
An improved dynamic deployment method for wireless sensor
network based on multi-swarm particle swarm optimization

Qingjian Ni1 • Huimin Du2 • Qianqian Pan3 •

Cen Cao1 • Yuqing Zhai1

Published online: 14 September 2015

� Springer Science+Business Media Dordrecht 2015

Abstract Dynamic deployment methods for wireless

sensor network (WSN) can improve the quality of service

(QoS) of the network by adjusting positions of mobile

nodes. In the dynamic deployment problem model of this

paper, not only the coverage rate of WSN but also the

moving distance of mobile nodes is taken into considera-

tion. This kind of model can be abstracted into multi-ob-

jective optimization problem, and particle swarm

optimization (PSO) is introduced to solve this problem. In

this paper, combined with previous work, an improved

dynamic deployment method is proposed based on multi-

swarm PSO. Specifically, we propose a discrete PSO to

calculate the distance of mobile solutions, and a multi-

swarm PSO is designed to optimize network performance

for enhancing the QoS of deployment which includes

higher coverage rate and lower energy consumption of

mobile nodes. Experimental results demonstrate that the

proposed method has a good performance in solving the

WSN deployment problem.

Keywords Dynamic deployment � Discrete particle

swarm optimization � Multi-swarm particle swarm

optimization

1 Introduction

Node deployment is an important research area in wireless

sensor network, and the coverage quality directly affects

the QoS of the network. In WSN, the data acquisition

nodes are often composed of static and dynamic nodes.

Coverage quality of static nodes is generally depending on

the initial deployment strategy. However, dynamic nodes

with moving ability can change their geographic topology

to enhance the coverage quality of the entire network. The

initial positions of nodes are always random with low

coverage, where the mobility of nodes can improve the

situation, realizing self-organization of the network.

Researchers have carried out in-depth exploration of this

area, and the main indicator concerned is the coverage rate

of network. Aleksandra and Gavrilovska (2011) designed a

distributed algorithm to improve the connectivity and

coverage of network, in which the space was organized to

hexagonal grid, and cluster heads were determined in the

center for each grid cell. Then nodes inside and adjacent to

the cells could be rearranged to improve the performance.

A virtual force algorithm was proposed by Zou and

Chakrabarty (2003) as a node deployment method to

maximize the coverage rate, where the cluster heads

instructed the movement of the nodes around. When facing

with large-scope situations, Ma and Yang (2007) presented

an adaptive triangular deployment algorithm for large-scale

mobile sensor networks, this strategy adapted node

deployment to regular triangles and a sector-based detec-

tion was utilized. Wang et al. (2007) combined the virtual

force algorithm with PSO, proposed an improved dynamic

deployment algorithm, which performs better than many

other methods when dealing with probabilistic detection

model. Aziz et al. (2007) used Voronoi diagram to evaluate

the solution, and chose PSO to find the optimal deployment
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plan. Compared with grid point deployment, Voronoi dia-

gram provided an easier implementation and the result was

considerable.

The topology of sensors is dynamic since those mobile

nodes can adjust their positions during their life cycle. In

this case, optimization method can be carried out over and

over again (once node failure occurs or environment

changes) to help deploy the whole network.

In most previous research of node deployment, the

moving distance of mobile nodes is not concerned too

much. It is often assumed that mobile nodes can reach any

place in the area and the energy consumption for moving is

not considered. In fact, this metric is rather crucial since it

decides the distribution of energy consumption: if the

moving distance of nodes is shorter, less energy will be

consumed. Furthermore, a shorter moving distance leads to

a quicker deployment (fast convergence) since the mobile

sensors can reach their target positions as soon as possible.

In this paper, the moving distance is considered as an

important indicator in the process, which is directly related

to the total energy that all dynamic nodes take to move to

target locations. Due to the energy limitation, a lower and

more stable energy cost strategy can lead to a higher

quality of the network.

