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Abstract Probabilistic cellular automata generalise CA

by implementing in a synchronous way an updating rule

defined through a probability. A probabilistic synchronous

updating scheme does it mean an efficient parallel evolu-

tion mechanism? This article deals with the question of

quantifying the effectiveness of the parallel updating. A

good indicator of this effectiveness is the fraction of

components whose value is updated between two time

steps. Two classes of parameterised models are considered.

Multiple stationary distributions may occur when an infi-

nite number of interacting components is considered (er-

godicity breaks/supercritical regime). As a consequence,

these models both exhibit different dynamical regimes in

the corresponding case when a finite number of sites are

interacting. These two classes’ non trivial steady states are

of different nature. One is a family of positive rates

reversible PCA dynamics. The other one is the Stavskaja

PCA dynamics. It exhibits an absorbing state. Thanks to

numerical simulations, both these PCA dynamics are

shown to behave nearly asynchronous when these phase

transition phenomena occur.
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A probabilistic synchronous updating scheme does it mean

an efficient parallel evolution mechanism? That is one

main general issue this article will consider. Probabilistic

cellular automata (PCA) are cellular automata (CA) where

the updating rule is defined through a probability. Like

their deterministic version (Dennunzio et al. 2014, 2012),

PCA are a very useful class of models for simulation and

analysis of complex systems (Kari 2005; Cervelle et al.

2013; Mairesse and Marcovici 2014). They constitute a

large family of discrete-time Markov stochastic processes

where the transition probability has a product form (syn-

chronous updating). Each constituting site or elementary

cell may have its state updated between two steps of time.

These updating may effectively not happen so often

according to the associated probability which strongly

depends on the state of the site’s neighbourhood. In par-

ticular, when phase transition occurs (supercritical

regime), the effective parallelism may be impacted. This

general notion will be precised. Is the synchronous updat-

ing more effective in the ergodic regime?

Another category of processes is asynschronous (P)CA,

as investigated for instance in Dennunzio et al. (2012,

2013), Fatès (2009, 2013), Fatès et al. (2005), Regnault

et al. (2009) and Worsch (2013). They are CA/PCA where

the parallel updating is relaxed and where only a given

proportion of sites are submitted to the updating procedure

and whose value is then potentially modified. Does a

supercritical PCA behave like asynchronous PCA? To be

specific, two parameterised families of PCA dynamics are

considered which may be in a phase transition regime. Yet

these supercritical phases are of different nature: the first

& Pierre-Yves Louis

Pierre-Yves.Louis@math.cnrs.fr
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one is constituted with non trivial, non degenerated dis-

tributions whereas the second one admits an absorbing

state. Another question to deal with, is: do these PCA

dynamics have similar behaviour concerning the effective

updating?

In this contribution, we aim at quantifying the effec-

tiveness of the parallel updating procedure through

numerical simulations. To this aim, we introduce and

consider different indicators, like the fraction of sites

whose value is modified through the probabilistic updating.

Let us give a brief introduction to the chosen PCA

dynamics and emphasise their respective behaviour when a

finite or infinite number of interacting components is

considered.

The first considered family is a parameterised positive

rates PCA family which is the parallel version of the Gibbs

sampler associated to the famous Ising interaction potential

(with nearest neighbour interaction or finite range). The Z2

case is considered for the numerical analysis. Under some

light assumptions, this family builds reversible stochastic

processes, meaning a kind of ‘‘dynamical equilibrium’’

holds (aka detailed balance condition). More precise the-

oretical results were proven. In a non exhaustive way, let us

briefly mention the following ones. The form of the time-

asymptotic distribution is explicitly known (Dai Pra et al.

2002) both for a finite collection of interacting cells and for

an infinite collection (countable, Zd lattice case). Ergod-

icity versus phase transition/loss of ergodicity region were

proven in the Z2 case (Dai Pra et al. 2002). Metastability

results hold, giving insight on escape times (Cirillo et al.

2008; Nardi and Spitoni 2012) in the finitely many inter-

acting sites case. Through a mean field approximation the

parameters’ influence is more precisely understood (Cirillo

et al. 2014). A very nice generalisation of this family was

studied in order to sample from a Gibbs measure by tuning

the application of the updating rule in a similar way as in

the a-asynchronous case (Dai Pra et al. 2012) and a very

interesting non reversible variation was considered in

Lancia and Scoppola (2013). Due to the detailed balance,

an ‘‘energy’’ potential is naturally associated to this PCA

family. This potential is much more complicated than the

nearest-neighbour Ising case (Cirillo et al. 2014). This

family may be considered as a gradient dynamics aiming at

minimising this potential. From the perspective of under-

standing relationships between synchronous/asynchronous

updating scheme, a natural question to address on this PCA

family is the behaviour of the effective flipping rate (case

of a finite number of interacting cells) when the parameters

are in a region where, in the infinite Zd case, loss of

ergodicity holds. In this region, the transition probability

becomes very small and the effective change of a cell’s

state becomes rare. The PCA dynamics becomes de facto

quasi a sequential one or an a-synchronous one.
We then examine the Stavskaja PCA on Z (or a finite

subset) which admits an absorbing state. Thus it is not a

positive rates dynamics and not building reversible

stochastic processes. The second family is thus of different

nature. Nevertheless it share with the first one the existence

of a non equilibrium phase transition regime. When con-

sidering finitely many interacting sites, the almost sure

time-asymptotics behaviour is indeed the absorption in the

configuration 1. This is a particular case of ergodicity. On

Z, in some parameter region, phase transition is observed

in the sense of loss of ergodicity: there exists an infinity of

stationary distributions. We address the same questions as

for the first family about the effective flipping rate and

simultaneous effective bond flipping rate when loss of

ergodicity occurs.

