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Abstract The set covering problem (SCP) is a well

known classic combinatorial NP-hard problem, having

practical application in many fields. To optimize the

objective function of the SCP, many heuristic, meta

heuristic, greedy and approximation approaches have been

proposed in the recent years. In the development of swarm

intelligence, the particle swarm optimization is a nature

inspired optimization technique for continuous problems

and for discrete problems we have the well known discrete

particle swarm optimization (DPSO) method. Aiming

towards the best solution for discrete problems, we have

the recent method called jumping particle swarm opti-

mization (JPSO). In this DPSO the improved solution is

based on the particles attraction caused by attractor. In this

paper, a new approach based on JPSO is proposed to solve

the SCP. The proposed approach works in three phases: for

selecting attractor, refining the feasible solution given by

the attractor in order to reach the optimality and for

removing redundancy in the solution. The proposed

approach has been tested on the benchmark instances of

SCP and compared with best known methods. Computa-

tional results show that it produces high quality solution in

very short running times when compared to other

algorithms.

Keywords Set covering � Swarm optimization � NP-hard
problems

1 Introduction

Particle swarm optimization (PSO) is a nature-inspired,

relatively recent meta heuristic developed by Kennedy and

Ebehert (1995). Like genetic algorithms, the PSO is also an

optimization technique based on the population i.e. based

on trope of social behavior of group of birds (or) banks of

fish. Basically PSO is inspired by the continuous move-

ment of the particles that form swarm. Aiming to discrete

problems and on several adaptations to those problems,

modified PSO known as discrete particle swarm opti-

mization (DPSO) has been proposed by Kennedy and

Ebehert (1997).

1.1 Particle swarm optimization

The original PSO considers a swarm S containing n parti-

cles S ¼ f1; 2; . . .; ngð Þ, each particle i of the swarm has its

position vector xi ¼ xi1; xi2; . . .; xij; . . .; xim
� �

and its

velocity vector vi ¼ vi1; vi2; . . .; vij; . . .; vim
� �

in a m-di-

mensional continuous solution space. Initially particles

positions and its velocities are obtained randomly within

some limits. Each iteration, particles update their position

and velocity. The position of the particle exclusively

depends on its velocity i.e. when considering the kth iter-

ation the position of the particle i is given by means of

recurrent equation

xki ¼ xk�1
i þ vki ð1Þ

But when updating the velocity, we must take into account

of its velocity, attractiveness of its very own best position

(bi) and the best position (gi) of its social neighbourhood

N(i) because each particle i of the swarm communicate

with its social neighbourhood or environment N(i) ( S and
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which can change dynamically. One can experience this

statement practically, when considering the movement of a

fish, it find its best position either by adjusting its position

or by his experience and their companions experience

about the position. The equation of the velocity update of a

particle in the swarm according to Kennedy and Eberhart

(1995) is given by

vki ¼ c1nv
k�1
i þ c2n bi�xk�1

i

� �
þ c3n gi�xk�1

i

� �
ð2Þ

The magnitude of the velocity is controlled by the

parameter c1, represents the effect of inertia, in order to

avoid the indefinite increase of the velocity. The parame-

ters c2 and c3 are the positive constant weights representing

the confidence degree of the particle i in different positions

that regulates its movements. n is a random number uni-

formly distributed in [0, 1], generated independently at

each iteration.

1.2 Discrete particle swarm optimization

The algorithm described above is the formal particle swarm

optimization (PSO) method applicable only for continuous

problems. Because of variety of applications of discrete

problems and aiming towards their applications, Kennedy

and Eberhart (1997) designed discrete binary version of the

PSO, referred as discrete particle swarm optimization

(DPSO) method, with discrete variables. They defined

particles trajectories and velocities in terms of changes of

probabilities that a bit will be in one state (or) the other. i.e.

position of each particle is a vector xi ¼ xi1; xi2; . . .;ð
xij; . . .; ximÞ where xij assumes the value 1 if the jth binary

variable within the position of the ith particle, otherwise it

assumes the value 0. However velocity of each particle is

still a vector vi ¼ vi1; vi2; . . .; vij; . . .; vim
� �

of the m-di-

mensional continuous space, vi 2 <m. Here vij indicate the

probability of xij assumes a value 0 (or) 1 in the next

iteration. To set the ith particle new position value, each

position variable xij is randomly set with the probability of

selecting a value 1 using the sigmoid function

(1 ? exp(-vij))
-1 where vij is restricted to some typical

value |vij|\ 6.0, prevents the probability of the xij assum-

ing either a value of 0 (or) 1 from being too high. Kennedy

and Eberhart (1997) have shown that this DPSO capable of

optimizing several combinatorial optimization problems.

Few more DPSO techniques for discrete optimization

problems are discussed below. Secrest (2001) presented a

non-binary version of the DPSO. In this DPSO, the parti-

cles in the swarm were represented as linked list of cities

and the move of the swarm operated by genetic operators

mutation and recombination. Al-kazemi and Mohan (2002)

developed a method by adopting the same strategy applied

in Kennedy and Eberhart (1997), with the exemption that

the coefficients are restricted to assume the values 1 and

-1. To obtain the best solution with in the given number of

iterations, they used two phase strategy. In the first phase,

the coefficient (1, -1, 1) used by each ith particle, by

directing the particle movement toward its social neigh-

bourhood best position gi. In the second phase, the coeffi-

cient (1, 1, -1) used by each ith particle, by directing the

particle movement toward its best position bi.