Furthermore, a multi-swarm PSO (MPSO) with various

PSO variants is proposed to solve the problem of dynamic

deployment. Multi-swarm strategies in evolutionary algo-

rithm have been performing excellently, and in general,

multi-swarm PSO implements the same evolution strategy

in each population. Blackwell and Branke (2004) proposed

the multi-swarm optimization method based on charged

PSO and took some additional methods to prevent the

situation of balanced attractors, and the charged particles

and charged quantum particles act in different rules

between different swarms. Liang and Suganthan (2005) put

forward a dynamic multi-swarm PSO by regrouping the

swarms during the process using various regrouping

schedules, where each swarm maintains a small number of

particles to achieve a higher diversity. Solomon et al.

(2011) implemented a collaborative multi-swarm PSO to

achieve high parallelism to test the suitability of GPU in a

distributed computing environment. This multi-swarm

method with swapping operations among the swarms and

repulsion factor, which is stated in Vanneschi et al. (2010),

is used to ensure a high parallelism and good performance.

Liu et al. (2011) designed a modified multi-swarm PSO

where the sub-swarms are scheduled by the multi-swarm

scheduling module and there are four rules for the sched-

uler to maintain the swarms including information trans-

mits and other policies, and the algorithm is integrated with

Support Vector Machine to do feature selection jobs. Zhao

et al. (2011) improved the dynamic multi-swarm PSO by

hybridizing it with harmony search and developed

Dynamic Multi-Swarm Particle Swarm Optimizer with

Harmony Search (DMS-PSO-HS), where every sub-swarm

also acts as a harmony search population to speed up the

convergence and the swarms are regrouped frequently as

well. Mukhopadhyay and Banerjee (2012) proposed

Chaotic Multi Swarm Particle Swarm Optimization (CMS-

PSO) where the diversity of generic PSO is improved with

the help of chaotic sequence, by injecting the chaotic

system parameters into the update equations of PSO and

enhanced the performance. A Finder–tracker (FTPSO)

multi-swarm PSO was proposed by Yazdani et al. (2013)

where the method is used to find peak values in searching

space and track them when the environment changes. In

this algorithm there are several tracker swarms and one

finder swarm, and the global optimal is retained in one of

the sub-swarms.

Since multi-swarm strategy can perform better than the

single swarm method, it is taken into use to solve the

complex problem in WSN deployment. While in this paper,

an improved multi-swarm PSO is proposed with different

PSO evolutionary methods, i.e., a heterogeneous MPSO.

Three different particle swarm optimizers are combined to

reach high performance, which is different from the existed

multi-swarm methods above where only one kind of

method is implemented among the swarms, and will be

discussed later.

The remainder of this paper, which is an substantial

extension of the work (Du et al. 2014), is organized as

follows. Section 2 describes several PSO variants which

will be used in a multi-swarm PSO proposed in the later

section. In Sect. 3, the optimization problem model for

WSN dynamic deployment and the detection model are

described, and the method for the WSN dynamic deploy-

ment is proposed based on the multi-swarm PSO. The

experiment and analysis are given in Sect. 4. Finally,

Sect. 5 gives the conclusion and the future work.

2 Particle swarm optimization variants

This section describes several variants of PSO algorithm.

These PSO variants are used in a multi-swarm PSO pro-

posed in this paper.

2.1 PSO with inertia weight

Shi and Eberhart (1998) initially introduced the inertia

weight to improve the traditional PSO algorithm. The

inertia weight represents the speed inertia of the particles in

population. In general, high weight values can make pop-

ulation search more freely, and after reaching a certain

degree, low weight values are conducive to the local

exploitation. The calculation of velocity and position in
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PSO algorithm with inertia weight x is given in Eqs. (1)

and (2).

v
ðtþ1Þ
i ¼ xvðtÞi þ r1c1ðpðtÞi � x

ðtÞ
i Þ þ r2c2ðpðtÞc � x

ðtÞ
i Þ ð1Þ

x
ðtþ1Þ
i ¼ x

ðtÞ
i þ v

ðtþ1Þ
i ð2Þ

where pi is individual’s optimal solution, and pc is the

optimal solution in the whole population. There are some

changing strategies of the inertia weight, like decreasing

the value from 0.9 to 0.1 through the evolution. Such

strategies make the population have a strong exploration

capability at the initial stage and a strong exploitation

capability in later iterations.

