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Abstract This paper reports a new improved discrete

shuffled frog leaping algorithm (ID-SFLA) and its appli-

cation in multi-type sensor network optimization for the

condition monitoring of a gearbox. A mathematical model

is established to illustrate the sensor network optimization

based on fault-sensor dependence matrix. The crossover

and mutation operators of genetic algorithm (GA) are

introduced into the update strategy of shuffled frog leaping

algorithm (SFLA) and a new ID-SFLA is systematically

developed. Numerical simulation results show that the ID-

SFLA has an excellent global search ability and outstand-

ing convergence performance. The ID-SFLA is applied to

the sensor’s optimal selection for a gearbox. In comparison

with GA and discrete shuffled frog leaping algorithm (D-

SFLA), the proposed ID-SFLA not only poses an effective

solving method with swarm intelligent algorithm, but also

provides a new quick algorithm and thought for the solu-

tion of related integer NP-hard problem.

Keywords Improved discrete shuffled frog leaping

algorithm � Crossover � Mutation � Sensor network
optimization � Dependence matrix

1 Introduction

Gearbox is a core component of variable-speed drive

applied in machinery and its operation condition is crucial

to other relevant parts or even the whole mechanical sys-

tem. Any abnormal state of gearbox can cause serious

damage or disaster. Therefore, the investigation on the

running condition monitoring of gearbox is significant and

has attracted the attentions of many scholars and techni-

cians. To date, some methods and theories have been

reported for the condition monitoring of gearbox, such as

the side-band algorithm (Zappala et al. 2014) and latent

nestling method (Urrego et al. 2013). In addition, the work

in literature (Mohanty and Kar 2006) completed the mul-

tistage gearbox fault diagnosis in combination with the

discrete wavelet transform and demodulation of motor

current waveform. In Bafroui and Ohadi (2014), the

wavelet entropy and Shannon entropy were used as the

input characteristics of artificial neural networks (ANNs) in

the fault detection of gearbox under the conditions of

varying speeds.

Sensors have been used to obtain the state information

of the monitored object. In the application of sensors for

gearbox monitoring, the traditional way is to measure the

vibration signal using an acceleration sensor (Hang et al.

2014). Alternatively, some scholars attempted to use other

types of sensor to obtain useful information. For example,

Hamilton et al. (2014) employed the active pixel sensors to

monitor the lubrication system of gearbox. Acoustic

emission sensor was adopted in Li et al. (2012) to extract
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the fault signals in split-torque gearbox. By employing the

traction drive as the sensor and measuring the relation

between the torque and position, recent work (Wolf et al.

2013) completed the evaluation of gearboxes for an elec-

trified vehicle.

The extensive studies on sensor applications provide a

valuable fundamental for the acquisition of accurate con-

dition information. However, unnecessary increase of the

quantity and type of sensors can lead to information

redundancy (Hang et al. 2014; Altaf et al. 2014; Seraji and

Serrano 2009) or even dimension disaster (Han et al. 2005).

Hence, in the condition monitoring of mechanical equip-

ment for some complex systems, it is necessary to select

optimal sensors with appropriate numbers, types, and

installation positions from the given sensor network to

provide the most valuable information at the lowest cost.

Here, it is called the sensor network optimization problem.

Besides, the optimal design of sensor network is also an

important guarantee of the performance improvement of

condition monitoring and fault diagnosis systems (Cheng

et al. 2010; Yang et al. 2013). For example, the frequency

response and experimental modal analysis were used as the

theoretical basis for the sensor network optimization of a

power transmission system in previous work (Nimity-

ongskul and Kammer 2009; Worden and Burrows 2001).

With the finite element technology, a bearing vibration

simulation model was established and applied to sensor

optimal placement for the bearing fault diagnosis (Cao

et al. 2012). In addition, the Bayesian networks and the

frequency response theory were proposed for sensor opti-

mal selection (Jin et al. 2012).

However, the above methods are applicable to the

selection of sensors from the network which is composed

of the same type sensors only. Their applications in the

multi-type sensor network are limited. In practice, sensor

network optimization often subjects to some constraints,

such as the cost of sensors and requirements of perfor-

mance indices of the testing system. So, the sensor network

optimization belongs to the constrained optimization

problem. According to the directed graph model, the

problem of sensor network design was studied in Raghuraj

et al. (1999), Venkatasubramanian et al. (2003) under the

rule of fault observability and resolution, where a mixed-

integer linear programming formulation was reported.

Previous work (Bhushan and Rengaswamy 2000; Li and

Upadhyaya 2011; Li et al. 2012) investigated the sensor

distribution problem using fault diagnostic observability

and reliability criteria based on directed graph symbols.

