

2.2 Post systems and circular post machines

The left and right insertion, deletion, and substitution rules

defined in the preceding subsection are special cases of

string rewriting rules only working at the ends of a string;

they can be seen as restricted variants of Post rewriting

rules as already introduced by Post (1943): for a simple

Post rewriting rule Ps � u$x ! y$v, where u; v; x; y 2 V�,
for an alphabet V, we define

psðwÞ ¼ yzv j w ¼ uzx; z 2 V�f g:

A normal Post rewriting rule pn � $x ! y$ is a special

case of a simple Post rewriting rule u$x ! y$v with u ¼
v ¼ k (we also assume xy 6¼ k); this normal Post rewriting

rule $x ! y$ is the mirror version of the normal form rules

u$ ! $v as originally considered in Post (1943) for Post

canonical systems; yet this variant has already been used
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several times for proving specific results in the area of P

systems, e.g., see Freund et al. (2014). A Post system of

type X is a construct V ; T;A;Pð Þ where V is a (finite) set of

symbols, T � V is a set of terminal symbols, A 2 V� is the
axiom, and P is a finite set of Post rewriting rules of type

X; for example, X can mean simple or normal Post

rewriting rules. In both cases it is folklore that these Post

systems of type X are computationally complete.

The basic idea of the computational completeness proofs

for Post systems is the ‘‘rotate-and-simulate’’-technique,

i.e., the string is rotated until the string x to be rewritten

appears on the right-hand side, where it can be erased and

replaced by the string y on the left-hand side, which in total

can be accomplished by the rule $x ! y$. By rules of the

form $a ! a$ for each symbol a the string can be rotated.

In order to indicate the beginning of the string in all its

rotated versions, a special symbol B (different from all

others) is used; B is to be erased at the end of a successful

computation.

Circular Post machines are machine-like variants of Post

systems using specific variants of simple Post rewriting

rules; several variants named CPMi, 0� i� 4, were intro-

duced (Kudlek and Rogozhin 2001b) and further studied in

Kudlek and Rogozhin (2001a), Alhazov et al. (2002), and

the variants of CPM5 we use in this paper were investigated

in Alhazov et al. (2011b). It was stated in Alhazov et al.

(2011b) that CPM5 is an interesting model that deserves

further attention; in the present paper we confirm that this is

the case by constructing HNEPs simulating CPM5s.

Definition 3 A (non-deterministic) CPM5 is a construct

M ¼ ðR; T ;Q; q1; q0;RÞ;

where R is a finite alphabet, T � R is the set of terminal

symbols, Q is the set of states, q1 2 Q is the initial state,

q0 2 Q is the only terminal state, and R is a set of simple

Post rewriting rules of the following types (we use the

notation Q0 ¼ Qnfq0g):

– px$ ! q$ (deletion rule) with p 2 Q0, q 2 Q, x 2 R; we
also write px ! q and, for any w 2 R�, the correspond-

ing computation step is pxw	!px!q
qw;

– p$ ! q$y (insertion rule) with p 2 Q0, q 2 Q, y 2 R;
we also write p ! yq and, for any w 2 R�, the

corresponding computation step is pw	!p!yq
qwy.

The CPM5 is called deterministic if for any two deletion

rules px ! q1 and px ! q2 we have q1 ¼ q2 and for any

two insertion rules p ! q1y1 and p ! q2y2 we have

q1y1 ¼ q2y2.

The name circular Post machine comes up from the idea

of interpreting the machines to work on circular strings

where both deletion and insertion rules have local effects,

as for circular strings the effect of the insertion rule p$ !
q$y is the same as the effect of p ! yq directly applied to a

circular string, which also justifies writing p$ ! q$y as

p ! yq.

For a given input string w, w 2 T�, the CPM5 M starts

with q1w and applies rules from R until it eventually

reaches a configuration q0v for some v 2 T�; in this case

we say that (w, v) is in the relation computed by M.

Definition 4 A CPM5 M ¼ ðR;T ;Q; q1; q0;RÞ is said to

be in normal form if

– Qnfq0g ¼ Q1 [ Q2 where Q1 \ Q2 ¼ ;;
– for every p 2 Q1 and every x 2 R, there is exactly one

instruction of the form px ! q, i.e., Q1 is the set of

states for deletion rules;

– for every insertion rule p ! yq we have p 2 Q2, i.e., Q2

is the set of states for insertion rules, and moreover, if

p ! y1q1 and p ! y2q2 are two different rules in R,

then y1 ¼ y2.

Alhazov et al. (2011b), a CPM5 in normal form even

obeying the constraint that for each p 2 Q2 there are at

most two different rules p ! yq1 and p ! yq2 in R (and,

again, M is called deterministic if q1 ¼ q2) were shown to

be computationally complete. The following result can be

derived from the theorems proved in Alhazov et al.

(2011b):

Theorem 1 (see Alhazov et al. 2011b) CPM5s, even in

normal form, are computationally complete.

3 Computational completeness of [O]HNEPs
with five nodes

In this section we prove our main result showing that

complete [O]HNEPs with five nodes are sufficient to obtain

computational completeness. Yet in order to get a more

efficient description of the derivations possible in an

[O]HNEP, we first need the following observations.

Remark 5 HNEPs originally are defined as (deterministic)

distributed string-processing devices where the evolution

rules are simultaneously applied in all possible ways to

(different copies of) all possible strings. However, as

already mentioned in Remark 4, there is no interaction

between the strings, hence, it is sufficient to consider any

possible behavior of an [O]HNEP as a non-deterministic

distributed device processing one string w0 in a cell x0 to

one other string w1 in a cell x1. Therefore, in the following,

without loss of generality we will consider a configuration

as (region, string), i.e., one string in one node, for any

possible evolution.
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Remark 6 In the proofs elaborated in the following, we

first will have in mind the variant given by Definition 1,

i.e., for an OHNEP, but whenever necessary, we will also

argue why the construction given in the proof works for the

original variant described in Remark 3, i.e., for an HNEP,

too.

Theorem 2 Any (non-deterministic) CPM5 M in normal

form can be simulated by a complete [O]HNEP C of size 5.

Proof Let M ¼ ðR; T;Q; q1; q0;RÞ be a (non-determinis-

tic) CPM5 in the normal form as defined in Definition 4,

with symbols R ¼ faj j 1� j�mg and states Q ¼ fqi j
0� i� ng, where q1 is the initial state and the only ter-

minal state is q0 2 Q. We now construct a complete

OHNEP C ¼ ðV; T ;H;N ; a; b;C0
0 ; 5Þ of size 5 which

simulates the given CPM5 M. The following sets are used

in its description:

JR ¼ 1. . .mf g;
JK ¼ 0; 1. . .nf g;
S ¼ si j i 2 JKf g;
A ¼ al j l 2 JR [ f0gf g ð¼ R [ fa0gÞ;
A0 ¼ a0l j l 2 JR [ f0g

� �
;

A00 ¼ fa00l j l 2 JRg;
�A ¼ �as;t j s 2 JK ; t 2 JR

� �
;

Â ¼ âs;t j s 2 JK ; t 2 JRx
� �

;

~Q ¼ ~q j q 2 Qnfq0gf g;
�Q ¼ �q j q 2 Qf g;
Q̂ ¼ q̂ j q 2 Qf g;

Q0 ¼ q0s;t j qs 2 Q; t 2 JR

n o
;

Q00 ¼ q00s;t j qs 2 Q; t 2 JR

n o
;

V ¼ S [ A [ A0 [ A00 [ �A [ Â

[ Q [ ~Q [ �Q [ Q̂ [ Q0 [ Q00 [ feg:

We assume H to be the complete graph with 5 nodes

(without loops), i.e., we take C to be a complete OHNEP.