2.2 PSO with constriction factor

PSO with constriction factor was firstly introduced by

Clerc and Kennedy (2002). This PSO variant is another

way to control the situation of particles in population. After

the particles reach a dominant region, the inhibition of the

constriction factor on population concussion can lead to a

fast convergence of the whole population. The position

update equation is the same with Eq. (2) and the velocity

update equation is shown in Eq. (3), where v may take a

value of 0.729.

v
ðtþ1Þ
i ¼ v v

ðtÞ
i þ r1c1 p

ðtÞ
i � x

ðtÞ
i

� �
þ r2c2 pðtÞc � x

ðtÞ
i

� �n o

ð3Þ

2.3 Dynamic probabilistic PSO

Kennedy (2005) firstly introduced a kind of PSO without

velocity. Ni and Deng (2011) systematically integrated this

kind of PSO variant: Dynamic probabilistic PSO (DPPSO).

The core equations of DPPSO are given by Eqs. (4) and

(5).

CTidðtÞ ¼
XK
k¼1

PkdðtÞ=K � XidðtÞ ð4Þ

OTidðtÞ ¼
XK
k¼1
jPid � Pkdj=K ð5Þ

where t is the number of iteration of the current evolution, i

is the index of a particle, k is the index of neighborhood

particles, K is the number of particles in the neighborhood.

Pkd is the individual optimal position of neighborhood

particle whose index is k; d is the dimension index of

particle i. Position update equation is shown in Eq. (6).

Xiðt þ 1Þ ¼ XiðtÞ þ aðXiðtÞ � Xiðt � 1ÞÞ
þ bCTiðtÞ þ cGenðÞOTðtÞ

ð6Þ

where Gen() is a random number generator, which is often

set to be a distribution function satisfying a specific random

distribution. a; b; c are the weights.

Gen() is very important to DPPSO, and it has a direct

impact on the population sampling method for the next

generation. Different DPPSO algorithms have different

features (Ni and Deng 2011): DPPSO-Gaussian has fast

convergence in the early iterations; DPPSO-Logistic and

DPPSO-Hyperbolic Secant have a strong exploration

capability in the later stage of evolution, which ensures the

particles have a strong ability to escape from local optima;

DPPSO-Cauchy has a good performance on a small num-

ber of benchmark functions, indicating DPPSO-Cauchy is

suitable for solving similar engineering problems.

In this paper, we choose DPPSO-Gaussian algorithm,

and the Gaussian equation is as Eq. (7).

f ðxÞ ¼ ae�ðx�bÞ
2=c2 ð7Þ

where x is a random number. Based on our previous

experiments and investigation, x is set between ½�2; 2�, and
a ¼ 1:73; b ¼ 0; c ¼ 1:41.

3 Problem model and proposed method

3.1 Optimization problem model for WSN dynamic

deployment

In WSN dynamic deployment problem, two main factors to

be measured are coverage rate and moving distance of the

network, which are thus two optimization targets for the

candidate solutions of the algorithm.

Coverage rate C : Abstract the region of interest (ROI)

to a set of points (grid points or random covering points),

and the coverage rate is the proportion of the points that are

effectively covered in the ROI. This principle is also

described in literature (Kulkarni and Venayagamoorthy

2011).

Moving distance d : The moving distance of a node is

the distance between its initial position and its moving

target, while for the network, the total moving distance is

the sum of all the moving distances of mobile nodes.