Yang et al. (2004) considered a larger number of com-

binations of the coefficients, which were referred as quan-

tum states of the particles and they applied principles of

quantum computing to update the velocity of the particle.

Martinoli (2006), presented a multi-valued PSO (MVPSO).

It is described with variables with mulitiple discrete values.

In this PSO, position of each particle expressed by means of

3 dimensional array xijk represents the probability that the

ith particle, in the jth iteration, assumes the kth value.

Sigmoid distribution used to generate the elements xijk and

they followed the Eqs. (1) and (2).

Another DPSO algorithm was developed by Correa et al.

(2006) to tackle the data mining task of attribute selection,

in order to classify data sets into classes (or) categories of

the same type. This DPSO slightly differs from other PSO

by means of swarm which contains particles representing

combinations of selected attributes of different size, varies

from 1 to k, the total number of attributes. Other than that

of best position of particle and best position among its

neighbours, one more factor length of the particle is

introduced. The new length of the particle is determined by

selecting random number k [ [0, k] and finally new position

of the particle is updated by the k attributes with the largest

likelihood in the velocity vector.

Tasgetiren et al. (2007) presented a DPSO to solve the

generalized traveling salesman problem. In this DPSO,

particles best position are updated using three operators

which were presented in Pan and Tasgetiren (2008) and

global neighbourhood best position updated by the same

model applied in Kennedy and Eberhart (1997). Further to

improve the solution quality they hybridized the DPSO

with a variable neighbourhood descend local search. Liaoa

et al. (2007) presented DPSO for flow shop scheduling

problem. This DPSO designs ‘‘job-to-position’’ represen-

tation for the discrete particle. They define the position and

velocity of the ith particle position in the tth iteration as

Xt
i ¼ xti11; x

t
i12; . . .; x

t
inn

� �
; xijk 2 0; 1f g; where xtijk equals

1 if job j of particle i is placed in the kth position of the

sequence and 0 otherwise and Vt
i ¼ vti11; v

t
i12;

�

. . .; vtinnÞ; vtijk 2 R; where vtijk is the velocity value for job

j of particle i placed in the kth position at iteration t

respectively. The velocity Vt
i , called velocity trail, is
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inspired by the frequency-based memory which records the

number of times that a job visits a particular position.

Al-Sherbaz et al. (2010) used the DPSO method

described in Kennedy and Eberhart (1997) for Wimax

parameter adaptation through baseband processor, in this

DPSO the solution space is the number of bits to represent

a particle xti, This number of bits is determined by the range

and the necessary precision of the optimized parameters.

Shi et al. (2007) presented a novel DPSO based algorithm

for Traveling Salesman Problem. In this DPSO, they

introduced a permutation and also an uncertainty searching

strategy to speed up the convergence speed. The ith particle

position xi ¼ xi1; xi2; . . .; xij; . . .; xim
� �

represents the trav-

eling circle of xi1 ! xi2 ! � � � ;! xim ! xi1. Therefore

they used the (1) as it is but in (2) they considered the n as a
real vector whose dimensions are corresponds to the

number of transpositions dotted with them. Chen et al.

(2006) developed a new hybrid approximation algorithm

based on DPSO, this combines global search and local

search to search for the optimal results and they also

applied simulated annealing to avoid local optima and

hence they updated the Eq. (2) using some control

parameters. More DPSO based techniques are referred in

Aliguliyev (2010), Qiang et al. (2009), Wang and Yang

(2007), Zhang et al. (2007).

1.3 Jumping particle swarm optimization

Garcı́a and Pérez (2008) introduced a new DPSO technique

for discrete optimization. In this DPSO particles best

position (or) improved solution based on the attraction

caused by attractor, one can found this inspiration in frogs

in nature; this method is called jumping particle swarm

optimization (JPSO). This JPSO technique works without

the components of velocity and inertia due to lack of

continuous movement in the discrete space. These two are

the main components in the original PSO technique.

Instead of these components, a random component in the

form of jumps is included for the movement of the parti-

cles. The position of the particles updated as similar to the

velocity update in the general PSO, but in which weights of

the update equation are interpreted as probabilities of the

movement of the particles by random (xi) or by guided

attraction of its own position (bi) or by attraction of best

position of its social neighbourhood (gi) or by attraction of

the best global position (g*). These attractions cause some

improvement in the position of the particles. The update

equation of particles position is given by

xi ¼ c1xi þ c2bi þ c3gi þ c4g�

where c1, c2, c3 and c4 are the probability values of the

movement of the particles towards their corresponding

attracted positions. For the probability values the unit

interval [0, 1] is divided into four segments with lengths c1,

c2, c3 and c4 = 1 - (c1 ? c2 ? c3). A random number

generated corresponding to the segments and based on the

random number which belongs to the segment, random

improvement movement towards the attractor are applied

to the position of the particle. The moves by the attraction

that do not produce improvement are rejected. After each

movement, the number generated at random is multiplied

by p and by corresponding coefficients ci. If this product is

greater than 1 a new move is applied, otherwise the

movement stops until the next generation, and this move is

rejected if it does not give improvement to its position. In

addition, after each random or attractor movement, a local

search is applied to every particle in the swarm. This local

search approach explores set of possible moves starting

from random one and the first move found that improve the

particles current position. This improvement move stops if

it does not give improvement to the current position of the

particles.