Moreover, we take C0
0 ¼ fð1; q1Þg, i.e., for the input string

w1, the initial configuration is fð1; q1w1Þg; the output node
of C for collecting the results of a computation is node 5.

Moreover, we take bðiÞ ¼ 2 for all 1� i� 5, which

means that a string w can pass the filter (P, F) if and only if

for a non-empty set P of permitting contexts at least one

symbol of w is contained in P as well as no symbol of w is

in the set F of forbidden contexts. Finally, we take

að1Þ ¼ að2Þ ¼ að5Þ ¼ �, as the two nodes 1 and 2 as well

as the output node 5 perform substitutions, as well as

að3Þ ¼ r and að4Þ ¼ l. The evolutionary processors

NðiÞ ¼ ðMi;PIi;FIi;POi;FOiÞ, 1� i� 5, are defined as

follows (for the different rules, we use labels for identi-

fying them later in the explanations given below).

The simulation of each rule of M starts in node 1: if the

current state q is an insertion or a deletion node, i.e.,

q 2 Q1 [ Q2, the rule 1:1 has to be applied, and in the

succeeding communication step, if the state symbol q has

been from Q1, the string has to go to node 2, where the

symbol to be deleted is chosen, or else, if the state symbol

has been from Q2, the string has to go to node 3, where the

symbol a0 is inserted on the right end of the string. Finally,

for the current state q being the final state q0, we have to

apply rule 1:2 thus obtaining the symbol e, which directs

the string to node 4, where the deletion of e finally will

yield a terminal string in node 5.

M1 ¼ 1:1 : q ! ~q j q 2 Q1 [ Q2f g
[ 1:2 : q0 ! ef g

[ 1:3 : ~qi ! q0k;j j qi ! ajqk 2 R
n o

[ 1:4 : q00s;t ! q0s;t j qs 2 Q; t 2 JR

n o

[ 1:5 : a0 ! a00
� �

[ 1:6 : a00l ! a0l j l 2 JR
� �

[ 1:7 : a00l ! al j l 2 JR
� �

[ 1:8 : âs;t ! �as;t j s 2 JK ; t 2 JR
� �

[ 1:9 : q̂l ! �ql j l 2 JKnf0gf g
[ 1:10 : âi;j ! sk j qiaj ! qk 2 R; i 2 JKnf0g
� �

[ 1:11 : q̂0 ! ef g;
[ 1:12 : sk ! qk j k 2 JKf g;

PI1 ¼ S [ Q [ ~Q2 [ Q̂ [ Q00;

FI1 ¼ A0 [ �A [ ~Q1 [ �Q [ Q0 [ ef g;
PO1 ¼ ~Q [ �Q [ Q0 [ feg;
FO1 ¼ Q [ Q̂ [ Q00 [ A00 [ Â [ fa0g:

The remaining rules in M1 and the rules in M2 mainly

are used to rename the marked symbols—usually a version

of a state and a version of a symbol from A—in the string

and to decrement or increment the indices in a synchro-

nized way.

Together with the rules in node 1, the rules in the second

node change the labels of the marked pair (state, symbol) in

a synchronized way. The second task of node 2 is to pick

one symbol aj and replace it by â0;j. Only if the position is

correct, i.e., if the chosen symbol aj is the first one after the

state symbol qi, then the simulation of the deletion rule will

be successful at the end.
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M2 ¼ 2:1 : a0l	1 ! a00l j l 2 JR
� �

[ 2:2 : q0s;t ! q00s;t	1 j qs 2 Q; t 2 JRnf1g
n o

[ 2:3 : q0k;1 ! qk j qk 2 Q
n o

[ 2:4 : �ak;t ! âkþ1;t j k 2 JKnfng; t 2 JR
� �

[ 2:5 : �ql ! q̂l	1 j l 2 JKnf0gf g;
¼ 2:6 : ~qi ! q̂i j qiaj ! qk 2 R

� �
;

[ 2:7 : aj ! â0;j j j 2 JR
� �

;

PI2 ¼ A0 [ �A [ ~Q1;

FI2 ¼ S [ A00 [ Â [ Q [ ~Q2 [ Q̂ [ Q00 [ feg;
PO2 ¼ A00 [ Â;

FO2 ¼ ;:

As FO2 ¼ ;, any string has to leave node 2 immediately in

the next communication step as soon as a symbol from PO2

has been generated.

In node 3, the insertion of any symbol from R starts

with inserting a0 on the right end of a string that is allowed

to enter this node, which means that besides symbols from

R only symbols (in fact one symbol) from ~Q2 are allowed.

The string with this new symbol a0 on its right end has to

leave node 3 immediately in the next communication step.

From a0, the desired symbol for the given state is obtained

by the synchronization procedure carried out by nodes 1

and 2. We observe that we could even take PO3 ¼ ; as the

rule 3:1 : k ! a0 is always applicable and FO4 ¼ ;, hence,
every string allowed to enter node 3 has to leave it

immediately in the succeeding communication step.

M3 ¼ 3:1 : k ! a0f g;
PI3 ¼ ~Q2;

FI3 ¼ Vnð ~Q2 [ RÞ;
PO3 ¼ fa0g;
FO3 ¼ ;:

The fourth node carries out the deletion process, and there

is only one symbol, i.e., e, to be deleted. Only strings

containing this special symbol e can enter node 4, yet

according to the working mode of this processor this

symbol can only be erased if it appears as the left-most

symbol of the string, which means that all those string

which can enter this node yet not having e on its left end

cannot be processed and therefore get stuck in node 4: with

respect to the original definition of the effect of a deletion

operation (see Remark 3), this means that the string

remains in the node, but cannot leave it as e is prohibited by
FO4; in the case of OHNEPs (see Definition 1) this means

that during the next evolutionary step the string simply

vanishes. In any case, such a string can never go to another

node any more.

Moreover, we notice that strings entering node 4,

besides this special symbol e may only contain symbols

from R and symbols (in fact it will be only one symbol)

from S.

M4 ¼ 4:1 : e ! kf g;
PI4 ¼ ef g;
FI4 ¼ VnðS [ R [ fegÞ;
PO4 ¼ ;;
FO4 ¼ ef g:

In the output node 5, although formally defined as a pro-

cessor carrying out substitutions, in fact no operations take

place any more; this node only serves for taking in the

terminal strings by using the input filter of forbidding

contexts FI5 ¼ VnT . As M5 ¼ ;, during the next evolu-

tionary step these terminal strings will vanish. This does

not matter, because a string is taken as a result if it (at least)

once appears in the output node during a computation of an

[O]HNEP.

M5 ¼ ;;
PI5 ¼ ;;
FI5 ¼ VnT;
PO5 ¼ ;;
FO5 ¼ ;:

After having completed the definition of the whole system,

we now explain how the [O]HNEP C simulates the rules of

the CPM5 M.

Let q1w1, w1 2 T�, be the initial configuration of CPM5

M and q0w0 the final configuration of M, i.e., M starts with

q1w1 and ends with q0w0, w1 2 T�, w0 2 T�. Then the

[O]HNEP C starts the simulation with the initial config-

uration C0 ¼ fð1; q1w1Þg, and we show that the simulation

in C only yields the string w0 in the output node 5 of C, and
moreover, if M never stops when starting with q1w1, then C
generates nothing in the output node.