The coverage rate is the predominant factor since a short

moving distance makes no sense without a high coverage

rate. The fitness function is noted as f, and it is supposed

that a higher coverage rate and/or a shorter moving dis-

tance contribute to a better fitness value. Fitness function is

designed as Eq. (8) according to those features.

f ¼ C

Th

� �m

� d̂

S
ð8Þ
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where Th is a threshold value of coverage rate C, and if the

difference of C of two solutions is over Th, then C will

become the predominant indicator. Assume that C[ Th; m

is a parameter associated with the statistic value of moving

distance and m[ 1. d̂ is the average moving distance of all

mobile nodes in the network, S is the region width. In this

paper, the parameters are set as follows: Th ¼ 5%;m ¼ 1:4.

According to the fitness function, it can be found that

this is an NP-hard problem and it is not possible to find the

theoretically optimum value with reasonable time. Thus

PSO is suitable to be used to obtain the solutions that could

be accepted in practice.

3.2 Detection models for WSN

There are two detection models for WSN coverage prob-

lem: the binary detection model and the probabilistic

detection model (Zou and Chakrabarty 2003). The binary

detection model has a wide range of applications while the

probabilistic detection model provides a more realistic

measure strategy. Presume a set of sensors S ¼ fs1; . . .; sng,
the probabilistic for a point P(x, y) to be covered by si is

noted as cxyðsiÞ, which is described in Eq. (9).

cxy ¼
0 if Rs þ Re� dðsi;PÞ

e�ka
b

if Rs � Re\ dðsi;PÞ\Rs þ Re

1 if dðsi;PÞ�Rs � Re

8><
>:

ð9Þ

where Re is the uncertainty factor in detection process. It

can be found that when Re ¼ 0, Eq. (9) acts as the binary

model, otherwise it turns to the probabilistic one.

Li et al. (2005) proposed an improved probabilistic

model to reach a more precise simulation result, which is

given by Eq. (10).

cxy ¼
0 if Rs þ Re� dðsi;PÞ

e�a1k
b1
1
=k

b2
2
þa2 if Rs � Re\ dðsi;PÞ\Rs þ Re

1 if dðsi;PÞ�Rs � Re

8><
>:

ð10Þ

where k1 ¼ Re � Rs þ dðsi;PÞ; k2 ¼ Re þ Rc � dðsi;PÞ.
a1; a2; b1; b2 are the property parameters determined by the

physical features of different sensor nodes. The probability

for P(x, y) to be covered by a set of sensors Sov can be

presented as Eq. (11).

cxyðSovÞ ¼ 1�
Y
si2Sov
ð1� cxyðsiÞÞ ð11Þ

and P is covered when it meets the condition given by

Eq. (12).

cxyðSovÞ�Cth ð12Þ

where Cth is the cover probability threshold.

Experiments in this paper take both binary detection

model and probabilistic detection model into account.

3.3 The proposed PSO algorithms

3.3.1 Discrete PSO for the computation of moving distance

in WSN

Traditional PSO algorithms are mainly used to solve con-

tinuous problems, while Clerc (2004), Wang et al. (2003)

and Shi et al. (2007) proposed several discrete strategies

for PSO when solving discrete problems such as traveling

salesman problem. When dealing with the computation of

moving distance, an improved discrete PSO is introduced

in this paper. New operators are designed to discretize

traditional PSO, and the equations are as Eqs. (13)–(15).

V
ðtþ1Þ
i ¼ WðxÞ � V

ðtÞ
i �Wðc1r1Þ � Pid 	 X

ðtÞ
i

� �

�Wðc2r2Þ � Pgd 	 X
ðtÞ
i

� � ð13Þ

Xðtþ1Þ ¼ XðtÞ 
 VðtÞ ¼ x
ðtÞ
1 þ . . .x

ðtÞ
N

n o

 v

ðtÞ
1 ; . . .; v

ðtÞ
N

n o

ð14Þ

where W is a normalizing function to produce weighting

coefficient. Assume there are k factors in all (k ¼ 3 in (13))

for an equation, then W is built as

WðfactoriÞ ¼
factori

Pk
i¼0

factori

ð15Þ

Operators are defined as follows.

� Multiplication operator for coefficient and velocity:

The result is a vector containing null values. The coeffi-

cient stands for the retention proportion of this vector and

the retained index should be unique among all the vectors

to be added.