This article is organised as follows: the general frame-

work is first introduced from a probabilistic point of view

(Sect. 1). The analogies and differences with another cat-

egory of stochastic processes, interacting particle systems,

is emphasised. The interest come from the fact that these

dynamics are mainly driven by a sequential updating

scheme. We then study in Sect. 2 the first family of

parameterised reversible positive rates PCA dynamics. The

introduced indicators to quantify the effectiveness are

introduced in Sect. 2.3. Numerical results concerning the

effective updating rate are then summarised. The second

family, Stavskaja PCA dynamics, is then studied in Sect. 3.

The last section is dedicated to conclusive remarks.

1 General framework from a probabilistic
perspective

Consider a collection of sites indexed by a network G.

Each site k 2 G has an associated value rk in a finite space

S. Typically, S ¼ f0; 1g or S ¼ f�1;þ1g. The association
of a value in S to each site is called a configuration and is

denoted by r ¼ ðrkÞk2G. A probabilistic CA dynamics is

defined through the synchronous use of an updating rule

pkð�jgÞ where, given the configuration g at the previous

time step, pkð�jgÞ is a probability on S. The global proba-

bility to jump towards a configuration r, starting from a

configuration g, is defined as

PðrjgÞ ¼
Y

k2G
pkðrkjgÞ:

Given an initial condition, possibly sampled from a starting

distribution, the PCA dynamics becomes a discrete-time

Markov stochastic process on the state space SG whose
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transition matrix is P. It means, knowing what happened up

to time ðn� 1Þ—more precisely the last state g (marko-

vianity)—, each site is updated independently. In general,

the updating rule is assumed to be translation invariant,

meaning pkð�jgÞ ¼ p0ð�jhkgÞ where hkg denotes the con-

figuration ðhk gÞj :¼ gjþk. Just as for CA, the local rule is

assumed to be finite range: there exists a finite neigh-

bourhood Vk on the graph G such that pkð�jgÞ ¼ pkð�jgVk
Þ

where gVk
denotes ðgjÞj2Vk

. In particular, when G is infinite,

this condition ensures the existence of such a stochastic

process. It is unique (in distribution) as soon as a starting

distribution is fixed. When pkð�jgÞ is positive, the PCA

dynamics is called positive rates.

A different family of stochastic processes is more

amenable to a theoretical analysis in the framework of

probability theory. These are called interacting particle

systems (IPS) (see Chap. I in Liggett 1985). As well as

PCA, they are Markov stochastic processes on a state space

which has a product form. They are in general continuous-

time Markov processes defined through an updating rate.

There are few general results and detailed analysis is

developed for more particular categories of models. Most

of the IPS for which detailed theoretical results are avail-

able have a kind of sequential updating procedure: at most

one site may be updated when an exponentially distributed

clock rings. An analogous discrete time version of this

mechanism is possible. Briefly, these continuous-time

stochastic processes allow a small updating infinitely often

contrary to the PCA where all sites may be updated at

discrete time step. An interacting particle system is a

continuous-time Markov stochastic process ðgtÞt2Rþ

defined on SG. The infinitesimal local updating rate ckð�jgÞ
is the analogous of pk, requiring only to be positive. For

any event A, let Ptðg;AÞ denotes the probability that the

process is in A at time t knowing the process started in the

configuration g at time 0. The global updating procedure is

defined through an infinitesimal generator L defined for

continuous functions on SG.

Let us first precise what continuous functions are. The set

SG is a metric space for instance using the distance dðr; gÞ ¼P
k2G

1
2vðkÞ
1rk 6¼gk for any bijection v : G ! N. The symbol 1

stands for the indicator function. Continuous functions on SG

are uniform limits of local functions, which means functions

depending on a finite number of sites.

For a general Markov stochastic process, the infinitesi-

mal generator L is then defined through
Z

SG
gðyÞPtðg; dyÞ :¼ EðgðgtÞjg0 ¼ gÞ

¼ gðgÞ þ LgðgÞ � t þ oðtÞ

for any continuous function g : SG ! R. For an interacting

particle system, the infinitesimal generator is related to

local updating rates ckð�jgÞ through the following relation.