Later, a new mathematical model was proposed under the

constraints on fault detection rate and isolation rate (Azam

et al. 2004). Korkali and Abur (2013) proposed the

development of a practical and an effective strategy for

rendering the transmission grid ‘fault-observable’ by the

optimal sensor deployment technique. The aforementioned

literatures proposed some thoughts to solve the optimiza-

tion problem of heterogeneous sensors. However, the

failure of sensors themselves and their influences on the

model for fault diagnosis have not been considered.

Essentially, the sensor network optimization belongs to

a 0–1 combinatorial integer optimization problem and it is

also a NP-hard problem (Li et al. 2012). Some researchers

have focused on various solving algorithms, such as the

principal component analysis (Li and Upadhyaya 2011; Li

et al. 2012), ANNs (Chow et al. 2011; Martin et al. 2005),

and Bayesian networks (Jin et al. 2012; Pourali and Mosleh

2013). Recently, some swarm intelligent optimization

algorithms, e.g., particle swarm optimization (Pan and Wei

2010; Kulkarni and Venayagamoorthy 2010), genetic

algorithm (GA) (Liu et al. 2008; Casillas et al. 2013), ant

colony optimization (Fu 2009), artificial bee colony algo-

rithm (Mini et al. 2014), and artificial fish-swarm algorithm

(Tao et al. 2013) have been applied to solve the problem

and some promising results have been successfully

achieved. As a novel swarm intelligent algorithm, the

shuffled frog leaping algorithm (SFLA) is a genetic-based,

heuristically cooperative search algorithm (Eusuff and

Lansey 2003), and it has been widely employed in various

optimization fields, such as the water distribution network

design (Eusuff and Lansey 2003), parameter identification

(Ahandani 2014), unit commitment problem (Barati and

Farsangi 2014), distribution network reconfiguration

problem (Jazebi et al. 2014), and so on. In accordance with

the differences in the complexity of targeted applications

and problems, some improved methods have been devel-

oped. For instance, a differential operator was introduced

into the evolutionary process of SFLA to solve parameter

identification problems in Ahandani (2014). A binary

SFLA was proposed to solve the unit combination problem

in Barati and Farsangi (2014). A new SFLA was presented

for continuous-space optimization in Zhen et al. (2009),

where the population is divided based on the principle of

uniform performance of memeplexes (communities) and

all the frogs participate in the evolvement by keeping the

inertia learning behaviors and learning from better ones

selected randomly. In addition, the work (Chen et al. 2013)

proposed a hybrid algorithm which integrates the low-

discrepancy sequences, improved SFLA, and sequential

quadratic programming to solve the non-convex, multi-

dimensional constraint of dynamic economic dispatch

problem. More recently, a new multi-objective improved

shuffled frog leaping algorithm has been proposed and

successfully applied to investigate the distribution feeder

reconfiguration problem from the reliability enhancement

point of view (Kavousi-Fard and Akbari-Zadeh 2013).

It is well-known that, constructed by basic operators

such as selection, crossover, and mutation, GA (Holland
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1992) can adaptively search for the optimal solution of a

problem by simulating the evolution process. Inspired by

GA, a new improved discrete SFLA (ID-SFLA) with

crossover operator and mutation operator is proposed in

this paper. The ID-SFLA is then applied to derive an

intelligent solution for sensor network optimization based

on the fault-sensor dependence matrix and some con-

straints of condition monitoring system. The effectiveness

of the reported algorithm is verified by extensive experi-

mental studies.

The remaining parts of the paper are organized as fol-

lows. The mathematical model of sensor network opti-

mization is developed in Sect. 2. Section 3 introduces the

principle of SFLA and D-SFLA, and presents the steps and

flow charts of ID-SFLA inserted GA’s operators. The

superiority of ID-SFLA over conventional D-SFLA and

GA is demonstrated by a comparative study. As an intel-

ligent algorithm, it is then applied to obtain the optimal

sensor set for the condition monitoring of gearbox based on

fault diagnosis in Sect. 4. Experimental comparative

investigations with GA and D-SFLA have been conducted.

Sect. 5 concludes this paper.

2 Sensor network optimization model based
on dependence matrix

2.1 Fault-sensor dependence matrix

Fault diagnosis or condition monitoring of any facility relies

greatly on the information collected by the sensors. Improper

sensor configuration and selection may lead to serious con-

sequences because some faults cannot be detected or not

sensitive to some sensors. So, the condition monitoring

system, which is composed of various sensors, must ensure

that it can effectively identify all the faults. Then, the cor-

relation needs to be established between the failuresmode set

and sensors set, which is called fault-sensor dependence

matrix (Bagajewicz et al. 2004). Assume that a system has

n failuremodes (or fault sources) which can be denoted as the

set F = {F1,F2,…,Fn}. The optional sensors number is

m and can be denoted as the set S = {S1,S2,…,Sm}. The fault-

sensor dependence matrix of the system can be written as

binary matrix D = [dij], as shown below:

where i = 1,2,…,m, j = 1,2,…,n. In this matrix, each

column represents the faults which can be detected by a

sensor and each row represents sensors which can detect a

fault. When the fault Fj can be detected or measured by the

sensor Si, dij = 1 is defined, otherwise, dij = 0. The

dependence matrix D clearly describes the connections of

each fault (Fj) and a sensor (Si). Thus, it indicates that the

fault will affect the reading of the corresponding sensor. At

the same time, D is the foremost basis of sensor network

optimization for complex system.