� Addition operator for two velocities: Merge two

vectors to a new vector according to the item indexes. For

example, fvi1; vi2; null; vi4g � fnull; null; vi3; nullg
¼ fvi1; vi2; vi3; vi4g. According to Eq. (15) and the multiple

method above, all the sub-vectors will be merged to exactly

one complete vector.

	 Subtraction operator for two positions: For each

dimension, define operate mode for each dimension as

pd 	 xd ¼
pd; if randðÞ� a

xd þ cðpd � xdÞ; if a[ randðÞ[ b

xd; otherwise

8><
>:

ð16Þ
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where 0\c\1; 0\b� a\1; randðÞ 2 ½0; 1�, and ðb; aÞ is
the probability interval of interference factor, which is

optional.


 Addition operator for a velocity and a position:

Always assume that velocity and position vectors are of the

same dimension. Operations for each dimension are

defined as

xd 
 vd ¼
vd; if randðÞ� a

0

xd þ c
0 ðvd � xdÞ; if a

0
[ randðÞ[ b

0

xd; otherwise

8><
>:

ð17Þ
THEN do xi  xd where xi ¼ xd 
 vd:

where 0\c
0
\1; 0\b

0 � a
0
\1; randðÞ 2 ½0; 1�, and ðb0 ; a0 Þ

is the probability interval of interference factor which is

optional. This operation has two steps, calculating xd 
 vd
and then swapping the result with xd inside the vector.

Figure 1 is a schematic diagram of a moving plan which

is given by the proposed algorithm. In a two-dimension

space, there are positions of initial nodes (red asterisk) and

their moving targets (blue square). The proposed DPSO

generates the moving plan and connects each starting

position with its target, to reach a shorter moving distance

for the whole network.

Unlike the binary PSO (Del Valle et al. 2008) where

each particle takes YES/No decisions and the candidate

solution is a combination strategy, DPSO in this paper aims

at the problem where the solution is a sequence, i.e., an

arrangement or a permutation. In detail, when solving the

moving planning problem for the WSN layout, the initial

positions of the nodes are treated as a fixed sequence and

the solution is another arranged sequence where the cor-

responding positions of each dimensions in these sequences

are ‘‘paired’’.

Compared to the previous DPSO in literature (Wang

et al. 2003; Shi et al. 2007), this kind of DPSO does not

introduce any external method to enhance the performance

and just redefines the operators based on traditional PSO,

which could be easier to implement. The proposed DPSO

in this paper is a probabilistic-based method (means the

result of an operation can be varying), this could lead to

diversity and an escape from local optimum that fixed

operations may cause. Figures 2 and 3, which are detailedly

stated in the previous work (Du et al. 2014), shows the

performance curve of this DPSO compared to another

excellent discrete solver, ant colony optimization (ACO)
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Fig. 1 Schematic diagram of moving planning. (Color figure online)
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with different problem scale. It can be seen that during a

certain scale (when the node amount is under 100 and the

ROI scale is less than 450 in this experiment), DPSO

proposed in this paper achieves a shorter distance for

moving planning, which means a better result.

Parameters in Eqs. (13), (16) and (17) are set as follows:

x¼ 0:6;c1¼ 2:2;c2¼ 1:4;a¼ 0:6;b¼ 0:4;c¼ 0:6;a
0 ¼ 0:7;

b
0 ¼ 0:7; c

0 ¼ 0:6. It should be noticed that adjustment to

this parameters may be needed in different situations,

influenced by the sensing ranges of the nodes and the shape

of ROI etc. In such cases the algorithm outcomes may also

be different.

Since this kind of algorithm is easy to handle and per-

forms well, it is used as a standard computation method to

calculate the moving distance when evaluating a solution.

3.3.2 Heterogeneous multi-swarm PSO

This paper introduced a heterogeneous multi-swarm

method to balance the exploration and exploitation of the

algorithm. In the proposed algorithm, the population are

divided into three sub-swarms with different evolutionary

strategies, which include PSO with inertia weight, PSO

with constriction factor and dynamic probabilistic PSO.