For any g continuous function on SG, it holds

LgðgÞ ¼
X

k2G
g gk;s
� �

� gðgÞ
� �

ckðgk;sjgÞ

where gk;s is the configuration equal to g on fkgc and taking
the value s at site k. Similarly to the PCA, the rates ckð�jgÞ
are local, meaning they only depend on gVk

where Vk is a

finite neighbourhood of k. Such processes may be con-

structed through a sequential updating procedure. It is the

graphical construction due to Harris (1972). Independent

Poissonian clocks (defined through independent identically

exponentially distributed waiting times) are associated to

each sites k. When a clock rings at any site, the process

jumps: the value gtðkÞ at site k is modified to the value s. It

means, the process jumps from a configuration g to the

configuration gk;s. At most one site is updated during an

infinitesimally small amount of time. The probability that

clocks at, at least two, different sites ring at the same time

is negligible with respect to the infinitesimal time o(t).

Remark, the general definition allows to update when a

jump occurs, a finite collection of sites. See in particular

Sect. 3 Chap. I in Liggett (1985) for more details.

In the comparison between continuous-time IPS and

discrete-time PCA stochastic dynamics, the specificity of

PCA dynamics as kernel for Markov stochastic processes is

more blatant when G is infinite. It allows indeed infinitely

many local configuration’s modifications. When G is finite,

PCA processes have the particularity to allow more pos-

sible jumps on SG, especially when it has positive rates. In

that case, the transition matrix is a matrix whose entries are

all positive. For these reasons, PCA dynamics could be a

priori considered as more effective since the synchronous

updating procedure is allowing more jumps.

2 A family of reversible positive rates PCA
dynamics

2.1 Reversible PCA dynamics

In this section we study a generic family of positive rates

reversible PCA dynamics. Pay attention, the reversibility

for a deterministic CA dynamics is a different notion as the

one presented hereafter. A CA dynamics is said reversible

if the global deterministic transformation F : SG 7!
SG; rðnÞ 7! rðnþ 1Þ is injective. See for instance Kari and

Taati (2015) for an up-to-date reference.

In this subsection, we recall some basic facts and well-

known comments. Briefly: reversibility for Markov pro-

cesses is a property of the transition kernel and being

reversible for a PCA dynamics is a specific requirement.
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A Markov process is said to be reversible if it admits at

least one reversible distribution. It means, there exists a

probability measure l on SG such that

8r; g; lðgÞPðrjgÞ ¼ lðrÞPðgjrÞ:

For a continuous-time process, the similar relation is

8f continuouson SG;

Z
f Lg dl ¼

Z
g Lf dl:

Both mean the stochastic process’s distribution, with

starting distribution l, is invariant by time inversion

t 7! � t. So called equilibrium statistical mechanics is

mainly concerned about Gibbs measure and phase diagram

and study associated reversible stochastic dynamics. The

time symmetry invariance in distribution means indeed

what is called an ‘‘equilibrium dynamics’’.

Despite the definition of reversibility through the exis-

tence of a reversible distribution, this property is related

only to the dynamics’ kernel. The explanation comes from

the following statement proved by Kolmogorov: consider

an irreducible Markov chain on a finite state space with

transition probability P, the (unique) stationary probability

measure is reversible (w.r.t P) if and only if

Pðr2jr1ÞPðr3jr2Þ � � �Pðr1jrkÞ
¼ Pðrkjr1Þ � � �Pðr2jr3ÞPðr1jr2Þ

for any finite sequence of states r1; . . .; rk. It means the

probability of any loop does not depend on the travel’s

orientation.

To be reversible for a PCA dynamics means the kernel

of the time-reversed chain has to be the same, which means

to have the same product form. This is a strong require-

ment. It was stated as consequence in Kozlov and Vasilyev

(1980), Künsch (1984) (see section 4.1.1 in Louis 2002

too) that reversible PCA dynamics need to be of a special

form. Thus, the particular form of pk introduced herafter is,

up to the coefficients’ parametrisation, the most general

one for a shift invariant, positive rate, reversible PCA on

f�1; 1gZ
d

.

2.2 Theoretical results

We choose S ¼ f�1; 1g and G ¼ Zd or G ¼ KL :¼
½0; L�d \ Zd for any L[ 0. Consider a function K : Zd !
R of finite range: there exists R[ 0 such that KðiÞ ¼ 0 for

jij[R, and symmetric KðiÞ ¼ Kð�iÞ for every i 2 Zd.

This last assumption is necessary and sufficient to ensure

the reversibility of the PCA dynamics. Moreover, let s 2
f�1; 1gZ

d

be a fixed configuration. It plays the role of

boundary condition. For K � Zd, we define the transition

probability Ps
KðrjgÞ ¼ �k2KP

s
kðrkjgÞ by

Ps
kðrk ¼ sjgÞ ¼ pkðsj~gÞ

¼ 1

2
1þ s tanh b

X

k2Zd

Kðk � jÞ~gj þ bh

 !" #
; ð1Þ

where ~g ¼ gKsKc ; h 2 R, b[ 0 are given parameters. The

usual notation gKsKc denotes the configuration equal to g
(resp. s) for sites in K (resp. Kc).

This family of PCAdynamicswas studied inGrinstein et al.