2.2 Optimization objective and constraints

In the process of state monitoring and fault diagnosis to

mechanical power and transmission system like gearbox,

sensor network optimization (selection) is always fre-

quently restricted by the price, location, and installation

way of sensors. Especially, for the conditions with limited

fund and close price of each sensor, the priority objective is

to find a cost-optimal sensor set for mechanical equipment

that provides a good estimate of the state of the system and

detects and locates a pre-established set of faults.

Let X = {xi} = [x1, x2,…, xm]
T be the column vector of

binary elements as a candidate solution that denotes whe-

ther the ith sensor is selected (xi = 1) or not selected

(xi = 0). Suppose that each sensor cost is ci. With this

definition, the cost function becomes

min CðXÞ ¼
Pm

i¼1

cixi : ð1Þ

The observability, detection rate, resolution, and isola-

tion rate of failure mode are the important indexes of

monitoring system (IEEE 2004), and they are used as the

constraints of the sensor network optimization. The defi-

nitions are shown as follow:

1. Fault observability (FO) (Bagajewicz et al. 2004)

Fault observability refers to the ability that a fault can be

effectively observed by one or more sensors of candidate

set when it occurs. To ensure that all failure modes can be

observed, the result of the dot product any column (Fk) of

the fault-sensor dependence matrix and optional sensors set

X must be at least equal to 1. If it is equal to zero, then it

shows that the failure mode is not observed by the candi-

date set X. That is, the following equation is satisfied

FOðkÞ ¼ Fk � X ¼
Xm

i¼1

xidik � 1; 8k 2 F: ð2Þ

2. Fault detection rate (FDR)

The fault in sensor itself will affect the reliability of the

monitoring system. The symbol p(si) is used to represent

the prior probability of sensor Si’s failure and p(fj) repre-

sents the prior probability of fault Fj. If fault Fj occurs, the

prior probability detected by sensor Si would be denoted by
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the symbol p(fsij). Assume that each sensor is independent

and they detect each fault in the form of parallel connec-

tion. According to the reliability theory of parallel model

(Pandey and Sarkar 2002), the probability p(dj) of correctly

detecting each fault mode can be calculated as follows

p dj
� �

¼ 1�
Ym

i¼1

1� p fsij
� �

1� p sið Þð Þxidij
� �

: ð3Þ

Within the prescribed time, the ratio of the total number

of correctly detected fault to the number of incorrectly

detected fault by the measuring system is defined as FDR.

According to IEEE Standard 1522 (2004), FDR of actual

measuring system must be not less than the given index

Dreq. The mathematical form can be expressed as follows:

FDR ¼
Pn

j¼1 p fj
� �

p dj
� �

Pn
j¼1 p fj

� � �Dreq ð4Þ

3. Fault resolution (FR)

The different fault modes may have the same type of

symptoms. Thus, in the design of the actual condition

monitoring system, the selected sensors set must not only

observe failure mode, but also distinguish the different

mode. Thus, the term ‘resolution’ has been used to refer to

the ability of determining exactly which process fault

occurred, given the set of symptoms (Bagajewicz et al.

2004).

Consequently, more faults can be distinguished only if

one of them has at least one sensor that is different or does

not sense the other faults at all. Specifically, concerning

two different fault modes Fk and Fl, their corresponding

columns are bk and bl in the matrix D. This is achieved by

imposing the following conditions

FR ¼ maxðbk � X; bl � XÞ � ðbk � XÞ � ðbl � XÞ� 1;
1� k; l� n; k 6¼ l

ð5Þ

where the symbol � denotes Hadamark product of two

vectors.

4. Fault isolation rate (FIR)

According to IEEE (2004), the definition of FIR is the

rate of the correctly isolation fault number to all detected

fault number within the prescribed time. In the actual

measuring system, FIR must be not less than the given

index Ireq. Considering the effects of sensor fault of itself,

the constraint is described as follows:

FIR ¼

Pn

j¼1

p fj
� � Qm

i¼1

1� p sið Þxidij
� �

� �

Pn

j¼1

p fj
� �

1�
Qm

i¼1

p sið Þxidij
� 	� � � Ireq ð6Þ

To sum up, the mathematical description of the sensor

placement optimization model is the synthesis of the

objective and constraints as stated above. In fact, the sat-

isfaction of required measuring indexes on FDR and FIR

can bring the lowest cost of selected sensors combination

from candidate set. Simultaneously, the system can ensure

that all fault modes are observed and the given fault is

correctly distinguished.