Without loss of generality, we assume that the CPM5 M

starts with a rule of type q1 ! ajqk with qk 2 Q2 and halts

after applying a rule of type qiaj ! q0, and thus any

sequence of consecutive rules qi1 ! aj1qi2 ; qi2 !
aj2qi3 ; � � � ; qit ! ajtqktþ1

with qktþ1
2 Q2 from any halting

computation ends with a rule qktþ1
as ! qktþ2

with qktþ2

2 Q1.

The first two of the following three cases describe how

an insertion rule and how a deletion rule of the CPM5 M

can be simulated by the OHNEP C; the third case shows

how finally the terminal string w0 is obtained in the output

node 5 from a string of the form q0w0 in node 1.

Case 1 Consider an insertion rule qi ! ajqk 2 R, qi 2
Q2, qk 2 Qnfq0g, aj 2 R, and let qiw ¼) qkwaj be the
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corresponding computation step inM, i.e., rule qi ! ajqk is

applied to the string qiw yielding qkwaj. Starting with the

string qiw being situated in node 1 of C, we now describe

the desired correct evolution of this string qiw in C and also

argue why all other variants of derivations lead to a situ-

ation where the string either cannot leave its current node

any more or gets lost during a communication step by

having to leave its current node but cannot enter any other

node.

We start with applying rule 1:1 in node 1. Due to the

output filters of node 1, the resulting string has to leave

node 1 in the succeeding communication step. Due to the

input filters of the other nodes, this string can only go to

node 3, where PI3 ¼ ~Q2. In node 3, the single insertion

rule 3:1 : k ! a0 inserts the symbol a0 on the right-hand

side of the string. In the succeeding communication step,

the resulting string ~qiwa0 has to leave node 3, as the

condition for the output filter PO3 ¼ fa0g is fulfilled, and

due to the input filters of the other nodes, this string can

only go back to node 1. In node 1, the computation

proceeds with the application of the rule 1:5 : a0 ! a00 as

well as with the application of a rule 1:3 : ~qi ! q0k;j such

that qi ! ajqk 2 R. The resulting string has to leave node 1

and can only be communicated to node 2.

In total, so far we have got the derivation

ð1; qiwÞ¼)
1:1

ð1; ~qiwÞ ‘ ð3; ~qiwÞ¼)
3:1

ð3; ~qiwa0Þ ‘

ð1; ~qiwa0Þ ¼)
\1:3;1:5[

ð1; q0k;jwa00Þ ‘ ð2; q0k;jwa00Þ:

In the description of the derivation above, if the application

of several rules in a specific sequence is necessary in a

node before a string should leave this node, we do not

indicate the intermediate communication step leaving the

string in the node, i.e., instead of writing

ð1; ~qiwa0Þ¼)
1:3

ð1; q0k;jwa0Þ ‘ ð1; q0k;jwa0Þ¼)
1:5

ð1; q0k;jwa00Þ

we simply have written

ð1; ~qiwa0Þ ¼)
\1:3;1:5[

ð1; q0k;jwa00Þ:

If rule 1:5 is applied first, the resulting string ~qiwa
0
0 would

have to leave node 1 immediately, but the input filters of

the other nodes would not allow the string to enter, hence

this string would get lost.

The main idea of the succeeding synchronization

process by toggling between nodes 2 and 1 is to guarantee

that by rule 1:7 the correct symbol aj is released together

with having obtained qk from q0k;1 by rule 2:3.

As long as t[ 1, in node 2 exactly the two rules 2:2 :

q0s;t ! q00s;t	1 and 2:1 : a0l	1 ! a00l (in the first step for t ¼ j

and l ¼ 0) have to be applied in exactly this order, and

afterwards the resulting string is communicated to node 1.

ð2; q0k;jwa00Þ ¼)
\2:2;2:1[

ð2; q00k;j	1wa
00
1Þ ‘ ð1; q00k;j	1wa

00
1Þ:

If rule 2:1 is applied first, the resulting string q0k;jwa
00
1 would

have to leave node 2 immediately, but the input filters of

the other nodes would not allow the string to enter, hence,

this string would get lost; especially node 1 cannot take the

string because it does not contain a symbol from PI1.

The only rule which could also be applied is rule

2:7 : am ! â0;m. The application of this rule immediately

forces the resulting string q0k;jw
0â0;mw

00a00 to leave node 2,

but then this string gets lost as it cannot enter any other

node, especially node 1 cannot take the string because it

still contains a symbol from A0 which is not allowed due to

FI1. If rule 2:7 is applied after the application of 2:2, the

resulting string q00k;j	1w
0â0;mw

00a00 immediately has to leave

node 2, but then again this string gets lost as it cannot enter

any other node, especially node 1 cannot take the string

because it still contains a symbol from A0 which is not

allowed due to FI1.

In node 1, the rules 1:4 and 1:6 have to be used in any

order, the resulting string then can only be sent to node 2:

ð1; q00k;j	1wa
00
1Þ ¼)

f1:4;1:6g
ð1; q0k;j	1wa

0
1Þ ‘ ð2; q0k;j	1wa

0
1Þ

In the description of the derivation above, if more than one

evolution step is necessary in a node before a string can

leave this node, again we do not indicate the intermediate

communication step leaving the string in the node, i.e.,

instead of writing

ð1; q00k;j	1wa
00
1Þ¼)

1:4
ð1; q0k;j	1wa

00
1Þ ‘

ð1; q0k;j	1wa
00
1Þ¼)

1:6
ð1; q0k;j	1wa

0
1Þ

we simply have written

ð1; q00k;j	1wa
00
1Þ ¼)

f1:4;1:6g
ð1; q0k;j	1wa

0
1Þ:

Moreover, we assume that this notation now also includes

the variant where the rules are applied in reverse order, i.e.,

the derivation

ð1; q00k;j	1wa
00
1Þ¼)

1:6
ð1; q00k;j	1wa

0
1Þ ‘

ð1; q00k;j	1wa
0
1Þ¼)

1:4
ð1; q0k;j	1wa

0
1Þ:

In both cases, the output filters of M1 only allow a string

to leave after the application of both rules.

The computation now can be continued in the same way

as above by toggling between node 2—there applying rule

2:1 after rule 2:2—and node 1—there applying the rules

1:4; 1:6; the main idea of this construction is to decrease
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the second index h of the state symbols q00k;h=q
0
k;h while

increasing the index g for the symbols a00g=a
0
g:

ð2; q0k;j	1wa
0
1Þ ¼)

\2:2;2:1[
ð2; q00k;j	2wa

00
2Þ ¼)

f1:4;1:6g
. . .

ð1; q0k;1wa0j	1Þ ‘ ð2; q0k;1wa0j	1Þ:

By construction, the index h reaches 1 at the same moment

when g reaches j	 1. At the end, in node 2, only the rules

2:3 and 2:1 are to be applied, and the resulting string qkwa
00
j

enters node 1, where the application of rule 1:7 : a00j ! aj

leads to the desired correct string qkwaj.

ð2; q0k;1wa0j	1Þ ¼)
\2:3;2:1[

ð2; qkwa00j Þ ‘ ð1; qkwa00j Þ¼)
1:7

ð1; qkwajÞ:

So far we have shown how C can simulate the application

of the insertion rule qi ! ajqk in M correctly. Due to the

input and output filters of the nodes, the rules have to be

applied as described above, as otherwise the resulting

strings get lost:

If in node 2, rule 2:1 is applied before rule 2:2 or rule

2:3, the resulting string q0k;j	swa
00
sþ1 would have to leave

node 2 immediately, but the input filters of the other nodes

would not allow the string to enter, hence this string would

get lost; especially node 1 cannot take the string because it

does not contain a symbol from PI1.

