
Evolution of new algorithms for the binary knapsack problem

Lucas Parada • Carlos Herrera • Mauricio Sepúlveda •

Vı́ctor Parada

Published online: 25 January 2015

� Springer Science+Business Media Dordrecht 2015

Abstract Due to its NP-hard nature, it is still difficult to

find an optimal solution for instances of the binary knap-

sack problem as small as 100 variables. In this paper, we

developed a three-level hyper-heuristic framework to

generate algorithms for the problem. From elementary

components and multiple sets of problem instances, algo-

rithms are generated. The best algorithms are selected to go

through a second step process, where they are evaluated

with problem instances that differ in size and difficulty.

The problem instances are generated according to methods

that are found in the literature. In all of the larger problem

instances, the generated algorithms have less than 1 %

error with respect to the optimal solution. Additionally,

generated algorithms are efficient, taking on average frac-

tions of a second to find a solution for any instance, with a

standard deviation of 1 s. In terms of structure, hyper-

heuristic algorithms are compact in size compared with

those in the literature, allowing an in-depth analysis of their

structure and their presentation to the scientific world.

Keywords Automatic generation of algorithms �
Combinatorial optimization � Evolutionary computation �

Genetic programming � Hyper-heuristic � Knapsack
problem

Abbreviations

BKP Binary knapsack problem

GP Genetic programming

GPC?? Genetic programming platform for evolving

tree structures of code

IKL In the knapsack list; data structure used by the

evolved algorithms

OKL Out of knapsack list; data structure used by the

evolved algorithms

UC Uncorrelated instance of the binary knapsack

problem

WC Weakly correlated instance of the binary

knapsack problem

SC Strongly correlated instance of the binary

knapsack problem

SS Subset sum instance of the binary knapsack

problem

FC Fitness cases i.e. problem instances of the

binary knapsack problem used to evolve

algorithms

1 Introduction

The search for efficient algorithms for combinatorial optimi-

zation problems is a central goal of research in the field of

optimization. Difficult problems arise from real-world situa-

tions in management and information systems. To address

such problems in general, some simplifications are made,

giving rise to theoretical problems that are difficult to solve

computationally because they belong to the NP-complete

L. Parada (&) � C. Herrera
Departamento de Ingenierı́a Industrial, Universidad de

Concepción, Calle Edmundo Larenas 215, Concepción, Chile

e-mail: lucasparada20@gmail.com; lucasparada@udec.cl

C. Herrera

e-mail: cherreral@udec.cl

M. Sepúlveda � V. Parada
Departamento de Ingenierı́a Informática, Universidad de

Santiago de Chile, Av. Ecuador 3659, Santiago, Chile

e-mail: mauricio.sepulveda@usach.cl

V. Parada

e-mail: victor.parada@usach.cl

123

Nat Comput (2016) 15:181–193

DOI 10.1007/s11047-015-9483-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9483-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-015-9483-8&domain=pdf

class of problems (Garey and Johnson 1979; Fortnow 2009).

In addition, each time a new theoretical problem is presented,

other real world problems also conform to its formulation.

Therefore, such theoretical problems can be considered as

fundamental problems. Techniques from integer and dynamic

programming have not been sufficient to find the optimal

solution with low computational time for many particular

problems, and there is growing evidence that specific heuris-

tics and meta-heuristics require low computational time. In

turn, the problem of finding the appropriate heuristic for a

problem, and more specifically for a subset of problem

instances, is a laborious task that requiresmany computational

experiments.

The binary knapsack problem (BKP) is a fundamental

problem in combinatorial optimization, and because it

belongs to the NP-hard class, the BKP has been extensively

studied (Martello and Toth 1990). The BKP can be defined

as an integer programming problem according to Eqs. (1–

3), where W[0 is the capacity of the knapsack and n is

the number of items available. The items have a profit

pj[0 and a weight wj[0, j = 1, 2, …, n. Furthermore, it

is assumed that pj, wj and W are integers.