3 SFLA and its improvement

This section systematically introduces the framework of

SFLA and its improvements. The comparison of calcula-

tion results based on different algorithms is presented.

3.1 SFLA

As a relatively new intelligent algorithm, the SFLA was

firstly proposed by Eusuff and Lansey (2003). It is based on

the memetic meta-heuristic to solve the water distribution

network design by the analogy similarity of the frog for-

aging behavior and optimization problems. A brief review

of the algorithm is shown below. More details can be

referred to Eusuff and Lansey (2003).

An initial population of P virtual frogs is generated

randomly in the R-dimensional feasible space (R variables)

and each frog is the possible solution. A frog i is repre-

sented as Ui = (Ui1,Ui2,…,UiR). Then, all frogs are sorted

in a descending order in terms of their fitness values f(Ui)

and the entire population is divided into mp memeplexes,

each containing np frogs and meeting P = mp 9 np. The

evolutionary process of SFLA contains elements of local

exploration and global information exchange as follows:

Local exploration First, the best fitness value in the

entire population is recorded as the global optimal frog Ug.

Then, q frogs in each memeplex are selected with a

selection strategy and a submemeplex is formed. For each

submemeplex, the frogs with the worst and best perfor-

mance of fitness are identified as Uw and Ub, respectively.

The Uw is updated as below:

s ¼ min½rðUb � UwÞ; smax� Ub � Uw � 0

max½rðUb � UwÞ;�smax� Ub � Uw\0




ð7Þ

where s is the updated step size, r is a random number in

the range [0, 1], and the parameter smax is the maximum

step size allowed to be adopted by a frog after being

infected. smax actually serves as a constraint to control the

SFLA’s global exploration ability, and an appropriate value

of smax is critical to the performance of SFLA (Eusuff and

Lansey 2003). The new frog is then generated by

U0
w ¼ Uw þ s ð8Þ

The fitness value of the new frog U0
w is computed. If

f(U0
w) is better than the old f(Uw), then Uw is replaced by
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U0
w. Otherwise, the calculations in Eqs. (7) and (8) are

repeated with respect to the global best frog, i.e., Ub is

replaced by Ug. If no improvement becomes possible in

this case, then a new frog is randomly generated to replace

it. This operation is repeated until the required number of

local iterations Nl in all memeplexes is satisfied.

Global information exchange Once the local exploration

is completed for all memeplexes, the frog populations are

re-arranged in accordance with the new fitness values for a

global information exchange. Then, the entire frogs are re-

partitioned into mp memeplexes and a new local explo-

ration starts again. The operation terminates when the

global iteration numbers Ng or the convergence criterion is

satisfied.

After all the steps of SFLA are fulfilled, the global best

frog is the optimal solution of the problem.

3.2 D-SFLA

In the above algorithm, the population update method is

suitable to solve the problem with continuous variables,

which is also known as continuous SFLA (C-SFLA). But

the sensor network optimization is 0–1 discrete integer

problem and the operations should be adjusted as follows:

Step 1 The initial virtual population is created as the

form binary random frogs of R dimension,

denoted as UB

Step 2 When the algorithm is in the process of local

exploration, the binary frogs UB
g , U

B
b , and UB

w are

first converted to the decimal frogs Ug, Ub, and

Uw, respectively. Then, the update operation in

accordance with Eqs. (7) and (8) is carried out. At

last, the updated decimal worst frog U0
w is re-

converted into the binary form UB0
w . Other

operations are the same as the C-SFLA

The algorithm with these operations aims to solve the

discrete variables problem and it is called discrete SFLA

(D-SFLA).

3.3 ID-SFLA

In the update strategy of C-SFLA or D-SFLA, only the

local optimum frog Ub (U
B
b ) or the global optimal frog Ug

(UB
g ) is used to update the worst frog Uw (UB

w), and the

effective information of other frogs in the population is not

fully used. So, it is easy to reduce the differences of the

population, slow the rate of convergence of the algorithm,

and fall into the local optimum and cause premature

phenomenon.

In this paper, according to the characteristics of 0–1

problem, the crossover and mutation operators of GA

(Holland 1992) are inserted into in the local exploration.