As already argued earlier, the application of the rule

2:7 : am ! â0;m yields strings which immediately have to

leave node 2. The resulting strings q0k;j	sw
0â0;mw

00a0s get

lost as they cannot enter any other node, especially

node 1 cannot take such strings because they still contain

a symbol from A0 which is not allowed due to FI1. If

rule 2:7 is applied after the application of 2:2 or 2:3, the

resulting strings q00k;j	s	1w
0â0;mw

00a0s or qkw
0â0;mw

00a0j
immediately have to leave node 2, but then again these

strings get lost as they cannot enter any other node,

especially node 1 cannot take these strings because they

still contain a symbol from A0 which is not allowed due

to FI1.

Another situation to be checked is to see what happens if

rule 1:7 is not applied in the right moment: if rule 1:7 is

applied too early, the resulting string q0k;lwaj has to leave

node 1, but cannot enter any other node and therefore gets

lost; especially we observe that PI2 is not fulfilled. If, on

the other hand, rule 1:6 is applied to the string qkwa
00
j , after

the application of rule 1:1 the resulting string ~qkwa
0
j now

can leave node 1, but cannot enter any other node and

therefore gets lost.

In sum, we conclude that the OHNEP C has correctly

simulated the application of the insertion rule qi ! ajqk
in M.

Case 2 Consider a deletion rule qiaj ! qk 2 R, qi 2 Q1,

qk 2 Q, aj 2 R, and let qiajw ¼) qkw be a computation

step in M, i.e., rule qiaj ! qk is applied to the string qiajw

yielding qkw.

Starting with the string qiajw being situated in node 1 of C,
we now describe the possible evolutions of this string qiajw in

C.
The simulation of the deletion rule qiaj ! qk also starts

with the application of rule 1:1, but the resulting string then

is sent to node 2, where one symbol from R is chosen to be

marked by the rule 2:7 after the application of a rule 2:6.

The correct position of the symbol from R to be marked is

the first position after the state symbol. As we will argue

later, making another choice will lead to a string which at

some moment will get stuck without ever being able to

reach the output node.

If rule 2:6 and then rule 2:7 is applied at the correct

position in the string, we get the following derivation:

ð1; qiajwÞ¼)
1:1

ð1; ~qiajwÞ ‘ ð2; ~qiajwÞ ¼)
\2:6;2:7[

ð2; q̂iâ0;jwÞ ‘ ð1; q̂iâ0;jwÞ:

The two rules 2:6 and 2:7 have to be applied in exactly this

order. If rule 2:7 is applied first, then the resulting string

~qiâ0;jw gets lost, as it has to leave node 2, but cannot enter

any other node; especially FI1 forbids strings with symbols

from ~Q1 to enter node 1.

In node 1, only the rules 1:8 and 1:9 can be applied, and

on the other hand, both rules have to be applied before the

resulting string can leave; the only node allowing the string

to enter then is node 2:

ð1; q̂iâ0;jwÞ ¼)
f1:8;1:9g

ð1; �qi�a0;jwÞ ‘ ð2; �qi�a0;jwÞ:

In node 2, the rules 2:5 : �ql ! q̂l	1 and 2:4 : �as;t !
âsþ1;t have to be applied in this order; if 2:4 is applied first,

the resulting string �qiâ1;jw gets lost, as it has to leave

node 2, but cannot enter any other node; especially FI1
forbids strings with symbols from �Q to enter node 1.

Rule 2:5 decreases the index l of the state symbol,

whereas by rule 2:4 the index s of the symbol �as;t is

increased. We now toggle between node 2—there applying

the rules 2:5 and 2:4 in this specific order—and node 1—

there applying the rules 1:8 and 1:9. Again, throughout the

whole circle, in node 2 rule 2:4 must not be applied before

rule 2:5 as otherwise, as argued above, the resulting strings

would be lost, as with a symbol from �Q they are not

allowed to enter node 1.

Moreover, if we apply rule 2:7 once more before

applying rule 2:4 in node 2, the resulting strings

�qi	l�al;jw
0â0;mw

00 or q̂i	l	1�al;jw
0â0;mw

00 get lost, as they have

to leave node 2, but cannot enter any other node; especially

FI1 forbids strings with symbols from �A to enter node 1.

60 A. Alhazov et al.

123



By construction, the index l of the state symbol reaches

0 at the same moment when index s reaches k.

At the end, in node 1 the rules 1:11 : q̂0 ! e and 1:10 :

âi;j ! sk such that qiaj ! qk 2 R are to be applied:

ð2; �qi�a0;jwÞ ¼)
\2:5;2:4[

ð2; q̂i	1â1;jwÞ ‘

ð1; q̂i	1â1;jwÞ ¼)
f1:8;1:9g

. . .ð1; �q1�ai	1;jwÞ ‘

ð2; �q1�ai	1;jwÞ ¼)
\2:5;2:4[

ð2; q̂0âi;jwÞ ‘

ð1; q̂0âi;jwÞ ¼)
f1:10;1:11g

ð1; eskwÞ:

If rule 1:11 : q̂0 ! e has to be applied, but no rule 1:10 :
âi;j ! sk can be applied and instead still rule 1:8 : âs;t ! �as;t
is applied, the string can leave node 1, but cannot enter any

other node and therefore gets lost: because of the symbol

from �A, the string cannot enter any of the nodes 3, 4, and 5,

but FI2 forbids strings containing e to enter node 2.

On the other hand, if a rule 1:10 : âi;j ! sk is applied,

but rule 1:11 : q̂0 ! e cannot yet be applied, then the

resulting string �qlskw can leave node 1, but also cannot

enter any other node and therefore gets lost: because of the

symbol from S, the string cannot enter node 2, and because

of the state symbol �ql it cannot enter any of the nodes 3, 4,

and 5.

Moreover, in node 1 we might also apply the sequence

of rules 1:10; 1:12; 1:1; 1:11 to the string q̂0âi;jw thus

obtaining the string e~qkw, but the input filters of the nodes

do not allow this string to enter, especially e is forbidden by
FI2 and ~qk is forbidden by FI4.

The simulation of the deletion operation ends with the

following derivation steps in C:

ð1; eskwÞ ‘ ð4; eskwÞ¼)
4:1

ð4; skwÞ ‘ ð1; skwÞ¼)
1:12

ð1; qkwÞ:

With the application of the rule 1:12 : sk ! qk we have

successfully completed the simulation of the application of

the deletion rule qiaj ! qk 2 R, qi 2 Q1, qk 2 Q, aj 2 R, to
the string qiajw, i.e., the computation step qiajw ¼) qkw in

M yielding qkw from qiajw.

If we apply rule 2:7 at a position i[ 2 , i.e., to the aj in

qiw
0ajw

00 with jw0j[ 0, then, at the end of the simulation

(carried out as described above) we have the string w0qkw
00

in node 1.

First consider qk 2 Q1; then w0qkw
00 has to be

transformed into w1ew2, w1;w2 2 V�, jw1j[ 0, and at

the end the derived string gets lost in node 4, as the rule

e ! k can only be applied at the left end of a string in

node 4; hence, such a string will not ‘‘survive’’ the next

evolutionary step of the OHNEP C (whereas an HNEP C
would keep the string in the node, but cannot let it out

because of FO4).