Max Z ¼
Xn

j¼1

pjxj ð1Þ

Subject to:

Xn

j¼1

wjxj �W ð2Þ

xj 2 f0; 1g; j ¼ 1; 2; . . .; n ð3Þ

SinceG.Dantzig devised an approximate greedy algorithm

in 1954, various approaches from both the exact and

approximate worlds have been developed to address the BKP

(Pisinger 2005; Martello and Toth 1990). In recent years,

different approaches have been developed (Bienstock 2008;

Darehmiraki and Mishmast 2007; Kumar and Singh 2010;

Angelelli et al. 2010), including applications in the area of

DNA computing (Taghipour et al. 2013; Ye and Zhang 2013).

An interesting study on state of the art of the exactmethods for

the BKP was conducted by Pisinger (2005), revealing that the

problem is difficult to solve even for small problem instances.

Evolutionary computation is an increasingly popular

heuristic approach to solving difficult combinatorial opti-

mization problems, such as the BKP (Affenzeller et al.

2009). In particular, genetic programming (GP) generates

structures in the form of computer programs that auto-

matically create the solution method from some high-level

specification of the problem. From elementary instructions,

this technique develops code to solve various problems of

computer science and creates complex engineering struc-

tures such as electrical circuits, antennae and controllers

(Koza 1992; Koza et al. 2005). In the field of optimization,

Burke et al. (2010) proposed the concept of using hyper-

heuristics to solve optimization problems. The idea focuses

on searching the space of possible heuristics for a specific

optimization problem (Burke et al. 2003, 2010). Then, a

highly efficient method is built from elementary compo-

nents, which may also be known heuristics. However,

hyper-heuristics creates complex structures composed of

many different heuristics in each stage, and therefore it is

difficult to interpret them as algorithms for the problem at

hand.

In this paper, through evolutionary computation, algo-

rithms for BKP are generated. We interpret the generated

hyper-heuristics as algorithms because they are not a

concatenation of heuristics and they have an underlying

mode of operation that can be analyzed and extracted for

further research. These algorithms are sufficiently robust

for different types and sizes of problem instances because

they contain the basic operations that, combined with the

others, are capable of finding feasible solutions to the

problem. Unlike most of the existing approaches (Pisinger

2005), the problem is not solved in a move by move

fashion but using general criteria, including several sets of

moves. One advantage is that these algorithms can be

presented to the scientific community because their com-

pact size, along with their efficient and effective operation

that could generate new ideas for algorithms.

The paper is organized as follows. First, the algorithmic

generation process is described. Then, the ‘‘Modeling the

problem’’ section details the steps for generating algo-

rithms. We describe the evolutionary process by summa-

rizing GP, the data structures that support the algorithms,

the elemental components or building blocks of the algo-

rithms and the fitness function of the evolutionary algo-

rithm. The ‘‘Results’’ section presents the results of the

work in terms of generating critical variables that affect

computer performance and the robustness of algorithms

against large problem instances. The top three algorithms

are provided, including their pseudocode with a detailed

description of their composition and operation. Finally, in

the conclusions, we provide a summary of the main char-

acteristics of generating algorithms for the BKP.

2 The process of generating algorithms

Algorithms can be automatically developed by generating

hyper-heuristics that can be interpreted as algorithms.

Designing hyper-heuristics for combinatorial optimization

problems is a process consisting of three layers (Alinia

et al. 2012). The innermost layer is the problem to be

solved, defined by its mathematical formulation. In the case

of the BKP, it corresponds to the integer programming

182 L. Parada et al.

123

model (Eqs. 1–3). The middle layer consists of low-level

heuristics for determining approximate but feasible solu-

tions to the problem. Finally, the heuristics selection pro-

cess is at top level of the hyper-heuristic framework.

Addressing a different combinatorial problem most likely

requires a different set of heuristics, but the approach used

to select heuristics is only determined by the experimenter.

Moreover, correctly choosing this approach will determine

the scope of the study because the act of choosing a heu-

ristic or groups of heuristics is itself a combinatorial

problem. For example, Sabar et al. (2012) tested four

hyper-heuristics arbitrarily defined by the authors, while

Bilgin et al. (2012) tested all possible combinations of a set

of initially defined heuristics. Testing only a subset of

combinations may seem biased, but trying all possible

combinations is a brute force method to address a combi-

natorial problem. Another option would be to randomly

choose the appropriate heuristic for a particular move at

each stage of the search process (Demeester et al. 2012).