So, the update strategy is defined as follows:

Step 1 To improve the convergence speed of algorithm,

the UB
b and UB

g in each submemeplex are selected

as two objectives of the crossover operator

(Holland 1992). One or more points are

randomly chosen as crossover positions, and

then, the segments of each other are simply

swapped. The fitness values of two new frog

produced by this method are calculated

respectively. The better performance of frogs is

selected as UB0
w , which is ready for updating UB

w;

Step 2 If the fitness value f(UB0
w ) is superior to f(UB

w), then

UB0
w replaces UB

w and the local exploration in this

submemeplex will stop. Otherwise, the local

mean of q binary frogs in this submemeplex,

denoted as the UB
la, is computed as shown in

Fig. 1. The numbers of occurrence of 0 and 1 on

each bit of binary frogs are counted. If the number

of 0 is larger than the number of 1, i.e., b3, the

value of corresponding bit of UB
la is 0. Otherwise,

i.e. b1, the value is 1. But, if the occurrence

probability of 0 and 1 is the same, i.e. b4, the bit

can be randomly generated as 0 or 1. The specific

calculation result of UB
la is shown in Fig. 1.

Step 3 Calculate the Hamming distance between UB
la and

UB
w, the mutation operator is applied to UB

w. The

farther their Hamming distance is, the greater the

mutation probability of UB
w is. After the mutation,

a new frog UB0
w is generated and it is ready for

updating UB
w again;

Step 4 If step 3 can produce a better result, then replaces

UB
w with the new UB0

w . Otherwise, the local

exploration is stopped by randomly generating a

new binary frog to replace UB
w.

It is seen from the above steps that the parameter smax is

an adaptive step size and it is no longer used in the ID-

B
laU

BU1
BU2

BU3
BU4

Fig. 1 The result of Ula
B with q = 4 and R = 8
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SFLA of inserted GA operators. In the basic C-SFLA or

D-SFLA, the different values of smax can often lead to the

different calculation results. So, in a way, the ID-SFLA can

effectively reduce the influence of inappropriate parameter

setting on the algorithm performance. But the other

parameters are the same to the SFLA or D-SFLA. The flow

charts of ID-SFLA are shown in Figs. 2 and 3.

3.4 Verification with simulation studies

In order to verify the algorithm’s convergence and accu-

racy in problem solving, two examples are used for testing.

In this paper, all the algorithms are programmed with the

MATLAB (R2009a version) software and they are run with

Windows XP operating system on a personal computer.

Example 1 Minimize the function

F(x) = -9x1 ? 3x3 ? 3x5 ? 12x1x3 ? 12x1x4 ? 48x2-
x4 ? 36x2x6 ? 60x4x6 subject to

x1 þ x2 ¼ 1

x3 þ x4 ¼ 1

x5 þ x6 ¼ 1

xi 2 0; 1f g; i ¼ 1; 2; . . .; 6

ð9Þ

It is a relative simple 0–1 integer problem with 6 vari-

ables (R = 6) (Zhou et al. 1997). The parameter settings of

D-SFLA are designated as follows: mp = 5, np = 5, q = 4,

Nl = 20, Ng = 20, and smax = 3. In order to facilitate

comparison, the parameter values of ID-SFLA are exactly

the same to the setting of D-SFLA. The dependent

parameters of GA are listed as follows. The population

scale: Mga = P = 25, crossover probability: pc = 0.7,

mutation probability: pm = 0.03, and the maximum evo-

lutional generation: T = 20. The length of chromosome is

exactly equal to that of the frog dimension R. The three

algorithms are run independently by 30 times and the

corresponding results are shown in Table 1, where x*

denotes the optimal solution, and Fmin is the minimum

function value according to the x*. The fast, slow, and

mean denote the fastest, the slowest, and the mean of

iteration numbers, respectively. The mean convergence

curves are shown in Fig. 4a.

In this model, the fitness function of four intelligent

algorithms is directly converted by the objective function.

Zhou et al. (1997) adopts the tabu search algorithm (TSA)

and only finds out one solution. On the contrary, the GA,

D-SFLA, and ID-SFLA can all accurately seek out three

solutions of x* and have a satisfactory global search ability.

For such a relative simple question, there is not much

difference in the convergence rates of D-SFLA and ID-

SFLA, and they are higher than the GA. But the accuracy

of the solutions from the three algorithms is exactly the

same.

Example 2 The 0–1 knapsack problem is a classical

integer linear programming problem and belongs to NP-

hard (Martello et al. 2000). Its model is described as

follows:

Maximize Z ¼
Xd

i¼1

pixi

subject to

Pd

i¼1

wixi �V

xi 2 f0; 1g; i ¼ 1; 2; � � � ; d
ð10Þ

where a subset of d given items has to be packed in a

knapsack of capacity V. Each item has a profit pi and a

weight wi. The problem is to select a subset of the items

whose total weight does not exceed V and whose total

profit is a maximum. Without loss of generality, assume

that all input data are positive integers. Introduce the binary

Start

Select the parameter of 
SFLA:P,mp,np,q,Ng and Nl, generate a 

virtual  population of binary frogs.

Compute the performance value of each 
frog and rank frogs. 

Partition frogs into mp memeplexes and 
begin to memetic evolution within each 

memeplex.