If qk 2 Q2, then in several circles of the computation the

developing string will look as w1qtw2, jw1j[ 0, qt 2 Q1,

and we return to the case considered before.

If qk ¼ q0, then, as we will discuss in the next case, we

get w0ew00 in node 1 and then in node 4, but again rule

e ! k cannot be applied as e is not at the left end of the

string and therefore such a string gets lost in node 4.

In sum, we conclude that the OHNEP C correctly

simulates the application of rule qiaj ! qk in M.

Case 3 As soon as a string q0w0 with the output node q0
at its beginning (and w0 2 T�) appears in node 1, which in

fact means that the circular Post machine M has stopped

with having computed w0, we can apply rule 1:2 : q0 ! e
and send the resulting string ew0 to node 4 where e is

erased by rule 4:1 : e ! k; the resulting terminal string

w0 2 T� then can enter the output node 5, i.e., we get w0 as

the result of this computation in C:

ð1; q0w0Þ¼)
1:2

ð1; ew0Þ ‘ ð4; ew0Þ¼)
4:1

ð4;w0Þ ‘
ð5;w0Þ:

So far we implicitly have assumed that the result of the

application of a substitution or a deletion operation to a

given string v yields the empty set if the operation is not

applicable, i.e., above we mostly have described all pos-

sible evolutions of a string based on Definition 1 only, i.e.,

for C being an OHNEP. Finally, we now are going to

investigate what happens in case C is an HNEP, i.e., if we

use the original definition (see Remark 3) yielding the

string v itself, i.e., fvg in such cases where one of the

operations assigned to a node is not applicable to v.

Already when defining the evolutionary processors, we

have explained what happens to a string with respect to

these two different definitions in node 4: using the original

definition as explained in Remark 3, a string containing e at
another position than the leftmost one remains in the node,

but cannot leave it as e is prohibited by FO4, whereas when

using obligatory HNEPs according to Definition 1, such a

string is ‘‘killed’’ during the next evolutionary step. In both

cases, the string gets lost in node 4.

In node 3, the rule 3:1 : k ! a0 is always applicable,

hence, for such rules there is no difference between the two

definitions.

As the rule set M5 is empty, any string having entered

node 5 will be ‘‘killed’’ during the next evolutionary step,

in both variants.

Only for the remaining two nodes, node 1 and node 2,

we have the situation that for any string v entering these

nodes there will always be a rule which is not applicable,

i.e., with the original definition as explained in Remark 3

we always also get v as a possible result of the next evo-

lutionary step.
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As for node 2 we have FI2 
 A00 [ Â ¼ PO2, a string

having been able to enter node 2 cannot leave it without

having undergone an evolution by one of the rules fromM2.

For node 1, the situation is slightly different, as here we

have FI1 
 ~Q1 [ �Q [ Q0 [ feg ¼ PO1n ~Q2.

If the string containing a symbol from ~Q2 has been

coming back from node 3, then it also contains the symbol

a0; hence, FO1 forbids the string to leave node 1 before it

has been changed to a00.

If the string is the one obtained directly after the

application of rule 1:1, containing only one symbol from
~Q2 and only symbols from R, then no further rule can be

applied in node 1, the string is not affected during the next

evolutionary step, but in the succeeding communication

step it again can try to leave node 1 and enter node 3.

In all cases, the validity of the proof does not depend on

the definitions of the results after the application of a

substitution or deletion operation. These observations will

carry over to the further results stated in this paper.

In sum, we observe that every computation of the CPM5

in normal form M can be simulated correctly by the

[O]HNEP C, yielding exactly the same results; any other

computation paths in C not correctly simulating the com-

putation steps of M do not yield any result, which obser-

vation completes the proof. h

Remark 7 So far we have assumed that the underlying

communication graph in the [O]HNEP is a complete graph

without loops. Yet it is easy to see that the whole con-

struction elaborated in the proof of Theorem 2 still works if

we allow a loop in every node:

Let us first repeat some of the arguments already

exhibited when defining the evolutionary processors in the

proof given for Theorem 2:

As already explained above, no string having entered

node 5 will ever be able leave it.

In node 3, the rule 3:1 : k ! a0 is always applicable, yet

the resulting string then contains the symbol a0 and

therefore cannot re-enter the node because of the input

filter of forbidden contexts FI3.

Due to the interplay of the input filter of permitting

contexts PI4 ¼ feg and the output filter of forbidden

contexts FO4 ¼ feg, a string which can leave node 4

cannot re-enter the node.

A similar argument can be applied for node 2, because

the input filter of forbidden contexts FI2 
 A00 [ Â does not

allow strings having been sent out by containing one of the

symbols in the output filter of permitting contexts PO2 ¼
A00 [ Â to re-enter the node.

For node 1, the situation is slightly different; the

interplay of the input filter of forbidden contexts FI1 

~Q1 [ �Q [ Q0 [ feg and the output filter of permitting

contexts PO1 ¼ ~Q [ �Q [ Q0 [ feg does not allow strings

having been sent out by containing one of the symbols in

the output filter of permitting contexts to re-enter the node

except for symbols from ~Q2:

If the string containing a symbol from ~Q2 is coming

back from node 3, then it also contains the symbol a0; FO1

forbids the string to leave node 1 before it has been

changed to a00, but then FI1 forbids the resulting string to

re-enter the node.

If the string is the one obtained directly after the

application of rule 1:1, containing only one symbol from
~Q2 and only symbols from R, we have to distinguish two

cases depending on the underlying definition of the result

of substitution operations on a string: taking the original

definition (see Remark 3), as no rule can be applied, the

string is not affected during the next evolutionary step, but

in the succeeding communication step again can try to

leave node 1 and enter node 3; using OHNEPs according

to Definition 1, the string is ‘‘killed’’ during the next

evolutionary step.

In both cases, the validity of the proof given for

Theorem 2 is not affected if we allow complete graphs to

have loops. Obviously, this also holds true for the further

results stated in this section.

As an obvious consequence of Theorem 2 we obtain the

desired completeness result for complete [O]HNEPs with

only five nodes:

Corollary 1 Complete hybrid networks of evolutionary

processors (complete [O]HNEPs) with 5 nodes are com-

putationally complete.

Proof As the circular Post machines of type 5 (CPM5) in

normal form are computationally complete (see Theo-

rem 1), the result directly follows from our main result,

Theorem 2. h

The following two results are immediate consequences

of Corollary 1, as any recursively enumerable language L

can be viewed as partial recursive relation L� fkg (ac-

ceptance) and fkg � L (generation), see Remark 2.

Corollary 2 Any recursively enumerable language L can

be accepted by a complete A[O]HNEP of size 5.

Corollary 3 Any recursively enumerable language L can

be generated by a complete G[O]HNEP of size 5.

4 [O]HNEPs with terminal extraction

As can be seen from the proof of our main result, Theo-

rem 2, the fifth node is only needed to collect the terminal

strings which come from node 4. Hence, collecting all the
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terminal strings appearing there, we could completely

avoid the fifth node. Therefore, we now define extended

HNEPs (HNEPs with terminal extraction) which allow for

this variant of getting the terminal results. Again we will

use the bracket notation with [O] to capture both variants

EOHNEPs and EHNEPs.

Definition 5 An extended hybrid network of evolutionary

processors (an E[O]HNEP for short) over V is an

[O]HNEP C ¼ ðV ; T ;H;N ;Cinit; a; b;Cinput; i0Þ where the

results of computations are extracted as the terminal strings

from the output node i0.