The heuristic selection process can be performed

through adaptive methods or meta-heuristics that search on

the solution space. The search process finds heuristics that

deliver the best option in every move according to some

performance measure (Rajni and Chana 2013; Garrido and

Castro 2012; Alinia et al. 2012). Of particular interest,

then, is evolutionary computation, the discipline concerned

with studying models and tools that use computers to

emulate the theory of evolution. Thus, an evolutionary

algorithm could search the space of heuristics. The

‘‘learning’’ of the evolutionary algorithm in the heuristic

search process generates hyper-heuristics with good results

in terms of both solution quality and computational effi-

ciency (Gómez and Terashima-Marı́n 2012; Burke et al.

2012; Ahmed et al. 2011). The hyper-heuristic approach

has been positioning itself as an interesting alternative to

address optimization problems; however, the act of

choosing a different heuristic at each stage of the search

process makes it difficult to generalize the resulting hyper-

heuristics to other combinatorial problems.

The current trend with hyper-heuristic is to further iso-

late each addressed problem by generating a specific

method for solving it. Actual hyper-heuristics are a con-

catenation of many problem-specific heuristics (Gómez

and Terashima-Marı́n 2012; Burke et al. 2012; Ahmed

et al. 2011). Then, the solution method can be thought of

one process consisting of many moves, where each move is

performed by a different heuristic which in turn, represents

different criteria for every move. If there is a unifying

theory of classical combinatorial optimization problems,

the search methods that particularize each problem solution

only serve to move in the opposite direction of that theory.

Additionally, such hyper-heuristics made by a concatena-

tion of many individual moves provide a small contribution

to obtaining a robust algorithm for the problem. Consider

the extreme situation where the framework determines that

every move will be made by a different heuristic. Then, for

a large instance of the problem, the hyper-heuristic will

have as many heuristics as moves needed to solve the

problem. The resulting solution method will look like a

large formula with no apparent structure behind it, other

than being greedy in every move. Few new algorithmic

ideas can be extracted from such a method.

Using high-level instructions and existing heuristics for the

BKP, hyper-heuristics interpretable as new algorithms can be

produced byGP. The goal of this technique is to automatically

design computer code for a problem given high-level defini-

tions. Populations of individuals ranked according to their

quality, evolve, guided by some evaluation function defined

by the experimenters using the GP operators. Individuals are

syntax trees that represent computer programs. The internal

nodes of a tree are algorithmic functions, while the leaf nodes

correspond to actions that are performed on the data structure

containing a solution for the BKP. The best individuals are

selected, crossed over and mutated (mutation could randomly

be shrink or subtree). Finally, to guide the search process, a

fitness function is used, which may include different criteria

associated with the product to obtain. When automatically

generating algorithms three key criteria should be considered:

the error of the algorithm when solving a set of instances, a

measure of its effectiveness in terms of the number of times an

optimal solution is found and its size measured in number of

nodes (Koza et al. 2005; Poli et al. 2008). The pseudocode of

GP is given next:

01 Initialize(Population(0));
02 generation = 0;
03 While(Stopping criteria == FALSE) do
04 Evaluate(Population(generation));
05 Parents = Select(Population(generation));
06 Children = ApplyEvolutiveOperators(Parents);
07 NewPopulation = Replace(Children,Population(generation));
08 generation++;
09 Population(generation) = NewPopulation
10 End While
11 Return BestSolutionFound;

This article aims to generate hyper-heuristics decodable

as algorithms by means of GP. We named this process the

automatic generation of algorithms. In this article, algo-

rithms for the BKP are automatically generated. In evolv-

ing these algorithms, GP is used and is charged with

selecting adequate functions and terminals for the BKP.

Figure 1 shows this process as a structured analysis and

design diagram. Specifically, Fig. 1a) shows the general

process in which the analyst defines the data structure (DS)

and the set of terminals (T) from their knowledge. Then, it

is integrated into the automatic process. Figure 1b) shows

the automated process implemented by the GP platform. In

this way, a new algorithm is generated after each

Binary knapsack problem 183

123

generation, and the process ends after k generations. In this

paper, we describe three highly efficient and robust algo-

rithms for the BKP generated by this methodology.