Since every sub-swarm adopts a unique evolutionary

strategy which has its own advantage, the diversity of the

whole population is guaranteed. During the evolution,

communication among the sub-swarms is maintained to

avoid trapping into a local optimum.

Figure 4 shows the topology structure of the whole

population. It is a fully-connected structure in each sub-

swarm. And communication mechanism is maintained

among the sub-swarms. In the generations with a certain

interval (named alternate generation), sub-swarms will

alternate their optimal solutions. Similar to the multi-

swarm method in literature (Vanneschi et al. 2010), the

best particles from a swarm replace the positions of the

worst particles in the target swarm, and the particle amount

in each swarm is constant. On the other hand, the alternate

sequence of the swarms is random, which means one

swarm has equivalent probability to attain the optima from

every other swarms. In this way each swarm can absorb a

different evolutionary direction guided by another swarm

with different evolutionary strategies.

Algorithm 1 Process of heterogeneous multi-swarm PSO
Divide the whole population into three sub-swarms S1, S2, S3
Initialize the positions of the population and update the gbest position
while t < maxiter do

for each sub − swarm m ∈ population do
for each particle i ∈ sub − swarm m do

Update the particle’s position with the corresponding PSO algorithm
Calculate the coverage rate C with the coverage model(binary model or probabilistic model)
Calculate the total moving distance d using the DPSO algorithm
Evaluate the fitness value with the fitness function (8)
Update the personal best value (pbest) of the particle

end for
Update the sub-swarm best value (ssbestm) of the sub-swarm

end for
if An alternate generation is met then

for each sub − swarm m ∈ population do
ssbestm ← ssbest(m+1)%3

end for
end if
Update the global best (gbest) information of the population
if a termination condition is met then

Break the loop
end if

end while
return gbest

Fig. 4 Topology structure schematic diagram of heterogeneous

multi-swarm strategy

10 Q. Ni et al.
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Every particle in the population stands for a set of

positions in a two-dimension space. For a node K, its

position coordinate is presented as ðxk; ykÞ, thus for N

nodes, a 2N-dimensional particle Xi ¼ fx1; y1; x2; y2. . .
xN ; yNg stands for their positions. Algorithm 1 states how

the heterogeneous multi-swarm PSO algorithm is

processed.

3.3.3 Analysis of the proposed algorithms

Though a heterogeneous multi-swarm strategy is used, time

complexity of this algorithm is equal to the traditional

method. Assume the complexity of DPSO proposed in

Sect. 3.3.1 is HðD) where D is a polynomial of problem

space (the amount of nodes) n, the complexity of the whole

MPSO can be expressed as Hðt � ðmnDþ kÞ) where t is the
maximum iteration times, m stands for the swarm size, and

k is a leaner complexity expression standing for the con-

sumption of information exchanging among the sub-

swarms. With the same time consumption, a better diver-

sity is achieved by the heterogeneous structure.

At the same time, the reason to combine those three

kinds of algorithm should also be emphasized. In fact, PSO

with inertia weight and constriction factor are two ‘‘basic’’

versions of PSO. The inertia weight decides whether the

swarm should focus on exploitation or exploration, and the

constriction factor also helps the convergence of the pro-

cess. But DPPSO is quite different because it reconstructs

the update method and hybrids the searching procedure

with probabilistic distribution. This could enhance the

searching ability in a new way. Collaboration of these three

methods brings the absolute diversity to the whole popu-

lation and swarms evolve cooperatively.

4 Experiments and analysis

4.1 Experiment settings

Simulation environment is built in this paper on two-di-

mension non-obstacle space. This paper compared the

performance of three PSO algorithms which include tra-

ditional PSO, co-evolutionary particle swarm optimization

(briefed as CPSO) (Kou et al. 2009) and the heterogeneous

multi-swarm PSO that is introduced in this paper aimed at

deployment problem.