This new methodology is successfully applied to the

vehicle routing problem with time windows (Gutiérrez

et al. 2008) and to the minimum labelling steiner tree

problems (Consoli et al. 2010). This paper aims to apply

JPSO to the Set covering problems (SCP), a well known

combinatorial optimization problems, not only due to its

spirit of nature but also due to its simplicity, easy imple-

mentation, less computational cost and time. Further we

wish to compare this method with the other algorithms

proposed for SCP to find out its effectiveness for solving

SCP.

The rest of the paper is as follows: Sect. 2 explains the

set covering problem. Section 3 discusses briefly on dif-

ferent SCP algorithms so far found in the literature. The

pseudo-code and description of the proposed Jpso–scp

algorithm and brief description of algorithms considered

for comparison are discussed in Sect. 4. In Sect. 5 detailed

experimental study and computational results are given and

finally Sect. 6 ends with our conclusion.

2 Set covering problem

The set covering problem is a well-known combinatorial

optimization problem with variety of real time applications

in different fields, in particular crew scheduling in railway

and airlines (Housos and Elmoth 1997), location problem

of facility (Vasko and Wilson 1984) and in industry pro-

duction planning (Vasko and Wolf 1987). The description

of the SCP is as follows:

Given a finite set I ¼ 1; 2; . . .;mf g of m elements and

the family J ¼ S1; S2; . . .; Snf g of subsets of I such that a

non-negative cost cj is associated with each subset Sj. The
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set covering problem is to find the minimum size subset C

( J such that all the members of I covered by the members

of C with minimum total cost. i.e. for each i [ I, there exist

at least one Sj [ J such that i is covered by Sj. Let A = (aij)

be the m9n matrix whose jth column is the characteristic

vector of the subset Sj. i.e. aij = 1 if i is covered by Sj or

otherwise aij = 0. Then the 0–1 integer programming

formulation of SCP is

Min
Xn

j¼1

cjxj subject to

Xn

j¼1

aijxj � 1; i ¼ 1 tom:

xj 2 0; 1f g; j ¼ 1 to n:

The variable xj takes the value 1 if the subset Sj is selected

into the set cover and 0 otherwise. A particular version of

the problem was introduced by Toregas et al. (1971), called

unicost set covering problem (USCP) or minimum cardi-

nality set covering problem (MCSCP) or location set

covering problem (LSCP). In this version the associated

cost cj, for all the elements in J, is equal and all may

considered be equal to 1. It is well known that SCP and

USCP are NP-hard (Garey and Johnson 1979) and are

therefore difficult to solve in the case of large set of

instances. A probabilistic version of the set covering

problem is addressed in Saxena et al. (2010).

3 Related works

Many exact and heuristic procedures have been developed

to solve the SCP. Exact procedure is mainly based on

branch and bound (Balas and Carrera 1996), branch and cut

and Gomory cut (Fisher and Kedia 1990). Still these pro-

cedures are able to solve very limited size instances and

also consuming very large amount of time. Because of this

many researchers focused on the developing heuristics to

get optimal or near optimal solutions in a reasonable

amount of time.

The following are the list of some metaheuristic

approaches proposed for the SCP or unicost SCP. A very

clear literature survey till 2000 on both heuristic and exact

approaches has been presented in Caprara et al. (2000).

This survey outlined their main characteristics and pre-

sented an experimental comparison on the test-bed

instances of Beasley’s OR Library. Ceria et al. (1998)

presented a heuristic based on Lagrangian method for

solving large-scale SCP developed from the problem of

crew-scheduling at the Italian Railways. Brusco et al.

(1999) developed a heuristic for the SCP based on

morphing procedure in a simulated annealing (SA). Yag-

iura et al. (2006) proposed a local search algorithm for SCP

with three characteristics and they claimed through com-

putational experience with other existing heuristic algo-

rithms that their algorithm performed quite effectively for

large-scale SCP instances. In Li and Kwan (2004), one can

see fuzzy evaluation based evolutionary technique for

large-scale SCP originated from the public transport

industry. Simple solutions of random SCP instances

through the average case analysis are discussed in Telelis

and Zissimopoulos (2005) and solutions are constructed

through an O(nm) algorithm. A Meta-RaPS (Meta-heuristic

for Randomized Priority Search) approach to solve the SCP

is discussed by Lan et al. (2007) investigates the devel-

opment of an effective heuristic to solve the SCP and they

claimed that their approach finds good quality solution for

unicost SCP among compared heuristics. GRASP algo-

rithm to solve unicost set covering problem presented in

Bautista and Pereira (2007). This algorithm incorporates a

local improvement procedure based on the heuristics to

solve binary constraint satisfiability problems (SAT).

Azimi et al. (2010) proposed a heuristic algorithm based on

the electromagnetism metaheuristic approach to solve the

unicost SCP. In this method a local search and iterations

movement has been applied using ‘‘electromagnetism’’

theory to generate a pool of solutions from the initial

population. Ren et al. (2010) proposed a new approach

based on ant colony optimization (ACO) to solve the SCP.