3 Modeling the problem

3.1 Genetic programing and the evolutionary process

This section describes the process for obtaining evolu-

tionary algorithms. The data structures are defined, and the

fitness function is presented along with the corresponding

sets of functions and terminals, which includes basic low-

level heuristics, that give rise to algorithms. Likewise, the

hardware and software features used are described.

The GP framework applied in our experiment derives

from the following processes. First, to evolve the algo-

rithms, a set of functions and terminals must be created.

Those two sets must contain the elemental components that

the algorithms will possess. When provided those defini-

tions, an initial population of syntax trees can be config-

ured and successively evolved in a sequence of future

generations using the evolutionary operators. From

generation to generation, individuals are selected according

to training problem instances (fitness cases) and a fitness

function specifically designed for the BKP. The syntax

trees are decoded in their corresponding algorithms (in

pseudocode) and are evaluated externally with evaluation

sets of problem instances (evaluation cases). Thus, the

construction of algorithms considers two stages: first, the

evolution occurs with sets of problem instances, with an

emphasis on improving the fitness of each algorithm. In the

second stage, the generated algorithms are evaluated with

evaluation cases.

To perform the evolutionary process, a computational

program that evolves syntax trees is used. The trees are sets

of instructions that can be executed following a predeter-

mined order. This task is accomplished with the platform

GPC?? (Fraser and Weinbrenner 1993). In order to

determine the most appropriate population size for gener-

ating algorithms, the following values were tested: 1,000,

2,000, 3,000, 4,000 and 5,000 individuals. To generate the

initial population, the ramped half and half method was

used, with crossover probabilities of 0.85 and 0.05 for the

mutation (0.03 and 0.02 for shrink and sub tree mutation,

respectively). Furthermore, it was established that 300

generations of the evolutionary algorithm would be the

stopping criterion. To ensure robustness to the randomness

inherent in the process, each execution of GPC?? was

repeated 30 times with different random seeds.

3.2 Data structures of the algorithms

The algorithms are supported on four data structures. The

IKL (IN THE KNAPSACK LIST) is defined as a list of

elements that are in the knapsack at a given time, while the

OKL (OUT OF KNAPSACK LIST) is the complement of

IKL, i.e., the list containing all potential elements for

inclusion in the knapsack. The third and fourth data

structures were defined according to theoretical BKP

results (Balas and Zemel 1980). We define a list called the

CORE LIST whose elements consist of the neighboring

items to the last one that fits in the backpack if these were

inserted one at a time, in decreasing order by the ratio pj/wj.

The CORE LIST elements can be inserted or removed from

the knapsack according to the criterion of the generated

algorithms. Similarly, we define the WEIGHT LIST,

whose elements consist of the neighboring items to the last

one that fits in the knapsack, if these were inserted one by

one, in decreasing order by their weight wj.

3.3 Function and terminals definition

The functions and terminals are the basic elements used to

influence the defined data structures (Koza et al. 1997; Poli

et al. 2008). The terminals are the leaf nodes of the tree and

Fig. 1 The process to automatically generate algorithms

184 L. Parada et al.

123

allow changes to the data structures of the problem. In our

case, the terminals are functions specially designed for the

BKP that select an element and insert or remove it from the

knapsack, according to some predefined criteria. Specifi-

cally, five insertion terminals and three deletion ones are

defined, each with a single criterion. The five insertions

have the following criteria for any item: maximum weight,

minimum weight, maximum profit, maximum profit/weight

ratio and being the first to fit in the knapsack. Along the

same lines, the three criteria for deleting items are the

following: maximum weight, minimum profit and profit/

weight. Each terminal checks the feasibility of its opera-

tion, i.e., a terminal operates if and only if the move is

feasible for the BKP. We define two additional terminals

that act as flags, i.e., no immediate action, but when called

upon, each flag indicates that the next operation on the data

structures must be performed on only a specific subset of

elements. Then, the terminal Set_Core indicates that the

next operation (insertion or deletion) must be performed on

an element of the CORE LIST. The Set_Weight terminal

operation is analogous to the Set_Core, but the former

operates with the WEIGHT LIST. Finally, each terminal

was designed to return an integer value to internally keep

track of the created algorithm. This integer value is also

taken as a logical variable. We adopted the convention that

a value of zero is false and a value greater than zero is true.