(1985), Derrida (1990). It is important because of the main

following two reasons. First, as emphasised in the previous

subsection, reversibility is a strong assumption for a PCA

dynamics and this particular form of the updating rule pk is a

generic one. Second, when Kð�eiÞ ¼ J[ 0 and 0 otherwise

(i 2 f1; . . .; dg with ðeiÞ1� i� d canonical basis), this updating

rule is the parallel versionof theGibbs sampler associated to the

famous ferromagnetic Ising interaction potential with nearest

neighbour interaction. Thus, this family was used in several

applications in connection with the Ising model.

Precise theoretical results were proven for this family of

positive rates PCA, parameterised by b and h. The form of

the time-asymptotic distribution is explicitly known (Prop.

3.1 in Dai Pra et al. 2002) both when G is finite and when

G ¼ Zd (in that case, as limiting object). In the Z2 case,

ergodicity versus phase transition/loss of ergodicity region

were proven (Dai Pra et al. 2002; Louis 2004) using

probabilistic and statistical mechanics techniques.

Central mathematical objects used are Gibbs measures.

They are used to analyse the asymptotics, when an infinite

number of sites are interacting. A potential is a family of

functions ðuAÞAbG encoding the interaction. The symbol AbG

stands for A finite subset ofG. It is required that for any AbG,

8r 2 SG; uAðrÞ ¼ uAðrAÞwhere rA ¼ ðrkÞk2A. It means the

function uA depends on the configuration r only through sites

in K. Let KbG and s 2 SG be a boundary condition. A Gibbs

distribution is the probability measure defined on SK such that

lsKðrKÞ :¼
1

Zs
K

e
�
P

A:A\K 6¼0
uAðrKsKc Þ

¼ 1

Zs
K

Y

A:A\K 6¼0

e�uAðrKsKc Þ
ð2Þ

where Zs
K is the normalisation constant defined with

Zs
K :¼

X

rK2SK
e
�
P

A:A\K6¼0
uAðrKsKc Þ

and where rKsKc stands for the configuration equal to r
(resp. s) for sites in K (resp. Kc). Due to this form, the

following relationship holds, for any subsets K2 � K1,

lsK1cK1
ðrK2

jrK1nK2
Þ ¼ l

sKc
1
rK1nK2

K2
ðrK2

Þ: ð3Þ

When G’s cardinality is infinite, a Gibbs distribution is a

probability measure on SG (with the Borel r-field), such
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that the distribution l, conditioned on a finite subset K � G

to have the values s outside K, is the distribution lsK.
Formally, this means the following relationship

8KbG; 8s 2 SG; lð ð�ÞK j sKc Þ ¼ lsKð � Þ: ð4Þ

The finite cardinality of S ensures SG is a compact set. This

implies the existence of at least such a measure. These

probability measures are the distribution of random fields

ðrkÞk2G of, through the potential u, interacting sites k 2 G.

Pay attention, this definition does not imply the uniqueness

of l. By definition, phase transition is said to hold when

several Gibbs measures exist for the same potential. Gibbs

measures l are proven to be found too as asymptotics for

suitable limits in the subset of interacting sites in G. These

distributions give maximal probability to configurations

minimising the potential u. The following basic examples

aim to precise this notion. When u 	 0, the Gibbs measure

associated to u is the uniform distribution on SG. Let ]

denotes the cardinality. When 8A � G; ]A[ 1;uA ¼ 0,

the Gibbs measure is a product of independent distributions

on S. When uAðrÞ :¼
Q

k2A rk for A ¼ fi; jg where i
 j

(meaning i and j are connected through a bond of the graph

G), the interaction hold between nearest neighbours. The

well known Ising potential (without magnetic field) cor-

responds to the choice ufi;jgðrÞ ¼ Jrirj when i
 j. The

uniform parameter J is tuning the interaction’s intensity.

Back to the analysis of the PCA dynamics defined

through (1). Thanks to the reversibility, there is an inter-

action potential u associated to this PCA dynamics on Zd:

ufkgðrkÞ ¼ �bhrk

uVk
ðrVk

Þ ¼ � log cosh b
X

j

Kðk � jÞrj þ bh

" #

uKðrKÞ ¼ 0 otherwise;

ð5Þ

This potential is much more complicated than the

nearest neighbour Ising model. In particular, it is a gen-

uinely multi-body interaction and is not reducible to a two

sites/bond interaction. The aim of the Gibbs sampler pro-

cedure is to write down a stochastic dynamics admitting as

time-asymptotic an a priori prescribed distribution. Starting

from the Ising Gibbs measure and implementing the Gibbs

sampler updating rule in a fully parallel way leads to a

different time-asymptotic, now characterised as Gibbs

measures w.r.t. this new potential u.
When d ¼ 1, G ¼ Z, since reversible probability mea-

sures are Gibbs measures w.r.t u, the dynamics admits a

unique reversible measure. On Z, for finite range poten-

tials, there is no phase transition, meaning there exists a

unique Gibbs measure (Georgii 1988).