Initially, 60 stationary nodes are randomly deployed in

the WSN and there are 40 mobile nodes, with the scale

width S ¼ 100 m. The binary detection model and the

probabilistic detection model are both taken into consid-

eration. For binary model, sensing radius of a sensor

Rs ¼ 7 m, with Re ¼ 0 m. For probabilistic model,

Rs ¼ 7 m, and the detecting uncertainty radius

Re¼Rs=2¼3:5 m. a1¼1;a2¼0;b1¼1;b2¼0:5;cth¼0:9.

1200 covering points are chosen randomly in the region

which are to be covered. For these three PSO algorithms,

they all contain 200 particles and the number of evolu-

tionary iterations is 200.

4.2 Results and analysis

Figures 5 and 6 respectively illustrate the change of total

moving distance of the network and its coverage rate of

three PSO algorithms in binary model and probabilistic

model. According to the presumption, a higher coverage

rate and a shorter moving distance demonstrate a better

performance, which is positively correlated to the QoS of

the network. As can be seen in the figures, gaps exist
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Fig. 5 Distance-coverage rate diagram in the binary model. (Color

figure online)
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among the performances of those PSO algorithms. MPSO

(red triangles in the figures) plays the best role, whose

distribution is on a more upper left position, CPSO (blue

squares in the figures) acts in the middle, while the tradi-

tional PSO (black triangles in the figures) still needs to be

improved.

The fitness function shown in Eq. (8) magnifies the

difference of the algorithms. Figures 7 and 8 demonstrate

the fitness curves which grow with the iterations, and they

are coincident with the distance–coverage rate figures. It

can be found that PSO and CPSO converge in an earlier

stage compared to MPSO. For MPSO, it has a fast con-

vergence speed in the early stage and still has abilities to

develop in the latter iterations (over 80), which is the

consequence of maintaining the population diversity. The

statistics of coverage result are given in Tables 1 and 2.

Under a sole PSO algorithm, the particle swarm can be

easily trapped into local optimum, while the sub-swarms

exchange different information, which can help the popu-

lation keep away from the local optimal and lead to a

broader exploration.

Experiment results demonstrate the importance of pop-

ulation diversity in the evolutionary algorithms. Informa-

tion from different evolutionary strategies can change the

convergence direction of the population and even help

avoid trapping into local optimum. In the initial stage,

different evolution strategies produce a faster search, which

result in the high-speed rise of the fitness value, and the

continuous impact among the populations contributes to a

slower convergence in the late stage which leads to a

higher ending result.

5 Conclusion

In the research area of WSN dynamic deployment, the

moving distance of mobile nodes is often overlooked. This

paper adds consideration of the moving distance, and

provides a new way to solve the dynamic deployment

problem. Specifically, a multi-swarm PSO is constructed

by different PSO variants with different features, and dif-

ferent sub-swarms coevolve in the evolutionary process.

Experiments show that, although the proposed method

requires a little longer convergence time, the obtained

solution is more satisfying. It also can be seen that col-

laboration between sub-swarms with different variants is a

good strategy to upgrade the solving performance, and the

proposed strategy is a good and feasible solution in the

application of dynamic deployment.

For the node deployment in WSN, the uniformity of

nodes and the topology design of communication should

not be ignored, and it is the focus of our future work to

consider. For the multi-swarm PSO to the dynamic

Table 1 Performance comparison in binary model

Algorithm Coverage rate (%) Fitness value

MPSO 94 77.44

CPSO 90 74.26

PSO 89 68.55

Table 2 Performance comparison in probabilistic model

Algorithm Coverage rate (%) Fitness value

MPSO 91 77.47

CPSO 88 76.36

PSO 84 73.62
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Fig. 8 Comparison of fitness value in the probabilistic model
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Fig. 7 Comparison of fitness value in the binary model
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deployment problem, more combinations of PSO variants

and communication strategies among sub-swarms will be

designed and attempted to improve the algorithm’s per-

formance in the area of node deployment.
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