Shuffle memeplexes and re-rank  frogs.

Re-generate the next population

Is the convergence 
criteria  satisfied?

Stop

No

Yes

Output the best solution(frog)         .B
gU

Fig. 2 The global exploration flow chart of ID-SFLA
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decision variables xi, where xi = 1 if item i is selected and

otherwise, xi = 0.

Let d = 20, V = 878, W = {wi} = {92, 4, 43, 83, 84,

68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14, 58}, and

P = {pi} = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40,

77, 15, 61, 17, 75, 29, 75, 63}.

It is a relatively complicated 0–1 integer problem with

20 variables (R = 20). The fitness functions of the three

algorithms are converted by constructing the penalty

function approach, which the constraints as penalty items

are integrated into the original objective function (Radac

et al. 2014). The parameters of the three algorithms are set

as follows: mp = 25, np = 25, q = 17, Nl = 50, Ng = 300,

Mga = 625, T = 300. The other parameter values are the

same to the settings in Example 1. The calculation results

are shown in Table 2. The mean convergence curves of the

three intelligent algorithms are shown in Fig. 4b when

Ng = 1–100.

Memetic evolution

Record        in entire population,           and
within each sub-memeplex  

B
gU B

bU B
wU

     According to  step 1 computer 'U B
w

compare with 
of their performance values.

'U B
w

B
wU

     According to step 2 computer B
laU

According  to step 3 mutation of 
based on hamming distance between        and B

laU
'U B

w
B
wU

          New          compare with 
of their performance values.

'U B
w

B
wU

Randly generate a new binary frog       .'U B
w
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Fig. 3 The flow chart of local exploration of ID-SFLA

Fig. 4 the mean convergence curves based on GA, D-SFLA, and ID-

SFLA

Table 1 Comparison of

calculation results of Example 1
Algorithms x* = [x1,x2,x3,x4,x5,x6] Fmin Iteration numbers

Fast Slow Mean

TSA (Zhou et al. 1997) 100110 6 – – –

D-SFLA 100110,101001,011010 6 1 2 1.3

GA 100110,101001,011010 6 1 18 2

ID-SFLA 100110,101001,011010 6 1 2 1.2

Table 2 Comparison of calculation results of Example 2

Algorithms Iteration numbers Fitness value

Fast Slow Mean Best Worst Mean Variance

D-SFLA 70 [300 – 1024 997 1011.3 91.46

GA 8 39 22.5 1024 1024 1024 0

ID-SFLA 2 13 3.1 1024 1024 1024 0
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The standard solution of the above problem is

Zmax = 1024. Table 2 and Fig. 4b show that for the com-

plex problems, the speed and accuracy of convergence with

D-SFLA have been affected heavily due to the limitation of

its own local exploration mechanism. Its performances are

the worst among the three algorithms and D-SFLA

becomes unavailable already. But the performances of ID-

SFLA are superior to D-SFLA and GA in all aspects. The

comparison results show that the ID-SFLA as proposed in

this paper is effective and superior.

4 Application on sensor network optimization
of gearbox

According to the related theory and algorithms discussed

above, the experimental model has been carried out on the

sensor network optimization of condition monitoring sys-

tem for a two-stage gearbox.

The faults set is F = {F1,F2,F3,F4,F5,F6,F7,F8,F9,F10},

where F1—Fracture of gear tooth; F2—Wear-out of gear

tooth; F3—Plastic deformation of gear tooth; F4—Surface

fatigue of gear tooth; F5—Gear burns; F6—Imbalance of

Gear shaft; F7—Misalignment of gear shaft; F8—Bearing

failure; F9—Serious oil leakage of lubrication system;

F10—Oil degradation of lubrication system. The prior

probability set of 10 fault modes is {p(fj)} = {0.10, 0.18,

0.12, 0.12, 0.08, 0.05, 0.05, 0.20, 0.05, 0.05}. The candi-

date sensors set of the monitoring system is S = {S1,S2,

S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18}, where

S1–S6 are six different sensors which are used to monitor the

various vibration signals of gearbox; S1—Acoustic emission

sensor; S2—Ultrasonic sensor; S3—Eddy current displacement

sensor; S4—Hall transducer sensor; S5—Micro-machined res-

onant acceleration sensor; S6—Magnetic grating transducer

(sensor). Three sensors, S7–S9, are used to measure the gear

shaft torque on the different positions of gearbox, and they

indicate the slipring sensor, the rotating transformer sensor, and

the infrared torque sensor, respectively. S10–S12 are the three

different sensors which are used to test the gearbox oil com-

position, and they are the viscosity sensor, the moisture sensor,

and the particle sensor, respectively. S13–S15 are respectively

represented the wireless temperature sensors, the integrated

temperature, and the digital sensor.S16–S18 are different optical

sensors, and they are designated based on the fiber, the grating,

and the laser, respectively.