The following result is an immediate consequence of

Theorem 2:

Theorem 3 Any (non-deterministic) CPM5 M in normal

form can be simulated by a complete E[O]HNEP C of size 4.

Proof For a given (non-deterministic) CPM5 in normal

form we construct a complete E[O]HNEP C of size 4 by

taking over the whole construction from the proof of

Theorem 2 with the following small modifications:

Of course, we only take the first four processors as

described there, omitting the fifth node. Node 4 now is the

new output node, defined as follows:

M4 ¼ f4:1 : e ! kg;
PI4 ¼ feg;
FI4 ¼ VnðS [ R [ fegÞ;
PO4 ¼ VnT ;
FO4 ¼ feg:

In contrast to the previous construction, we now take the

output filter of permitting contexts PO4 ¼ VnT instead of

taking PO4 ¼ ;, which guarantees that the terminal strings

cannot leave node 4 any more. Taking the original defini-

tion for the result of the deletion operation (see Remark 3),

eventually as some other ‘‘wrong’’ strings, any terminal

string will stay in node 4 forever and can be extracted from

there at any moment. When using OHNEPs according to

Definition 1, terminal strings will vanish in the next evo-

lutionary steps, but this makes no difference for the result,

as according to the definitions, a terminal string just has to

appear for one moment in the output node. h

Remark 8 Again the underlying communication graph in

the E[O]HNEP can be a complete graph with or without

loops. All the arguments elaborated in Remark 7 are still

valid; changing PO4 ¼ ; to PO4 ¼ VnT does not affect the

validity of the proof.

The following results are immediate consequences of

Theorem 3:

Corollary 4 Complete E[O]HNEPs with 4 nodes are

computationally complete.

Corollary 5 Any recursively enumerable language L can

be accepted by a complete AE[O]HNEP of size 4.

Corollary 6 Any recursively enumerable language L can

be generated by a complete GE[O]HNEP of size 4.

5 [O]HNEPs on star-like graphs

Another careful look into the proofs of Theorems 3 and 2

shows that the communicating of strings only happens

between node 1 and any of the other nodes, but there is no

communicating of strings between any two of the nodes

2–4 or 2–5, respectively, with the only exception that in the

last step of the proof of Theorem 2 the terminal string has

to be sent from the deletion node 4 directly to the output

node 5. Hence, we conclude that the proofs have already

been designed in such a way that by taking node 1 as the

central node, we only need a star-like communication

structure for extended [O]HNEPs.

The following results therefore are immediate conse-

quences of these observations and the results established

earlier in this paper:

Theorem 4 Any (non-deterministic) CPM5 M in normal

form can be simulated by a star-like E[O]HNEP C of size 4.

Corollary 7 Star-like E[O]HNEPs with 4 nodes are

computationally complete.

Corollary 8 Any recursively enumerable language L can

be accepted by a star-like AE[O]HNEP of size 4.

Corollary 9 Any recursively enumerable language L can

be generated by a star-like GE[O]HNEP of size 4.

In the case of non-extended star-like [O]HNEPs the main

problem is that for allowing a terminal string to pass from

the deletion node to the output node through the central

node, the permitting input filter of this central node has to be

the empty set. Unfortunately, our proof technique could not

be adapted to achieve a computational completeness result

with only five nodes due to this special required feature. On

the other hand, by adding a new sixth node as the central

node, we can easily obtain the following results:

Theorem 5 Any (non-deterministic) CPM5 M in normal

form can be simulated by a star-like [O]HNEP C of size 6.

Proof For a given (non-deterministic) CPM5 in normal

form we construct a star-like [O]HNEP C of size 6 by taking

over the whole construction from the proof of Theorem 2

with just adding a new node 6 as the central node:
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M6 ¼ f6:1 : a ! a j a 2 Vg;
PI6 ¼ ;;
FI6 ¼ ;;
PO6 ¼ ;;
FO6 ¼ ;:

Obviously, any non-empty string (the empty string can

only be terminal and therefore only appear in the output

node 5, but no string can ever leave the output node) can

enter this central node and leave it immediately in the

next communication step without having been changed

by the application of any of the substitution rules 6:1.

Hence, all our arguments for the complete [O]HNEP

constructed in the proof of Theorem 2 can be taken over

for this star-like [O]HNEP, as in fact the new central

node allows to have the same derivations as in the

complete [O]HNEP with just an intermediate communi-

cation and evolutionary step (which does not affect the

string passing through the central node) for any com-

munication step there.

As a final observation we mention that node 6 also

allows strings to go back to the node they have come from,

but this just resembles the case of having complete graphs

with loops as the underlying communication structure, yet

as already argued in Remark 7 this does not affect the

correctness of the proof of Theorem 2. Obviously, the

underlying communication structure in this proof can be

complete graphs without or with loops, too; the same also

holds true for all further results stated in this section. h

Remark 9 In the case of star-like OHNEPs, the empty

string cannot pass the central node to reach the output

node, so computational completeness here can only be

obtained without taking into account the empty string.

Observe that the central node itself cannot serve as

output node, as every string passing through it then

would be a result of a computation. These restrictions do

not only apply to our construction given in the proof of

Theorem 5, but are valid for any other construction, too,

i.e., for star-like OHNEPs computational completeness

means not taking into account the empty string as a

result.

On the other hand, it is easy to see that for AOHNEPs

and GOHNEPs the empty string can be in the language

accepted or generated by the OHNEP: In the accepting

case, the input string is q1 in node 1, i.e., a non-empty

string, and without loss of generality we may assume that

acceptance is obtained with some non-empty string. In the

generating case, k can be put directly into the output

node 5 if the empty string is in the language to be

generated.

With respect to the considerations of Remark 9, the

following results then are immediate consequences of the

preceding theorem:

Corollary 10 Star-like [O]HNEPs with 6 nodes are

computationally complete.

Corollary 11 Any recursively enumerable language

L can be accepted by a star-like A[O]HNEP of size 6.

Corollary 12 Any recursively enumerable language

L can be generated by a star-like G[O]HNEP of size 6.

6 [O]HNEPs on linear graphs

With some changes in the proof of Theorem 2, we are able

to obtain a similar result for linear [O]HNEPs. With respect

to the notions used there, we will establish the result for

linear [O]HNEPs on the linear structure of processors

3	 1	 2	 4	 5.

The main difference is that the strings where the first

symbol should be deleted cannot go directly to the deletion

node, but have to pass through node 2 and then go back

from node 4 to node 1 through node 2 again. The rest of

the construction can be taken over with only few changes,

but for the sake of completeness we will give a complete

definition of the linear HNEP in the proof of the following

theorem.

Theorem 6 Any (non-deterministic) CPM5 M in normal

form can be simulated by a linear [O]HNEP C of size 5.

Proof Let M ¼ ðR; T;Q; q1; q0;RÞ be a (non-determinis-

tic) CPM5 in the normal form as defined in Definition 4,

with symbols R ¼ faj j 1� j�mg and states

Q ¼ fqi j 0� i� ng, where q1 is the initial state and the

only terminal state is q0 2 Q. We now construct a linear

[O]HNEP C ¼ ðV; T ;H;N ; a; b;C0
0; 5Þ of size 5 which

simulates the given CPM5 M based on the linear commu-

nication graph 3	 1	 2	 4	 5.