Thus, the insertion and deletion terminals return the value

that corresponds to the operated item number (true) or zero

in case no item was selected (false). The two terminals

designed as flags always return the value one (true).

The functions that shape the algorithms are control flow

statements typically found in most programming lan-

guages. They are While, And, Or, If_Then, Not and Equal.

As with the terminals, the functions were designed to return

integers, again using the convention that a value of zero

represents false, while any other value (integer greater than

zero) represents true. Thus, for P1 and P2, which may be

functions or terminals, there is While(P1,P2), which exe-

cutes the instruction P2 and returns the number of execu-

tions while P1 is true. This role is key in the generation of

algorithms because it allows grouping sets of instructions.

For the definition of the ‘‘While’’ and generally for all

functions presented here, P1 is not merely a typical stop-

ping criterion because it can now become a complex

structure integrated by several terminal and/or functions.

Likewise, P2 could also be a complex set of instructions.

This new definition of a ‘‘While’’ loop and other functions

can generate generalizable algorithms from different

combinatorial optimization problems. Then, If_Th-

en(P1,P2) executes P2 and returns its integer value if P1 is

true, while Not(P1) executes P1 and returns the logical

complement of the variable associated with the integer

value of P1. The function Equal(P1,P2) returns true if P1

and P2 return the same logical variables. Finally,

And(P1,P2) returns true if and only if P1 and P2 are true.

Each insertion or deletion terminal only searches

through the items for the largest or smallest value of a

given criteria. There is no need to sort them in the process,

although an argument can be made to previously sort the

items according to each different criterion and measuring

the efficiency of doing so. Then, the mixture of the ter-

minals with the different functions achieves a great deal of

work. For example, if only two nodes are needed to fill a

knapsack: While(P1,P2) plus any insertion terminal will

produce a full knapsack. Despite this, during preliminary

studies we found that without any control over the resulting

tree size, the algorithms could grow to hold thousands of

nodes. The maximum tree height was set at 14 levels in

depth, which is equivalent to having a tree with at most

32,767 nodes. Thus, stronger control over tree size was

necessary, as any algorithm with thousands of instructions

was impractical for our study. We set 14 nodes as the

target algorithm size because the studies showed that the

evolutionary process could generate good quality individ-

uals with that many nodes.

The logic behind the creation of the terminals and

functions consists of decomposing existing heuristics for

BKP into a set of basic moves over the data structure. Thus,

we can express the problem of finding an algorithm as

finding the set of correct moves that produces the highest

possible value of a number of performance measures

expressed as a fitness function. For example, in the BKP,

one basic move can be inserting one item into the knapsack

according to a given criteria, say the one with the highest

profit. Another basic move may consist of removing a

specific item from the knapsack according to another given

criteria, for example, the item with the highest weight. The

problem here lies in the fact that there may be an infinite

set of potential basic moves. Our terminals and functions

then attempt to develop a very small set of basic moves for

the BKP that are an effort to represent the inherent com-

binatorial nature of the problem.

3.4 The fitness function

The fitness function is responsible for guiding the search

process to find new algorithms and considers three criteria.

Those are (i) the error generated by a new algorithm to

solve a set of BKP instances regarding the optimal solution

(ii) the number of obtained solutions that happen to be

optimal (also named hits) and (iii) the algorithm size

measured by the number of nodes. Thus zj is the value

obtained when solving for instance j, and uj is the optimal

value of the objective function for this instance. Further-

more, nf is the number of problem instances, h is an integer

counter of the number of hits (optimal solutions or when

Binary knapsack problem 185

123

the solution is 0.001 % or less away from the optimal). la
the number of nodes of an algorithm, and a, b are

parameters that establish the importance of each term in the

fitness function. Moreover, let ta be the desired size for the

resulting algorithm measured by the number of nodes.