The schematic diagram about the initial locations of 18

sensors on the gearbox is shown in Fig. 5. The prior

probability set of the 18 sensors’ failure is {p(si)} =

{0.02,0.03,0.05,0.01,0.02,0.01,0.04,0.03,0.01,0.02,0.01,

0.03,0.02,0.03,0.025,0.02,0.01,0.015}. Referring to Zhong

and Huang (2007), the matrix P_FS, which indicates the

prior probability set {p(fsij)}, is designated as follows:

In general, the cost of a sensor ci depends on two factors.

One is the price itself and the other is the installation cost

according to the complexity on the different positions of

monitoring system. Based on this, the set of 18 sensors cost

is {ci} = {1.0, 0.8, 0.6, 0.8, 0.7, 0.9, 0.5, 0.55, 0.9, 0.7, 1.0,

0.55, 0.65, 1.1, 0.4, 0.3, 0.5, 0.3} in this paper.

The specific index of the condition monitoring system

for the gearbox has the following requirements: FDR is not

less than 98 %; FIR is more than or equal to 95 %; all fault

P FS ¼

0:98 0:99 0:99 0:98 0:98 :0:99 0:98 0:98 0:00 0:00
0:99 0:98 0:97 0:98 0:98 0:97 0:96 0:98 0:13 0:08
0:98 0:99 0:98 0:99 0:98 0:98 0:98 0:97 0:20 0

0:90 0:90 0:90 0:93 0:95 0:96 0:98 0:98 0:04 0

0:85 0:90 0:90 0:90 0:90 0:90 0:91 0:97 0 0:02
0:90 0:85 0:90 0:94 0:99 0:94 0:91 0:95 0:04 0:01
0:98 0:85 0:98 0:90 0:90 0:75 0:75 0:75 0 0

0:98 0:80 0:98 0:90 0:90 0:75 0:75 0:75 0 0:05
0:98 0:85 0:98 0:90 0:90 0:75 0:75 0:75 0:01 0

0 0:80 0:90 0:99 0:90 0 0 0:05 0 0:99
0 0:85 0:90 0:98 0:91 0 0:05 0 0 0:98
0 0:80 0:90 0:97 0:91 0 0 0:06 0 0:98

0:75 0:75 0 0:75 0:90 0 0:03 0 0:98 0:75
0:75 0:75 0:02 0:75 0:90 0 0 0 0:97 0:75
0:75 0:75 0 0:75 0:90 0 0 0:05 0:99 0:75
0:70 0:08 0:12 0 0:91 0 0 0 0 0:75
0:70 0:03 0 0 0:90 0 0:06 0 0:14 0:75
0:70 0:05 0 0:03 0:90 0 0 0 0 0:75
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modes must be observed; when two or more fault modes

are detected, F4 must be correctly distinguished from F2

and F3, F6 is distinguished from F7, and F8 is distinguished

from F9 and F10.

First of all, according to the field experiments and the

correlation of actual fault and sensors on the different

location positions, the fault-sensor dependence matrix D is

established as shown below.

D ¼

1 0 0 0 1 1 0 1 0 0

0 1 1 0 0 0 1 0 0 0

0 0 1 1 0 1 1 0 0 0

0 1 0 1 0 0 0 1 0 0

1 1 1 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

1 1 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 1 0 0

0 1 1 0 1 0 0 0 0 1

0 1 0 1 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0

1 1 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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6
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7
7
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7
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Then, two main problems should be solved in the sensor

network optimization of gearbox with the intelligent

algorithms, such as ID-SFLA and D-SFLA.

1. The preliminary setting of population scale Each frog

corresponds to a possible sensors combination (solution)

and its dimension R depends on the size of sensors set. In

this paper, the number of the candidate sensors is 18. Thus,

R = 18. In general, the frog population scale depends on

the complexity of the concerned problem. The more

complicated the problem is, the lager the scale is.

According to the recommended value in the literature

(Eusuff et al. 2006) and the actual computing cost, the part

of the preliminary parameters of D-SFLA and ID-SFLA are

set as mp = 30, np = 30, q = 20, Nl = 50, Ng = 200, and

consequently the scale is P = 900.

To facilitate the performance comparison of the three

algorithms, the population scale Mga is equal to P and the

evolution number T is equal to Ng in GA. The other

parameters are also the same to Example 2.

2. The construction of fitness function Due to the

inequality constrains in the mode of sensor network opti-

mization, a new fitness function needs be designed to guide

the evolution process of the intelligent algorithms. The

constraints, i.e. formulas (2) and (4)–(6) are integrated into

the original objective function, i.e. formula (1), as the

penalty items to complete unconstrained transformation

and form a fitness function, i.e., a new objective function,

as follows:

minF X;Qð Þ ¼ C Xð Þ þ Q1k �maxð0; 1� FOðkÞÞ
þ Q2 �maxð0;Dreq � FDRÞ þ Q3

�maxð0; 1� FRÞ
þ Q4 �maxð0; Ireq � FIRÞ

ð11Þ

where, k = 1,2,…,10, Q is the penalty factor and Q1k = -

Q2 = Q3 = Q4 = 500 in this research.