In this approach when choosing a new column, it first

randomly selects an uncovered row and only considers the

columns covering this row, rather than all the unselected

columns as candidate solution components. Then a kind of

dynamic heuristic information called Lagrangian dual

information associated with currently uncovered rows.

Finally, a simple local search procedure is developed to

improve solutions constructed by ants while keeping their

feasibility.

When considering Genetic algorithm approaches for the

SCP, we can give importance to the following: Beasley and

Chu (1996) developed a genetic algorithm approach for

SCP. The method in this procedure modifies the basic

genetic procedures by including a fitness-based crossover

operator, a variable mutation rate and a heuristic feasibility

operator and using these procedures they have designed an

optimal algorithm for SCP. Through computational results

they have claimed that their approach is capable of finding

good quality solution for the SCP in reasonable time.

Aickelin (2002) presented a new type of indirect genetic

algorithm for the set covering problem. In this approach

actual solutions are found by an external decoder function,

results can be further improved by adding another indirect

optimization layer and then optimized by another hill-
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climbing algorithm. A parallel genetic algorithm (PGA)

model to solve the set-covering problem is presented in

Solar et al. (2002). An experimental study obtained with a

binary representation of the SCP, shows that PGA performs

better than the sequential model in terms of the number of

generations (computational time) needed to achieve

solutions.

Li and Cai (2012), Balachander and Kannan (2010)

developed gravitational search algorithm (GSA) for solving

SCP. This GSA technique is one of the nature based

technique like genetic algorithm, simulated annealing and

ant colony optimization. It comprises a population based

technique induced by Newton law of gravity and the law of

motion. The main frame work of the algorithm is: objects

are considered with different masses. Every mass can see

the position of the other masses and the gravitational force

transfers the information among the different masses. The

heavy masses corresponds to good solution of the problem

and the different masses attracted by the heaviest mass

which would give optimum solution in the search space.

Other than these approaches an artificial neural network

algorithm is developed by Ohlsson et al. (2001) for SCP

based on the mean field feedback procedure. In this

approach inequality constraints are encoded in convenient

way using a multi-linear penalty function. They claimed

through computational results that their algorithm outper-

formed other approximate methods. Galinier and Hertz

(2007) developed three exact algorithms for large-scale

SCP. Cormode et al. (2010) presented an algorithm for

SCP using modern disk technology and they claimed

through computational experiments that their algorithm

finds good solutions for larger datasets.

Computational experience of different approximation

algorithms with the SCP were given in Grossman and

Wool (1997), Pardalos et al. (2006). In which the first paper

conducted a comparative study of nine different approxi-

mation algorithms for the SCP which includes greedy

variants, fractional relaxations, randomized algorithms and

a neural network algorithm. Through computational expe-

rience on random problems, they identified that the best

algorithm among those tested was a randomized greedy

algorithm, with the neural network algorithm which is very

close in second place. The second paper conducted an

empirical study of approximation algorithms of Vertex

Cover and the SCPs and produces their strengths, weak-

nesses, and operation. They have shown through compu-

tational experiments that the proven performance of all

tested algorithms that did not forecast the empirical

performance.

The following are the two problems, which are slightly

associated with set covering problem and for these

problems PSO based technique has been proposed. Zhan

et al. (2012) proposed a binary particle swarm optimization

(BPSO) approach to solve the disjoint set covers problem

(DSC) in the wireless sensor networks. The DSC problem

plays a vital role in sensor networks to increase the life

length of sensor nodes. The DSC problem is to divide the

sensor nodes into different disjoint sets and schedule them

to work one by one in order to save energy while at the

same time it should meet the full coverage, and the

objective is to maximize the number of disjoint sets.

Through simulation and computational results they claimed

that the BPSO technique performed well over other

approaches in maximizing the disjoint set covers. Moir-

angthem et al. (2012) proposed an approach based on PSO

to identify the break point set in directional loops and

multiloop settings and coordination of directional relays in

system protection. In this approach they have converted the

problem into set covering problem and then determined the

break point set using PSO based technique.

4 Algorithms considered

This section describes the algorithms that we consider for

the Set Covering problem: Ant_cover ? ls, an ACO based

approach by Ren et al. (2010); Meta-RaPS, a Meta-

heuristic by Lan et al. (2007); IGA, an indirect genetic

algorithm by Aickelin (2002) and finally the proposed

Jpso–scp algorithm based on the Jumping particle swarm

optimization.

4.1 Ant_cover 1 ls method

This Ant_cover ? ls approach to the SCP follows the

standard algorithmic scheme of Max–Min Ant system by

Stützle and Hoos (2000) with some new features. Strategies

used in this scheme include solution construction method,

heuristic scheme, phenomerone update rule and a local

search procedure. In the solution construction part each ant

starts with an empty solution and add columns iteratively

until all the rows are covered.

At a step t, an ant chooses column j from all the unse-

lected columns according to probabilistic state transition

rule. For this they must use all the possible combinations of

state transition rule with the number of columns, and due to

this factor its computational running time grows expo-

nentially. Some heuristic rules based on the Lagrangian

relaxation (Wolsey 1998) and local search approaches used

in order to reduce the running time and computational cost.