Let us consider from now on the cases d ¼ 2, Kð0Þ� 0,

Kð�eiÞ ¼ 1 (i 2 f1; 2g with ðe1; e2Þ canonical basis),

h ¼ 0. The set Vk is the Von Neumann neighbourhood with

the site k itself when Kð0Þ 6¼ 0. In the infinite case G ¼ Z2,

there exists a critical value bc such that for b\bc, the PCA
dynamics is ergodic, converging in distribution towards the

unique Gibbs measure associated to the potential u. For
b[ bc, the PCA dynamics is not ergodic anymore, there

exist many reversible distributions, characterised as Gibbs

measures w.r.t u. When Kð0Þ ¼ 0, bc is exactly the Ising

critical value logð1þ
ffiffiffi
2

p
Þ=2
 0:44. In the corresponding

G ¼ KL cases, two analogous regimes are observed

numerically and characterised by a drastic change in the

speed of convergence towards the unique stationary dis-

tribution. Theoretically it was stated in Louis (2004) that

the convergence holds exponentially fast when b\bc.
When Kð0Þ ¼ 1, bc 2 ½0:3; 0:35� was numerically esti-

mated (Louis 2002). Finally, remark when Kð0Þ ¼ 1, for b
large, the PCA dynamics becomes a CA with majority-

voting updating rule over the four nearest neighbours and

the site itself.

2.3 Effective flipping rate

For the sake of simplicity we consider from now on peri-

odic boundary conditions. These are convenient to insure a

shift-invariant situation for a finite number of interacting

sites. We use numerical simulation through programs

written in R and make use of the ‘‘vectorisation’’ possi-

bilities in order to improve the running time. We consider

the case where Vk is the Von Neumann neighbourhood,

including possibly the site k itself. Since the probabilistic

updating rule depends on the state of the neighbourhood

gVk
, the global jump probability, given the past, has a

product form of elements like p0ð�jnÞ where n 2 SV0
. When

the system evolves towards an ordered configuration, the

modification of the sites’ states may become very unlikely.

We want to quantify this loss of effectiveness in the par-

allel updating.

On S ¼ f�1;þ1g, we call a flip, the change of a site’s

state. Rewrite the updating rule pkð�jgÞ as a flipping prob-

ability ~pkðgÞ which is the probability, conditionally to the

past, that gk jumps to �gk

~pkðgÞ ¼ pkðþ1jgÞ1gk¼�1 þ pkð�1jgÞ1gk¼þ1

where 1gk¼�1 is short notation for 1fg:gk¼�1g with, for any

subset A, 1AðxÞ ¼ 1 if x 2 A, and 0 otherwise. We define an

effective flipping rate (d ¼ 2 case)

knþ1 ¼
P

k2KL
1rkðnþ1Þ6¼rkðnÞ

L2
: ð6Þ

The quantity knþ1 denotes the density of sites in KL

changing values between time steps n and nþ 1. It depends

on the configurations ðrðnÞ; rðnþ 1ÞÞ.
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Denoting by F n the filtration generated by the process

up to time n, EF n
ð�Þ denotes the conditional expected value

operator, knowing all the sampled events up to time n.

Mathematically, for any random variable W, EF n
ðWÞ is a

F n-measurable random variable and the expectation of this

random variable over sets of F n is the same as the

expectation of W:

8A 2 F n; EðEF n
ðWÞ1AÞ ¼ EðW1AÞ:

Since a Markovian framework is considered here, the

result of such an average given F n depends on the pro-

cess’ value rðnÞ at time n. The quantity EF n
ðknþ1Þ is,

given rðnÞ, the average value of the effective flipping rate

knþ1. It depends on the configuration rðnÞ. Since, given
F n, the random variables ðrkðnþ 1ÞÞk2G are independent,

it holds:

EF n
ðknþ1Þ ¼

X

n2SV0

]fk 2 KL : rVk
ðnÞ ¼ ng

L2
~p0ðnÞ;

where both quantities depend on rðnÞ. ðEF n
ðknþ1ÞÞn build a

kind of instantaneous averaged flipping rate.

It is another natural, worth mentioning, alternative

indicator to be considered for quantifying the effectiveness

of the synchronous updating rule. It is using the simulta-

neous conditionally independent updating characteristic of

the PCAs. In the phase transition regime, since there are

less random fluctuations, this indicator is of the same order

as the effectiveness of a sequential updating scheme. For

this indicator, we then need to compute the different

probabilities ~p0ðnÞ and the proportion of different local

configurations.

Another quantity’s trajectory to be considered as a

measure of the effective parallelism of the dynamics is the

following one. Let us consider the density of nearest

neighbours’ bonds really flipped at the same time

qnþ1 ¼
P

j
 k 1rkðnþ1Þ6¼rkðnÞ1rjðnþ1Þ6¼rjðnÞ

2L2
;

where j
 k denotes neighbouring sites. It is indeed inter-

esting to notice, when the nearest-neighbour Ising associ-

ated Gibbs sampler is only partly synchronised,

alternatively on even/odd sites, meaning no pair of neigh-

bouring sites is updated at the same time, then the sta-

tionary measure remains the Gibbs measure w.r.t. Ising

potential. The potential’s modification is then induced by

the possible updating of two even/odd neighbouring sites

simultaneously. In an analogous way, the associated

instantaneous averaged quantity EF n
ðqnþ1Þ was recorded.