Then, a fitness fa algorithm is given by Eq. 4.

fa ¼
/
nf

Xnf

j¼1

juj � zjj
zj

þ b 1� /ð Þ 1� h

nf

� �
þ bð1�

/Þð ta � laj j
ta

Þ ð4Þ

4 Numerical results

4.1 Computational time required to evolve algorithms

Two critical factors that influence the computational time

when experimenting with the automatic generation of

algorithms are the size of the population and the size of the

individuals. Because evaluating a candidate heuristic

requires executing it on several test BKP instances, this

step is slow. Similarly because evaluations of an individual

consist of executing each instruction for a number of dif-

ferent problem instances, the greater the number of nodes

in a tree, the greater is the computational time required.

A preliminary study was performed that found that the

population size did not affect the resulting quality of the

algorithms, as measured by the number of optimal solu-

tions or hits. For each defined population size, GPC??

was executed 30 times using eight training instance with a

stopping criterion of 300 generations, obtaining a total of

150 algorithms. The primary difference was in the com-

putational time involved, as shown in Fig. 2. We detect

significant variability of times for different runs, which is

observed even among the 30 executions of the same pop-

ulation size. The times seem to have, at first glance, no

relation to the population size because, for example, there

are points (runs) for the population sizes of 2,000 and 3,000

with duration of more than 250,000 s, which is equivalent

to almost 4 days on the computer.

It is expected that the larger the population size, the

higher the duration of executions due to a greater number

of evaluations, selections and crossovers for each genera-

tion. However, in Fig. 2 it is observed that even within the

same population size, no relationship between the durations

of the runs appears. Observe, for example, the population

size of 1,000, whose points appear to be close together.

However, the output files of the platform show that the

fastest execution was 40 min, while the longest was more

than 10 h. Thus, in relation to the time of evolution, within

each population size, the execution times can be very short

or very long. A hypothesis was defined that stated that all

population sizes had the same average running time. This

hypothesis was rejected by ANOVA, indicating that there

are population sizes where the computational times are

indeed smaller on average. Consequently, we decided to

use the smaller size of 1,000 individuals per population.

A study was conducted to analyze the relationship

between the size of an algorithm, given by its number of

nodes, and its quality. It emerged that, without some con-

trol over the size, i.e. regardless of the term corresponding

to the number of nodes in Eq. 1, the resulting algorithms

can contain thousands of nodes; however, this number had

no great impact on quality. Thus, 14 nodes were deter-

mined to be the desired number of nodes for an algorithm.

4.2 Robustness of the generated algorithms

One factor that affects the runtime of automatically gen-

erating algorithms is the number of problem instances used

as fitness cases. Similar to the approach proposed to

address the size of the population, each population algo-

rithm must resolve all fitness cases through all generations.

Naturally, with a large number of fitness cases, greater

computational effort is necessary. In addition, it is impor-

tant that the generated algorithms maintain their perfor-

mance when processing the different fitness cases. This

study determines an arbitrary number of fitness cases, and

the robustness of algorithms is tested against large problem

instances of the BKP. To this end, two groups of problem

instances were obtained: 24 problem instances for evolu-

tion and 140 to evaluate the generated algorithms.

All problem instances were produced using a random

generator developed by Pisinger (2005). The generator is

Fig. 2 Computational time involved in the determination of an

arbitrary population size

186 L. Parada et al.

123

capable of producing different problem instances according

to different values of the pj/wj ratio. Depending on these

values, the problem instances can be classified into four

types: Uncorrelated (UC), Weakly Correlated (WC),

Strongly Correlated (SC) and Subset Sum (SS). Therefore,

24 fitness cases were generated, with 6 problem instances

of each type and 100 items in the knapsack for each. Fit-

ness cases were divided into five groups: FC8, FC12, FC16,

FC20 and FC24 with 8, 12, 16, 20 and 24 problem instances,

respectively. For example, FC8 consists of two problem

instances of each type, FC12 consists of three problem

instances of each type and so on. For each problem

instance, a defined upper bound was calculated by Martello

and Toth (1990). Because each execution of GPC?? was

repeated 30 times, the evolution with a set of fitness cases

generated 30 algorithms (the top 30 of each process) and a

total of 150 best algorithms for the five fitness cases. The

140 problem instances produced for the evaluation of

algorithms were divided into seven groups of 20 problem

instances called S100, S200, S500, S1,000, S2,000, S5,000 and

S10,000, where the sub index value indicates the number of

available items that can go in the knapsack. Each of these

sets contains five problem instances of the four groups: five

UC, five WC, five SC and five SS.