After running all the iterations, the best solution to date

represents the output of the method.
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4.2 Meta-RaPS method

This Meta-RaPS approach follows a meta-heuristic devel-

oped by Whitehouse et al. (2002). The main work of Meta-

RaPS is the use of randomness as a mechanism to avoid

local optima. At each iteration it constructs a feasible

solution through the utilization of construction heuristic in

randomized fashion, and then applies an improvement

heuristic to improve the feasible solution.

In the SCP construction heuristic, to select a column for

the feasible solution, a priority rule is applied. A greedy

score for each column is calculated using some parameter

and a column with lower greedy score gets highest priority.

After this to improve the solution quality an improvement

heuristic based on neighbourhood search procedure is

applied. To improve the computational speed a prepro-

cessing method and neighbor search procedure applied.

After a number of iterations a best solution is then reported.

4.3 IGA method

The IGA approach to the SCP is a self tuning genetic

algorithm and it solves the problem indirectly. This algo-

rithm differs from previous evolutionary approaches by

taking indirect route. This can be done by splitting the

search into three distinct phases. Initially, the genetic

algorithm finds permutations of the rows to be covered

along with suitable parameters for the second stage.

The second stage consists of a decoder that builds a

solution from the permutations using some provided

parameters. These procedures built only exploitable solu-

tions and the obtained solutions further fine tuned by hill-

climbing approach. Over all more complicated strategies

are applied to get an optimal solution.

4.4 Proposed Jpso–scp method

Even though repetitive advancements in computing, we are

to be very wondered by the variety and adaptability of the

natural world around us. Bio-inspired optimization and

computing techniques covers wide variety of computa-

tional approaches motivated from the application of biol-

ogy to optimization problems and is one of the major

subset of natural computation. Making the above statement

is worthy, a discrete PSO named Jpso–scp, based on the

Jumping particle swarm optimization proposed by Garcı́a

and Pérez (2008), is chosen to deal with the set covering

problem. The main interest of using this procedure is not

only due to its spirit of nature but also due to its simplicity,

easy implementation, low computational cost and time.

The procedure of the proposed Jpso–scp algorithm for

the SCP is as follows: a swarm S, containing n particles

(random solutions), in the JPSO procedure is considered

as initial position of the particles in Jpso–scp too. Parti-

cles position xi (at some iteration i) develop in the solution

space, jumping from one solution to another. By the effect

of some attractors, at each iteration each particle has a

random behaviour or random jumps. The position of a

particle encoded as a feasible solution to the SCP.

Movement of the particle i is influenced by three

attractors:

1. Its own best position to date (bi)

2. The best position of its social neighbourhood (gi)

3. The best position to date obtained by all the particles

which is called global best position (g*)

A jump towards the attractor based on the current

solution feature and the feature of the attractor and a ran-

dom jump is based on selecting at random feature of the

solution and changing its value. For the SCP, features of a

solution are the columns, covers maximum number of

rows, to be included in the solution. A particle performs a

jump with respect to the selected attractor means by ran-

domly adding some columns to its current position from

the selected attractor, or dropping some columns from its

current position that are not included in the attractor.

Pseudo-code of the Jpso–scp algorithm given in Algo-

rithm 4.41
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Description of the Jpso–scp follows:

Initial position of the swarm S are generated by using

the initial population algorithm given by Beasley and Chu

(1996). According to population based model, this is the

best choice for the initial positions of the swarm. Here xi
represent one random feasible solution. In the swarm

containing n particles (n random solutions), the ith particle

position xi is a 0–1 vector denoting which columns are

present in the particle i. Particles positions are updated in

every iteration. When considering the kth iteration, ith

particle obtain a new position xki from its previous position

xk�1
i by using the following update equation

xki ¼ c1x
k�1
i þ c2bi þ c3gi þ c4g�

i.e. position xki is obtained by making random moves from

its current position xk�1
i with probability c1, approaching
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jumps towards bi with probability c2, towards gi with

probability c3, or towards g* with probability

c4 = 1 - (c1 ? c2 ? c3). In the SCP, by giving equally

likely probability for each of the jumps, the values of c1, c2,

c3 and c4 are set to 0.25. i.e. a random number a between 0

and 1 is generated and if a belongs to 0; 0:25½ ½, the particle
perform a random jump from its current position xi.

Otherwise if a belongs to 0:25; 0:5½ ½, the movement of the

particle xi aiming towards the attractor bi. Instead, if a
belongs to 0:5; 0:75½ ½, the particle xi attractor is selected as

gi for its movement. For the remaining case, i.e. if a
belongs to 0:75; 1½ ½, g* is selected as attractor for the

movement of the particle xi.

When the ith particle making the jump towards the

selected attractor, the particle xi either drops some columns

from xi, or randomly adds some columns from the selected

attractor based on the procedure in Algorithm 4.41.1. In

this procedure to make the solution feasible, we make use

of the concept of heuristic feasibility operator (Beasley and

Chu 1996), which not only maintains the feasibility of the

solutions but also refines the solution towards the opti-

mality. Adding or dropping of some columns of xi in

Algorithm 4.41.1 make use of the following heuristic

procedure. In this procedure a random integer l is selected

between 0 and |xi|. Successively, it either drops some col-

umns from xi or adds some columns from selected attractor

until l columns have been added or deleted from the xi.