These averaged quantities leads to no further informative

result. The results concerning EF n
ðqnþ1Þ are thus not pre-

sented hereafter.

2.4 Numerical results, case d 5 2

2.4.1 Typical parameters’ values chosen

We choose to consider here the results when Kð�eiÞ ¼ 1

(i 2 f1; 2g), Kð0Þ ¼ 1 and with h ¼ 0. Similar results hold

modifying the Kð�Þ function. Kð�Þ not positive should not

modify the main question we address here. When h 6¼ 0,

there is a drift toward one value of S. It is more interesting

to consider a symmetrical situation. Periodic boundary

conditions are chosen for the same reason. We consider

G ¼ KL with L ¼ 60 (3600 sites). Since G is finite in these

simulations, the PCA dynamics is always ergodic and as

explained, there is, for any parameters value of b; h, con-
vergence in distribution towards a unique stationary prob-

ability measure lb. As stated by theoretical results, and

confirmed by these simulations, for b close to 0, lb looks

like the uniform measure (independent product of 0.5-

Bernoulli distributions). For large b, lb is concentrated on

configurations close to þ1 and �1 where r ¼ þ1 means

8k 2 G, rk ¼ þ1. On Fig. 1 results from two typical

samples in the cases b ¼ 0:1 and b ¼ 0:5 are presented.

2.4.2 Non phase transition regime

When b\ bc the PCA dynamics on G ¼ Z2 is ergodic

with exponential speed of convergence. This corresponds

to the non phase transition regime for the associated

potential u. Consider b ¼ 0:1 for illustration. Running the

algorithm up to final time T ¼ 200 shows the stationary

states is reached. We check for instance the stabilisation of

the magnetisation
P

k2G rk=]G. Notice, one step time is

one step of the PCA dynamics, which means ]G potential

flips. Since ergodicity holds, the starting distribution does

not matter. Nevertheless, the phenomenon is more inter-

esting starting with a random configuration distributed

according to independent distributions giving weight 0.9 to

?1 (see left bar-chart, Fig. 1g). One sample of the evolu-

tion of kn (red curve) and EF n
ðknþ1Þ (in green) is shown in

Fig. 1a. This sample, in the stationary regime, gives a

constant effective updating rate around 0.44 for both the

indicators kn and EF n
ðknþ1Þ. On Fig. 3a, at b ¼ 0:1 a mean

value on independent trials is coherent with this one sample

value of kn. Figure 1c illustrates the time evolution of the

different possible flipping probabilities. The symmetries

imply that different values of rVk
give rise to the same

flipping probability ~pkðrVk
Þ. In this example, only five

different flipping probabilities are associated to the 25

values of rVk
. The associated colour goes from blue to red,

blue denotes the configurations less favourable to flip and

red the more likely to flip. Figure 1e is the plot of the time

evolution of the bond updating rate qn. Figure 1g
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Fig. 1 Reversible PCA: one sample simulation’s results, case b ¼ 0:1 left, case b ¼ 0:5 right
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represents the bar-chart of the flipping probability. At

T ¼ 100, this sampled configuration shows a large pro-

portion of local configurations rVk
with a moderate flipping

probability. This matches with previous knowledge about

the equilibrium distribution l this configuration is sampled

from (up to the finite simulation time bias). Figure 2a

shows the bar-plot of the flipping probabilities on a sample

from size 100 both at the starting time and at T ¼ 500

confirming the previous one sample observations.

2.4.3 Phase transition regime

When b[ bc, the PCA dynamics on G ¼ Z2 is non ergodic

(phase transition regime for the associated potential u).
Consider b ¼ 0:5. Running the algorithm up to final time

T ¼ 1300, stationarity is reached for this sample at

T ¼ 1000. This is slightly observable on Fig. 1d, b. For

this sample, the configuration reached is close to �1. In

order to emphasise the polarisation phenomenon occurring,

the starting condition was chosen w.r.t the uniform prob-

ability on SKL . The effective flipping rate is, in this regime,

very quickly lower than 0.1, non increasing, stabilising

around 1:6� 10�2. Figure 1d shows the tiny proportion of

local configurations very likely to flip and the large pro-

portion of sites whose neighbourhood make them very

unlikely to flip. The bar-plot associated to this sample’s

flipping distribution illustrates it on Fig. 1h, and on Fig. 2b

for an i.i.d. sample with size 100.