The sets used in the description of the system are nearly

the same as in the proof of Theorem 2; we only need the

additional symbol �e and the primed versions of the symbols

in S, i.e., we now have

V ¼ S [ S0 [ A [ A0 [ A00 [ �A [ Â

[ Q [ ~Q [ �Q [ Q̂ [ Q0 [ Q00 [ fe; �eg;
S0 ¼ s0 j s 2 Sf g ¼ s0i j i 2 Jk

� �
:

We take C0
0 ¼ fð1; q1Þg, and the output node of C for

collecting the results of a computation is node 5.
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Moreover, we take bðiÞ ¼ 2 for all 1� i� 5 as well as

að1Þ ¼ að2Þ ¼ að5Þ ¼ �, að3Þ ¼ r, and að4Þ ¼ l. The evo-

lutionary processors NðiÞ ¼ ðMi;PIi;FIi;POi;FOiÞ,
1� i� 5, are defined in a similar way as in the proof of

Theorem 2; the labels for identifying the rules are primed if

they differ from the rules defined there or are new.

Again the simulation of each rule of M starts in node 1:

if the current state q is from q 2 Q1 [ Q2, rule 1:1 is

applied. In the succeeding communication step, if q 2 Q1,

the string has to go to node 2, where the symbol to be

deleted is chosen; if q 2 Q2, the string has to go to node 3,

where the symbol a0 is inserted on the right end of the

string. If q ¼ q0, we now have to apply rule 1:20 thus

obtaining the symbol �e, which directs the string to node 4,

yet now passing through node 2, where the application of

rule 2:90 yields e from �e, and after the deletion of e a

terminal string is obtained in node 5.

M1 ¼ 1:1 : q ! ~q j q 2 Q1 [ Q2f g
[ 1:20 : q0 ! �ef g

[ 1:3 : ~qi ! q0k;j j qi ! ajqk 2 R
n o

[ 1:4 : q00s;t ! q0s;t j qs 2 Q; t 2 JR

n o

[ 1:5 : a0 ! a00
� �

[ 1:6 : a00l ! a0l j l 2 JR
� �

[ 1:7 : a00l ! al j l 2 JR
� �

[ 1:8 : âs;t ! �as;t j s 2 JK ; t 2 JR
� �

[ 1:9 : q̂l ! �ql j l 2 JKnf0gf g
[ 1:10 : âi;j ! sk j qiaj ! qk 2 R; i 2 JKnf0g
� �

[ 1:110 : q̂0 ! �ef g;
[ 1:120 : s0k ! qk j k 2 JK
� �

;

PI1 ¼ S0 [ Q [ ~Q2 [ Q̂ [ Q00;

FI1 ¼ S [ A0 [ �A [ ~Q1 [ �Q [ Q0 [ e; �ef g;
PO1 ¼ S [ ~Q [ �Q [ Q0 [ f�eg;
FO1 ¼ S0 [ Q [ Q̂ [ Q00 [ A00 [ Â [ fa0g:

With respect to the rules needed for the simulation of

insertion rules, we use the newly introduced symbols from

S0 at the end of the simulation; therefore, we have to

replace rules 2:3 by the rules 2:30 and add the new rules

1:120 in M1. Moreover, the filters PI1 and FO1 as well as

FI2 therefore are extended by S0.
With respect to the rules needed for the simulation of

deletion rules, rules 1:12 have been taken away from M1,

instead in M2 we have added the rules 2:80; rule 2:90 in M2

and rules 1:120 in M1 have been added, too. Moreover, the

new structure causes some small modifications of the input

and output filters, especially involving the symbols e; �e, as
well as some modifications in the description of the

simulation of deletion rules.

M2 ¼ 2:1 : a0l	1 ! a00l j l 2 JR
� �

[ 2:2 : q0s;t ! q00s;t	1 j qs 2 Q; t 2 JRnf1g
n o

[ 2:30 : q0k;1 ! s0k j k 2 Jk

n o

[ 2:4 : �ak;t ! âkþ1;t j k 2 JKnfng; t 2 JR
� �

[ 2:5 : �ql ! q̂l	1 j l 2 JKnf0gf g;
¼ 2:6 : ~qi ! q̂i j qiaj ! qk 2 R

� �
;

[ 2:7 : aj ! â0;j j j 2 JR
� �

;

[ 2:80 : sk ! qk j k 2 JKf g;
[ 2:90 : �e ! ef g;

PI2 ¼ S [ A0 [ �A [ ~Q1 [ f�eg;
FI2 ¼ S0 [ A00 [ Â [ Q [ ~Q2 [ Q̂ [ Q00 [ feg;
PO2 ¼ A00 [ Â [ Q [ feg;
FO2 ¼ ;:

In node 3, the insertion of any symbol from R starts

with inserting a0 on the right end of a string allowed to

enter this node.

M3 ¼ 3:1 : k ! a0f g;
PI3 ¼ ~Q2;

FI3 ¼ Vnð ~Q2 [ RÞ;
PO3 ¼ fa0g;
FO3 ¼ ;:

The fourth node carries out the deletion process, with

the only symbol, i.e., e, to be deleted on the left end of a

string.

M4 ¼ 4:1 : e ! kf g;
PI4 ¼ feg;
FI4 ¼ VnðS [ R [ fegÞ;
PO4 ¼ ;;
FO4 ¼ feg:

In the output node 5, the terminal strings are collected.

M5 ¼ ;;
PI5 ¼ ;;
FI5 ¼ VnT;
PO5 ¼ ;;
FO5 ¼ ;:

The simulation of an insertion rule is performed in a

similar way as in the proof of Theorem 2, starting in

node 1 with the application of rule 1:1, continuing with

rule 3:1 in node 3, and then toggling between node 1 and

node 2, but now first ending up in node 2 with q0k;1wa
0
j	1.

The simulation then continues as follows:
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ð2; q0k;1wa0j	1Þ ¼)
\2:30;2:1[

ð2; s0kwa00j Þ ‘

ð1; s0kwa00j Þ ¼)
f1:7;1:120g

ð1; qkwajÞ:

Again, we have obtained a correct simulation of the

insertion rule from R in C.
If q0w0 for w0 2 T� is obtained in node 1, as already

explained earlier in this proof, we have the following

derivation, thus finally getting w0 in node 5 as the result of

this computation in C:

ð1; q0w0Þ¼)
1:20

ð1; �ew0Þ ‘ ð2; �ew0Þ¼)
2:90

ð2; ew0Þ ‘

ð4; ew0Þ¼)
4:1

ð4;w0Þ ‘ ð5;w0Þ:

If rule 2:7 is applied instead of 2:90 in this derivation, the

resulting strings have to leave node 2, but then cannot enter

node 1 or node 4.

Therefore, we now only have to discuss the changes for

the simulation of deletion rules in more detail:

The simulation of the deletion rule qiaj ! qk 2 R

also starts with the application of rule 1:1, the resulting

string then is sent to node 2, where one symbol from R
is chosen to be marked by the rule 2:7 after the

application of a rule 2:6; the correct position of the

symbol from R to be marked is the first position after

the state symbol.