The calculation results of the three algorithms are shown

in Fig. 6 and Table 3. It can be seen that the ID-SFLA is

obviously superior to the other two algorithms in terms of

solving accuracy as well as solving speed and it has the

excellent stability. But the solution based on GA is not

available due to its low accuracy and large error. Although

the accuracy of the solution based on D-SFLA has been

improved, the success rate is still not high and the stability

of the algorithm is poorer. According to statistics, in the 20

times of independent calculation process, the number of

times of finding the minimum (Fmin = 1.6) is only 10 and

the success rate is 50 %. As further seen from Fig. 6b, the

fastest speed is Ng = 2 and the slowest speed is Ng = 107

when it finds the optimal solution based on ID-SFLA

method. It also reveals the effectiveness of ID-SFLA and

the excellent ability to jump out of local optimum.

S18S17
S16

S7

S8

S1 S3

S2

S6

 S4

S5

S7

S8

S9

S15

S10
S11

S12

S10

S11

S12

S15

S13 S14

S9

 (a)

 (b)

Fig. 5 The initial locations of 18 sensors on the gearbox
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According to the results of ID-SFLA, the minimum cost

of the condition monitoring system on the gearbox is 1.6

and the optimal solution is x* = [0 0 0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 0]T, which means that the selected sensors set is the

{S5, S7, S15}. The FDR and FIR of actual monitoring sys-

tem meet the requirements, as shown in Table 4. By cal-

culation, FO and FR can also be satisfied. The number of

actual chosen sensors is far less than the number of the

candidate. The results of sensor placement optimization

greatly reduce the test cost and the complexity of the

measurable design. Meanwhile, it also demonstrates the

effectiveness and superiority of the ID-SFLA, which is an

intelligent algorithm for the sensor placement optimization

model.

3. Result and effect of parameter selection It is known

that the different problems probably require different

parameter selections (or combinations). Like most heuris-

tics approaches, the optimal parameter values usually

cannot be obtained through theoretical calculations, but the

relatively satisfactory (or better) values can be obtained

from substantial experimental results. In this section, the

effect of parameter selection on the results of the sensor

network optimization problem is tested. Referring to the

literature (Eusuff et al. 2006), the variation ranges of four

parameters on ID-SFLA are listed as shown Table 5. As

mentioned above, the global optimum value of the problem

is Fmin = 1.6. If ID-SFLA can search for Fmin = 1.6 within

Ng = 300, it is a successful search process. The mean

computation time of ID-SFLA significantly increases with

the values of parameter mp, np and Nl. But the success rate

is more sensitive to the numbers of memeplexes, mp. The

smaller the value of mp is, the lower the success rate

becomes. When the mp is greater than or equal to 30, it has

been maintained at 100. Considering the success rate and

computation time, the ID-SFLA parameters as used in the

above problem are reasonable.

5 Conclusions

In this paper, a new improved discrete shuffled frog leaping

algorithm (ID-SFLA) has been developed by introducing

the crossover operator and mutation operator of GA into

the update strategy of conventional SFLA. The results of

two typical test functions show that the proposed ID-SFLA

has excellent global optimization ability, faster conver-

gence speed, and higher convergence precision than the

existing one. Thanks to the adaptive step size of ID-SFLA,

it is unnecessary to set up the parameter of the maximum

step size smax like in C-SFLA or D-SFLA. Therefore, it can

effectively avoid affecting the calculation result due to the

improper setting of the parameter smax. Moreover, the

model of sensor network optimization for the purpose of

system state monitoring is established on the basis of fault-

sensor dependence matrix of gearbox, which is used as the

research objective. By comparing the optimal searching

results of GA, D-SFLA, and ID-SFLA, it is found that the

reported ID-SFLA can effectively solve the problem as

compared with both GA and D-SFLA. The presented

algorithm can be easily extended to other related domains

as well.

Fig. 6 The convergence curves. a The average convergence curves

of different algorithms; b the different convergence curves based on

ID-SFLA

Table 3 Calculation results of three algorithms

Algorithms Fitness value

Best Worst Mean Variance

D-SFLA 1.6 1.9 1.6733 0.1033

GA 1.7 2.7 2.2948 0.3089

ID-SFLA 1.6 1.6 1.6 0

Table 4 Indicators of actual monitoring system on gearbox

Requirement Result of actual system

Dreq Ireq FDR FIR Sensor selection

C98 % C95 % 98.52 % 98.23 % S5,S7,S15
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