On Fig. 3a the effective flipping rate is observed for a

sample at a large enough time in order to be close to

equilibrium. This average is plotted against b. As expected
from the theoretical results, there is a drastic change when

approaching bc and for b[ bc it is small. Since there are

less fluctuations of rðnÞ in this regime, EF n
ðknþ1Þ is of the

same order as the effective flipping rate of a sequential

procedure. The simulations shows then that the effective-

ness of the parallel scheme is of the same order as the one

of a sequential procedure. The same phenomenon occurs

for the effective bond updating rate qn. It is evident to

expect a value close (but not equal) to the square of the

single site updating rate. This is plotted on Fig. 3b as

dashed green line. Indeed, for small and large value of b,
neighbouring local configurations rVk

and rVj
(with j
 k)

tends to be the same or similar.

3 Stavskaja PCA dynamics

3.1 Theoretical results

The Stavskaja Model is defined on Z or on a interval. We

refer to Taggi (2015) for up-to-date references and more

detailed results. The spin space is S ¼ f0; 1g and the

neighbourhood is Vk ¼ fk � 1; kg. The local updating rule

is defined as

pkð1jrÞ ¼
1 if rk ¼ rk�1 ¼ 1;

e 2 ½0; 1� otherwise:

�

The Dirac distribution d1, concentrated on 1 is a trivial

stationary distribution. When finitely-many interacting sites

are considered, the a.s. long-time behaviour is absorption in

the configuration 1. In the infinitely-many interacting sites

case K ¼ Z, the following behaviour was proven by the

Russian school of Markov processes at the end of the 1960s

(Shnirman 1968; Vaserstein and Leontovich 1970; Toom

et al. 1978): there exists a critical parameter’s value e
 [ 0

such that

• for any e such that e[ e
, the dynamics is ergodic

which means 8l starting distribution; limn!1 Pl

ðrðnÞ ¼ �Þ ¼ d1;
• when e\e
, the dynamics is non-ergodic, in particular

limn!1 Pd0ðrðnÞ ¼ �Þ ¼ leð�Þ 6¼ d1; more precisely,

0\leð1Þ\1 and every stationary distribution

Fig. 2 Reversible PCA, simulation’s results: average on an i.i.d. sample, case b ¼ 0:1 left, case b ¼ 0:5 right
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translation-invariant on Z is of the form

ale þ ð1� aÞd1;wherea 2 ½0; 1�:

The notation Pd0ðrðnÞ ¼ �Þ denotes the marginal dis-

tribution at time n of the stochastic process with the

Stavskaja PCA dynamics as kernel and starting in 0. A

sharp numerical estimation based on a Monte Carlo sim-

ulation provided by Mendonça (2011) gives ec ¼ 0:29450.

In this reference, the critical exponents of the model are

numerically studied and indicate that this phase transition

belongs to the directed percolation universality class of

critical behaviour.

3.2 Numerical results

3.2.1 Typical parameters’ values chosen

For comparison purposes with the previous systems, the

situation with ]G ¼ 3600 sites is considered. Periodic

boundary conditions are chosen and time runs up to 2500

steps. Using the mean number of 1 values along the tra-

jectory
P

k2G rk=]G, it is checked that the transitory part is

over and that some kind of quasi-stationary situation holds.

One trajectory is represented in Fig. 4a, resp. b, when

e ¼ 0:26, resp. e ¼ 0:2950. Considered the size of the

system, this amount of steps is not enough, for the e values
considered, to see the final absorption happening. The

trajectories considered start with the configuration 0.

3.2.2 Effective flipping rates

When e ¼ 0:26, resp. e ¼ 0:2950, one sample of the evo-

lution of kn (red curve) and EF n
ðknþ1Þ (in green) is shown

in Fig. 4c, resp. d. This sample, in the quasi-stationary

regime, gives a constant effective updating rate around

0.288, resp. 0.138, for both the indicators kn and EF n
ðknþ1Þ.

Figure 4e, resp. f, illustrates the time evolution of the

different possible flipping probabilities ~pkðrVk
Þ. The sym-

metries imply that different values of rVk
give rise to the

same flipping probability ~pkðrVk
Þ. The associated colour

goes from blue to red, blue denotes the configurations less

favourable to flip and red the more likely to flip. The

Fig. 4g, resp. h, show the time evolution of the bond flip-

ping rate.

When e\ec, the PCA dynamics on G ¼ Z is non

ergodic. Again it is worth noticing, as expected from the

theoretical results, that for simulations with finitely many

interacting sites, an abrupt change of behaviour happens.

On Fig. 5a the mean effective flipping rate is measured

on a sample. This average is plotted against e. When e\ec,
since trajectories starting from 0 are considered, the flip-

ping rate is with respect to le. When e[ ec, the dynamics

is ergodic and there is a quick absorption in 1 explaining

that kn is 0. Clearly, the same phenomenon of abrupt

change occurs for the effective bond flipping rate qn rep-

resented on Fig. 5b.

For the Stavskaja PCA dynamics, the non ergodicity

regime is then more effective in comparison with the

ergodicity regime.

4 Conclusive remarks

This paper presents from a probabilistic point of view two

families of PCA dynamics which exhibit a phase transition

phenomenon when the infinitely-many interacting sites

case is considered and when some parameters are tuned

below or above a critical value. The first family is repre-

sentative of the reversible positive rates PCA dynamics.