The further simulation of the deletion rule now proceeds

by toggling between node 2 and node 1 as already

described in the proof of Theorem 2:

ð1; qiajwÞ¼)
1:1

ð1; ~qiajwÞ ‘

ð2; ~qiajwÞ ¼)
\2:6;2:7[

ð2; q̂iâ0;jwÞ ‘

ð1; q̂iâ0;jwÞ ¼)
f1:8;1:9g

ð1; �qi�a0;jwÞ ‘

ð2; �qi�a0;jwÞ ¼)
\2:5;2:4[

ð2; q̂i	1â1;jwÞ ‘

ð1; q̂i	1â1;jwÞ ¼)
f1:8;1:9g

. . .ð1; �q1�ai	1;jwÞ ‘

ð2; �q1�ai	1;jwÞ ¼)
\2:5;2:4[

ð2; q̂0âi;jwÞ ‘

ð1; q̂0âi;jwÞ ¼)
f1:10;1:11g

ð1; �eskwÞ:

If rule 1:11 : q̂0 ! �e has to be applied, but no rule 1:10 :

âi;j ! sk can be applied and instead still rule 1:8 : âs;t ! �as;t
is applied, the string can leave node 1 and enter node 2; if

there rule 2:4 is applied, the resulting string has to leave

node 2, but cannot go back to node 1 because of the symbol �e
which is not allowed by the filter FI1, yet because of the

symbol �as;t it also cannot enter node 4, hence, this string gets

lost. Again, if rule 2:7 is applied, the resulting strings are lost,

too.

On the other hand, if a rule 1:10 : âi;j ! sk is applied,

but rule 1:110 : q̂0 ! �e cannot yet be applied, then the

resulting string �qlskw can leave node 1 and enter node 2. If

2:7 is applied, the resulting strings again are lost. If

rule 2:80 is applied immediately, the resulting string �qlqkw
cannot pass the input filters FI1 or FI4. If rule 2:5 is applied

before rule 2:80, then the resulting string q̂l	1qkw cannot

enter node 4, but can go back to node 1. If k[ 0, then qk
prohibits the string to leave, hence, at some moment rule

1:1 has to be applied, which would require to send the

resulting string to node 3, yet the symbol q̂l	1 does not

allow the string to pass FI3. Furthermore, if we apply a rule

to q̂l	1 before, the resulting barred symbols keep the string

away from node 3, but on the other hand, the symbol ~qk
does not allow the string to enter node 2. Finally, if k ¼ 0,

then q0 prohibits the string to leave, hence, at some

moment rule 1:20 has to be applied.

If l	 1[ 0, then we obtain the string �ql	1�ew, which can

only be communicated to node 2, yet there the strings

�ql	1ew or q̂l	2ew resulting from the application of the rule

2:90 or of the rules 2:5 and 2:90 can enter neither node 1 nor

node 4. If k ¼ l	 1 ¼ 0, the string �e�ew resulting from the

application of rules 1:20 and 1:110 can enter node 2, yet one

application of rule 2:90 already forces the resulting string to

leave the node, but the second symbol �e keeps it away from

both nodes 1 and 4.

To complete our arguments, we mention that again the

(additional) application of rule 2:7 during any of the

derivations described above cannot yield strings which

would not get lost.

The correct simulation of the deletion operation ends

with the following derivation steps in C:

ð1; �eskwÞ ‘ ð2; �eskwÞ¼)
2:90

ð2; eskwÞ ‘ ð4; eskwÞ¼)
4:1

ð4; skwÞ ‘ ð2; skwÞ¼)
2:80

ð2; qkwÞ ‘ ð1; qkwÞ:

If rule 2:80 is applied instead of rule 2:90 in this

derivation, the resulting string �eqkw has to leave node 2,

but cannot enter node 1 or node 4. If rule 2:7 is applied

instead of rule 2:90 or rule 2:80 in this derivation, the

resulting strings cannot enter node 1 or node 4, too.

The remaining arguments exhibited in the proof of

Theorem 2 for the correctness of the construction for the

simulation of a deletion rule are still valid for the

construction elaborated in this proof, hence, in sum we

conclude that C correctly simulates the application of rule

qiaj ! qk in M.

In sum, we observe that also with the linear communi-

cation structure every computation of the CPM5 in normal

form M can be simulated correctly by the [O]HNEP C,
yielding exactly the same results, which observation

completes the proof. h

As already argued previously, the following results can

easily be obtained from Theorem 6:
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Corollary 13 Linear [O]HNEPs with 5 nodes are com-

putationally complete.

Corollary 14 Any recursively enumerable language

L can be accepted by a linear A[O]HNEP of size 5.

Corollary 15 Any recursively enumerable language

L can be generated by a linear G[O]HNEP of size 5.

In the same way as we have got Theorem 3 from The-

orem 2, the following result can immediately be derived

from Theorem 6:

Theorem 7 Any (non-deterministic) CPM5 M in normal

form can be simulated by a linear E[O]HNEP C of size 4.

Proof Again we omit the fifth processor and designate the

deletion node 4 as the new output node, now on the linear

communication structure

3	 1	 2	 4:

Moreover, again we replace the output filter PO4 ¼ ; of

permitting contexts by PO4 ¼ VnT . h

Corollary 16 Linear E[O]HNEPs with 4 nodes are

computationally complete.

Corollary 17 Any recursively enumerable language

L can be accepted by a linear AE[O]HNEP of size 4.

Corollary 18 Any recursively enumerable language

L can be generated by a linear GE[O]HNEP of size 4.

7 Conclusions

We have shown that for hybrid networks of evolutionary

processors (HNEPs) even computational completeness can

already be obtained with only 5 nodes in case of complete or

linear graphs being the communication structure between

the processors of the network. Any partial recursive relation

can be computed by a (complete or linear) HNEP with 5

nodes, and any recursively enumerable language can be

accepted by a complete or linear AHNEP with 5 nodes or

even be generated by a complete or linear GHNEP with

only 5 nodes. The same results also hold true for the cor-

responding variants of obligatory HNEPs (OHNEPs).

When extracting the results of computations as the ter-

minal strings appearing in the output node, we can even

save one more node, i.e., computational completeness in all

cases can already be achieved with only four nodes in the

case of complete or linear extended [O]HNEPs. For

extended [O]HNEPs having a star-like communication

graph, all these results can be obtained with (at most) four

nodes, too. For (non-extended) [O]HNEPs having a star-

like communication graph, we needed six nodes.

Finally, we are pretty confident that our results with

needing only five nodes for complete and linear [O]HNEPs

and only four nodes for complete, linear, and star-like

extended [O]HNEPs are already optimal: we anyway need

one insertion and one deletion node; informally speaking,

for any reasonable computations one additional substitu-

tion node is not sufficient, hence, we need at least two. As

we have shown in this paper, one insertion and one deletion

node plus two substitution nodes (plus one additional

output node, which formally has to be a substitution node

or a deletion node in the case of non-extended [O]HNEPs)

are already sufficient. Therefore, reducing the number of

processors needed for (non-extended) [O]HNEPs having a

star-like communication graph to five is one of the main

challenging problems for future research.

Acknowledgments The work of the first author and the fourth

author was supported by Project STCU-5384 awarded by the Science

and Technology Center in the Ukraine. The authors gratefully

acknowledge the suggestions and comments of the two anonymous

referees.

References

Alhazov A, Kudlek M, Rogozhin Yu (2002) Nine universal circular

Post machines. Comput Sci J Moldova 10(3(30)):247–262

Alhazov A, Martı́n-Vide C, Rogozhin Yu (2006) On the number of

nodes in universal networks of evolutionary processors. Acta

Inform 43(5):331–339

Alhazov A, Martı́n-Vide C, Rogozhin Yu (2007) Networks of

evolutionary processors with two nodes are unpredictable. In:

Loos R, Fazekas SZ, Martı́n-Vide C (eds) LATA 2007.

Proceedings of the 1st international conference on language

and automata theory and applications, Report, Research Group

on Mathematical Linguistics, Universitat Rovira i Virgili,

Tarragona, vol 35/07, pp 521–528
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