After this phase, the set of uncovered rows by xi are

updated. If it is identified, a greedy heuristic approach is

applied in order to maintain the feasibility of the solution.

i.e. for each uncovered row, correspondingly a column with

low cost ratio included and to maintain the optimality a

local optimization technique is applied to remove any

redundant columns in the solution.

Further to refine the updated solution, as a final phase of

the Jpso–scp, a local search procedure developed in Ren

et al. (2010), known to be best for SCP, is applied in order

to remove redundant columns from xi and replace them

with associated low cost columns that cover corresponding

rows at the same time that retaining the feasibility. i.e. this

procedure try to remove high cost first whenever it is

possible. The detailed description of this phase follows: For

each solution C constructed by Jpso–scp, let ni be the

number of columns covering a row i, i 2 I and it is C1

because of the feasibility of the solution. For each j 2 C, let

Rj = {i/ni = 1 8i 2 rj} be the set of rows only covered by

column j. If |Rj| = 0, it implies that column j is redundant

and it can be removed directly. On the other side if

|Rj| = l[ 0, there are l number of rows covered by column

j exclusively and in this case the cost of the column j is

compared with total cost of all the columns minCi, i 2 Rj

where minCi is the column with the minimal cost among all

the columns covering row i. If the cost of the column j is

greater, the column j is replaced by all the columns minCi.

After these add or drop phase of the columns to the solution

C, the value of ni is updated. As explained in Solar et al.

(2002), no operation is done when |Rj| C 3 because of less

improvement in the solution quality and the relatively high

computational cost, pseudo-code of this local search pro-

cedure given in the Algorithm 4.41.2.

5 Experimental studies

To test the performance of the proposed heuristic, it has

been evaluated experimentally on the 65 benchmark

instances of SCP from Beasley’s OR Library (Beasley

1990). These benchmark instances classified into 11 groups

depends on the number of instances, rows and columns and

density. Here density represents the number of non-zero

entries in the SCP matrix. This information is in the

Table 1 in detail. All the experiments were carried out on

Table 1 Brief summary of SCP test instances

Set No. of

instances

No. of

rows (m)

No. of

columns (n)

Cost interval Density

(%)

Maximum no.

of 1s per row

Problem

type

Optimal

solution

4 10 200 1000 [1, 100] 2 36 Random Known

5 10 200 2000 [1, 100] 2 60 Random Known

6 5 200 1000 [1, 100] 5 71 Random Known

A 5 300 3000 [1, 100] 2 81 Random Known

B 5 300 3000 [1, 100] 5 192 Random Known

C 5 400 4000 [1, 100] 2 105 Random Known

D 5 400 4000 [1, 100] 5 244 Random Known

NRE 5 500 5000 [1, 100] 10 124 Random Unknown

NRF 5 500 5000 [1, 100] 20 561 Random Unknown

NRG 5 1000 10,000 [1, 100] 2 266 Random Unknown

NRH 5 1000 10,000 [1, 100] 5 572 Random Unknown
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Table 2 Test results for each instance (mCPU = 500 s)

Inst. Opt. IGA Meta-RaPS Ant_cover ? ls Jpso–Scp

Oavg Tavg (s) Oavg Tavg (s) Oavg Tavg (s) Oavg Tavg (s)