When the parameter b varies, the system goes from an

ergodic situation around a disordered ‘‘fluctuating’’ state to

a non ergodic/phase transition situation with two fluctuat-

ing phases (meaning extremal stationary distributions not

Fig. 3 Reversible PCA, simulation’s results: average on an i.i.d. sample
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Fig. 4 Stavskaja PCA: one sample simulation’s results, case e ¼ 0:26 left, case e ¼ 0:2950 right
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concentrated in a few configurations). The second family of

Stavskaja PCA is representative of PCA dynamics with one

absorbing state and exhibiting a critical phenomenon.

When the parameter e varies, the system goes from an

degenerate ergodic situation around an absorbing state to a

non ergodic/phase transition situation with one fluctuating

phase le and an absorbing one d1. For both kind of systems,

when finitely-many sites interacts, the phase transition

phenomenon is not sharp anymore. The stochastic pro-

cesses are indeed always ergodic and typical times are

exponentially large, in the parameters’ region where phase

transition occurs for the associated infinitely many inter-

acting cases. Nevertheless, an abrupt change of behaviour

happens for typical quantities, related to the dynamical

evolution on finitely-many interacting sites, like the single-

site and bond flipping rate we considered. Change of

behaviour observed in the numerical simulations are in

agreement with theoretical results and estimations con-

cerning the parameters’ critical values. The main motiva-

tion of this paper was to quantify the evolution of the

single-site and bond flipping rates when the parameter

varies. Figures 3a, b and 5a, b put in perspective these

curves for two main families of PCA dynamics for which

phase transition occurs. Moreover, it highlights that

effective synchronicity rate is not so high as could have

been expected considering the parallel nature of the kernel.

This is clearly due to the local constraints. Finally, we

conclude that the two family of models behave differently

from the effectiveness perspective. The synchronicity rate

goes close to 0 in the phase transition regime for reversible

positive rates PCA dynamics whereas it goes to 0 in the

ergodic regime for the Stavskaja absorbing dynamics. The

reversible positive rates PCA dynamics are more effective

in the ergodic regime. The Stavskaja dynamics are more

effective in the non ergodic regime. We conclude the

effectiveness of the synchronous updating strongly depend

on the nature of the running regime. The two families of

PCA dynamics share some similar behaviours: two regimes

separated by a critical parameter value, one ergodic, the

other regime related to a non ergodic one when infinitely

many components interact. Despite this fact, these two

models behave differently concerning the effectiveness.

This is mainly due to the nature of the phases. For the

reversible PCA dynamics, in the non ergodic regime,

strong correlations forbid an effective synchronous updat-

ing scheme. For the Stavskaja PCA dynamics, strong cor-

relations are observed in the ergodic regime, where

configurations are attracted towards the absorbing state.

The non ergodic regime corresponds in that case to the

regime where fluctuations are strong enough to make a non

trivial stationary distribution survive. These random fluc-

tuations implies an effective synchronous updating in the

non ergodic regime.

Acknowledgments The author thanks two anonymous referees for

useful comments.

References

Cervelle J, Dennunzio A, Formenti E, Skowron A (2013) Special

issue: cellular automata and models of computation. Fundamenta

Informaticae 126(23):183–199

Fig. 5 Stavskaja PCA dynamics, simulation’s results: average flipping rates

Supercritical probabilistic cellular automata: how effective is the synchronous updating? 533

123



Cirillo ENM, Louis PY, Ruszel WM, Spitoni C (2014) Effect of self-

interaction on the phase diagram of a Gibbs-like measure derived

by a reversible probabilistic cellular automata. Chaos Solitons

Fractals 64:36–47

Cirillo ENM, Nardi FR, Spitoni C (2008) Metastability for reversible

probabilistic cellular automata with self-interaction. J Stat Phys

132(3):431–471

Dai Pra P, Louis PY, Roelly S (2002) Stationary measures and phase

transition for a class of probabilistic cellular automata. ESAIM

Probab Stat 6:89–104

Dai Pra P, Scoppola B, Scoppola E (2012) Sampling from a Gibbs

measure with pair interaction by means of PCA. J Stat Phys

149(4):722–737

Dennunzio A, Formenti E, Manzoni L (2012) Computing issues of

asynchronous CA. Fundamenta Informaticae 120(2):114–144

Dennunzio A, Formenti E, Manzoni L, Mauri G (2013) m-Asyn-

chronous cellular automata: from fairness to quasi-fairness. Nat

Comput 12(4):561–572

Dennunzio A, Formenti E, Provillard J (2012) Non-uniform cellular

automata: classes, dynamics, and decidability. Inf Comput

215:32–46

Dennunzio A, Formenti E, Weiss M (2014) Multidimensional cellular

automata: closing property, quasi-expansivity, and (un)decid-

ability issues. Theor Comput Sci 516:40–59

Derrida B (1990) Dynamical phase transitions in spin models and

automata. In: Van Beijeren H (ed) Fundamental problems in

statistical mechanics VII. Elsevier, Amsterdam, pp 273–309

Fatès N, Morvan M, Schabanel N, Thierry É (2005). Fully
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