4.1 429 429.0 1.62 429.0 0.07 429.0 0.02 429.0 0.01

4.2 512 512.0 2.23 512.0 0.15 512.0 0.04 512.0 0.02

4.3 516 516.0 2.13 516.0 0.26 516.0 0.12 516.0 0.06

4.4 494 494.0 2.14 494.0 0.83 494.0 0.57 494.0 0.17

4.5 512 512.0 2.38 512.0 0.10 512.0 0.04 512.0 0.04

4.6 560 560.0 2.54 560.0 0.23 560.0 0.10 560.0 0.04

4.7 430 430.0 1.66 430.0 0.08 430.0 0.02 430.0 0.01

4.8 492 492.0 2.02 492.0 0.07 492.0 0.03 492.0 0.01

4.9 641 641.0 2.21 641.0 0.57 641.0 0.32 641.0 0.17

4.10 514 514.0 1.85 514.0 0.12 514.0 0.04 514.0 0.02

5.1 253 253.0 2.29 253.0 0.52 253.0 0.29 253.0 0.17

5.2 302 302.0 2.34 302.0 1.32 302.0 0.76 302.0 0.35

5.3 226 226.0 2.09 226.0 0.08 226.0 0.05 226.0 0.02

5.4 242 242.0 2.18 242.0 0.07 242.0 0.03 242.0 0.01

5.5 211 211.0 1.57 211.0 0.04 211.0 0.02 211.0 0.01

5.6 213 213.0 1.78 213.0 0.09 213.0 0.02 213.0 0.01

5.7 293 293.0 2.12 293.0 0.06 293.0 0.03 293.0 0.01

5.8 288 288.0 2.33 288.0 0.04 288.0 0.02 288.0 0.01

5.9 279 279.0 2.20 279.0 0.21 279.0 0.07 279.0 0.02

5.10 265 265.0 2.02 265.0 0.10 265.0 0.04 265.0 0.02

6.1 138 138.0 2.65 138.0 0.68 138.0 0.33 138.0 0.18

6.2 146 146.0 2.76 146.0 0.10 146.0 0.05 146.0 0.02

6.3 145 145.0 2.94 145.0 0.32 145.0 0.19 145.0 0.08

6.4 131 131.0 2.53 131.0 0.09 131.0 0.03 131.0 0.01

6.5 161 161.0 2.97 161.0 0.48 161.0 0.26 161.0 0.12

A.1 253 253.3 4.00 253.0 2.08 253.0 1.28 253.0 0.98

A.2 252 252.2 4.14 252.0 1.96 252.0 1.23 252.0 0.81

A.3 232 232.4 4.13 232.0 1.75 232.8 0.96 232.0 0.53

A.4 234 234.7 4.06 234.0 0.37 234.0 0.18 234.0 0.04

A.5 236 236.8 4.08 236.0 0.86 236.0 0.56 236.0 0.23

B.1 69 69.0 6.21 69.0 0.38 69.0 0.15 69.0 0.06

B.2 76 76.0 6.32 76.0 0.49 76.0 0.17 76.0 0.07

B.3 80 80.0 6.66 80.0 0.38 80.0 0.10 80.0 0.03

B.4 79 79.0 6.45 79.0 0.39 79.0 0.18 79.0 0.03

B.5 72 72.0 6.13 72.0 0.11 72.0 0.04 72.0 0.01

C.1 227 227.1 7.62 227.4 1.34 227.0 0.75 227.0 0.43

C.2 219 219.3 7.15 219.3 1.04 219.0 0.53 219.0 0.21

C.3 243 243.2 8.93 243.1 3.85 243.0 2.01 243.2 0.98

C.4 219 219.3 8.91 219.2 1.03 219.0 0.43 219.0 0.15

C.5 215 215.2 7.73 215.3 1.21 215.0 0.49 215.0 0.20

D.1 60 60.0 8.32 60.0 1.23 60.0 0.56 60.0 0.23

D.2 66 66.0 9.43 66.0 0.96 66.0 0.35 66.0 0.16

D.3 72 72.0 9.34 72.0 2.00 72.0 1.04 72.0 0.56

D.4 62 62.0 9.85 62.0 2.12 62.0 1.32 62.0 0.69

D.5 61 61.0 8.20 61.0 1.07 61.0 0.49 61.0 0.18

NRE.1 29 29.8 18.86 29.2 0.75 29.0 0.27 29.0 0.11

NRE.2 30 31.6 20.32 30.3 3.28 30.0 2.14 30.0 1.06
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an Intel Pentium Core2 Duo Processor PC having 1.6 GHz

CPU and 1 GB RAM. All the procedures of the Jpso–scp

algorithm have been coded and implemented in MATLAB.

To carry out the effectiveness of the proposed Jpso–scp

algorithm, comparison made with the following three best

known methods of SCP:

• Ant_cover ? ls: ACO based approach by Ren et al.

(2010)

• Meta-RaPS: Meta-heuristic by Lan et al. (2007)

• IGA: Indirect Genetic Algorithm by Aickelin (2002)

The proposed Jpso–Scp approach is purely based on the

spirit of nature, so we wish to test our proposed approach

not only with the nature based approaches but also with a

well known meta-heuristic approach. In the above men-

tioned three algorithms first and third methods are nature

based technique and the second one is a meta-heuristic

approach. In the mean time, it is important to note that all

the four algorithms ran on the same platform.

A maximum CPU time allowed is chosen as the stop-

ping criterion for all the four algorithms. This criterion will

Table 2 continued

Inst. Opt. IGA Meta-RaPS Ant_cover ? ls Jpso–Scp

Oavg Tavg (s) Oavg Tavg (s) Oavg Tavg (s) Oavg Tavg (s)

NRE.3 27 28.9 18.46 27.4 3.14 27.0 2.00 27.0 1.10

NRE.4 28 29.5 20.73 28.2 2.87 28.0 1.56 28.0 0.76

NRE.5 28 29.4 20.64 28.1 1.04 28.0 0.34 28.0 0.12

NRF.1 14 14.8 27.16 14.1 1.92 14.0 0.78 14.0 0.32

NRF.2 15 15.7 22.67 15.2 1.24 15.0 0.52 15.0 0.21

NRF.3 14 14.4 28.45 14.3 3.03 14.0 1.14 14.0 0.86

NRF.4 14 14.6 23.67 14.0 3.27 14.0 1.23 14.0 0.75

NRF.5 13 14.2 22.67 13.8 6.23 13.5 4.78 13.0 2.95

NRG.1 176 177.1 30.12 176.3 15.70 176.0 12.12 176.0 6.15

NRG.2 154 156.3 27.66 154.8 18.66 155.1 14.64 155.0 7.18

NRG.3 166 167.3 30.34 166.7 23.62 167.3 18.56 167.2 8.96

NRG.4 168 169.5 27.84 168.6 20.73 168.9 15.62 168.2 9.72

NRG.5 168 169.3 27.12 168.7 15.77 168.1 11.72 168.0 6.23

NRH.1 63 64.1 61.12 63.8 39.64 64.0 34.65 64.0 15.24

NRH.2 63 67.6 51.13 63.9 28.73 63.9 25.83 63.0 11.86

NRH.3 59 59.8 65.19 59.6 36.94 59.4 29.68 59.2 13.67

NRH.4 58 59.7 60.66 58.8 35.63 58.7 26.82 58.3 14.83

NRH.5 55 55.8 68.87 55.6 18.73 55.0 14.73 55.0 6.53
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be useful for the direct comparison of all the algorithms

with respect to their quality of solution. It is denoted by

mCPU in the table.

For each test set, based on the density percentage, 100

SCP test instances are created. All the four algorithms ran

on these 100 instances, run for mCPU time and, in each

case, the best solution is recorded and the average objective

function value is noted.

Results obtained by all the four algorithms are shown in

the Table 2, in which first and second column represents

instances name and their corresponding best known solu-

tion or optimum objective function value, highlighted by

bold numbers, correspondingly the instances where the

proposed and compared algorithms reaches the optimal

solution are highlighted by bold numbers in their columns.

In columns three, four, five and six Oavg and Tavg(s) repre-

sents the average objective function value and average time

taken in seconds produced by each algorithm to find out the

best known solution. More over we identified that the

proposed algorithm found optimum solution for 60

instances out of 65 instances in all the 100 runs whereas

Ant-Cover ? ls found optimum for 55 out of 65 instances,

Meta-RaPS and IGA found optimum for 53 and 45

instances respectively. In at least one of 100 runs, our

proposed Jpso–scp algorithm found optimum solution for

all the 65 instances whereas it was 64, 63 and 60 for Ant-

Cover ? ls, Meta-RaPS and IGA respectively.

Further to identify the effectiveness of the proposed

algorithm, we have calculated the average of average time

taken for each set in the total of 11 set of instances and these

results are plotted in the Fig. 1. From this figure we can see

that, when compared to other algorithms, the proposed Jpso–

scp algorithm took very less average running time for all the

11 set of instances. Further we have calculated the per-

centage of mean deviation of the average optimum value

obtained by all the algorithms from the best known solution

or optimum solution using the relation {(Oavg -

Opt) 9 100}/Opt and the obtained results are plotted in

Fig. 2 and it indicates that the percentage of mean deviation

of average objective function value of Jpso–scp algorithm is

very small when compared to other three algorithms.

Further in order to confirm the effectiveness of the

proposed approach, we follow the rank based statistical

analysis; a similar analysis presented in Consoli et al.

(2010). For each data set, the ranks of the algorithm are

evaluated based on the following performance metric of an

algorithm. The performance of an algorithm is considered

as better than another one; if in a shortest computational

time it obtains either maximum average objective function

or an equal average objective function value. The algo-

rithm with best performance assigned with rank 1, rank 2 is

assigned to the second best one, and so on. The average

ranks of the algorithms among the considered set of

instances are IGA = 3.62; Meta-Raps = 2.85; Ant-cov-

er ? ls = 2.46 and Jpso–Scp = 1.29. These rank values

indicate that the performance of the Jpso–Scp is the best,

followed by Ant-cover ? ls, Meta-Raps and IGA. This

evaluation technique further confirms the superiority of the

Jpso–Scp over other compared heuristics.

To analyse the statistical significance of difference

between evaluated ranks, we make use of a statistical test for

comparison of algorithms. For more detailed study about

different tests on comparison of algorithms we can refer

(Demśar 2006; Hollander and Wolfe 1973) and the test

considered in this work is Nemenyi Post-hoc test (1963).

This test is very much useful to identify the performance of

two algorithms significantly differs or not. It considers the

performance of two algorithms that are significantly differ-

ent if their corresponding average ranks differ by at least a

specific threshold critical difference. Based on this test at

1 % level of significance the critical difference value is 1.05.

Table 3 shows that the difference between the average ranks

of the algorithms and these results enumerate that the

obtained values are greater than the critical difference when

other algorithms are compared with Jpso–scp approach.

These table values and the smallest rank of Jpso–Scp further

insists that the performance of Jpso–scp approach is the best

one for solving Set covering problem.

6 Conclusions

In this paper, a new JPSO based approach, Jpso–scp is

proposed for solving the set covering problem. This

approach finds best solution to SCP in three phases. In the

first phase an attractor is selected using row and column

cover conditions with low total cost and based on this

attractor a feasible solution is then constructed. This

Table 3 Pairwise difference

between the average ranks of

the algorithms

Algorithm (rank) Jpso–scp (1.29) Ant_cover ? ls (2.46) Meta-RaPS (2.85) IGA (3.62)

Jpso–scp (1.29) – 1.17 1.56 2.33

Ant_cover ? ls (2.46) – – 0.39 1.16

Meta-RaPS (2.85) – – – 0.77

IGA (3.62) – – – –

At 1 % level of significance, for the Nemenyi test, the critical difference value = 1.05
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feasiblity is refined for optimality in the second phase and

in the third phase redundant columns are removed. i.e. the

refined solution in the second phase has been refined fur-

ther in the third phase. This causes improved quality

solution with low computational cost. Extensive compu-

tational results show that this approach produces high

quality solution in very short running time. Comparison

with well known approaches of SCP yield that the pro-

posed Jpso–scp approach based on jumping discrete par-

ticle swarm optimization method get tremendous

appreciation in solving the SCP by outperforming those

approaches. Further, the simplicity, less computational cost

and very short running time of the proposed approach

imply that the jumping discrete particle swarm optimiza-

tion based approach is an attractive alternative approach for

hard combinatorial optimization problems.
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