The produced algorithms significantly improved their

performance when evaluated with large problem instances.

However, there was no improvement in quality when using

more fitness cases for training, as shown in Tables 1 and 2.

Specifically, Table 1 lists the number of ‘‘hits’’ obtained by

the best algorithms. A hit is defined as a variation of less

than 0.001 % between the solution delivered by a gener-

ated algorithm and the best solution available for the

problem. Then, a maximum of 600 hits can occur in each

cell, the product of the 30 algorithms with 20 cases of

evaluation. The number of hits increases as one moves to

the right of the table, which indicates the robustness of the

algorithms for larger problem instances. This situation

occurs because an increase in the number of items involves

a greater number of favorable combinations that can gen-

erate a higher value in the objective function. Furthermore,

when analyzing the columns of Table 1, there is no

improvement in quality when using more fitness cases. In

any column, the number of hits has little variation in

relation to the total, a fact that is expressed by the low

standard deviation values.

The largest numbers of hits were obtained when evalu-

ating larger problem instances (10,000 items). In particular,

we highlight the 30 best algorithms obtained from 20 fit-

ness cases whose hits count reached 320 according to

Table 1. Table 2 presents the details of these algorithms,

where it can be observed that all algorithms are of high

quality and provided low relative errors with respect to the

optimal solution. Table 2 is read as follows: the columns

represent the four groups of problem instances, where each

group consists of five problem instances. The rows have the

30 best algorithms generated using 30 different seeds. They

are called KPA, as in ‘‘Knapsack Algorithm’’. For each

seed we obtain values that corresponding to the best

(nearest to the optimal) and the worst (furthest from the

optimal) solution and the average and standard deviation of

the relative error with respect to the optimal solution for

each group of five problem instances. For simplicity, the

relative error is shown as the difference measured in per-

centages. In addition, for each group, two columns are

included that analyze the existence of an optimal solution.

The column ‘‘hits’’ indicates, as in Table 1, that the solu-

tion in one of the five cases is at most 0.001 % away from

the available optimal solution. The column ‘‘aggregated

hits’’ sums all of the hits of the 30 evaluated algorithms. Of

particular interest is the last cell of this last column because

it shows the total number of optimal solutions within a

group, and thus, the sum of these four cells (one per group)

shows the total optimal solutions found by the 30 algo-

rithms. The relative errors for this group of algorithms and

problem instances as a whole are the lowest of the entire

study, with fractional values of the order of hundredths in

all cases.

4.3 Three of the best generated algorithms

Although many of the algorithms found have similar

characteristics and are of the same size and have a low

error in their fitness, in this section, we describe the three

best algorithms found, named KPA1, KPA5 and KPA13.

To clearly understand their functioning they are also pre-

sented in pseudocode. The algorithm becomes more read-

able once it is put in pseudocode. Readability is not only a

visual aid but contributes to understanding the solution

process followed by an algorithm. The difference com-

pared to a tree representation of instructions is that in the

pseudocode, the functions that operate only as connectors

between terminals can be dispensed, as occurs with func-

tions If_then, Not and Equal functions.

Table 1 Hits of the best 150 algorithms

S100 S200 S500 S1,000 S2,000 S5,000 S10,000

FC8 60 172 143 226 226 293 310

FC12 56 161 141 216 223 293 309

FC16 58 176 148 235 239 302 313

FC20 54 165 142 224 228 305 320

FC24 58 169 146 231 238 297 314

Average 57.2 168.6 144.0 226.4 230.8 298.0 313.2

SD 2.3 5.9 2.9 7.2 7.3 5.4 4.3

Binary knapsack problem 187

123

Table 2 Numerical results of algorithms evolved with 20 fitness cases and evaluated with S10,000

20/10000 items SC instances UC instances

Id. Average Worst Best SD Hits Agg. Hits Average Worst Best SD Hits Agg. Hits

% % % % % %

KPA1 0.00 0.00 0.00 0.00 5 5 0.01 0.02 0.00 0.00 0 0

KPA2 0.00 0.00 0.00 0.00 5 10 0.00 0.01 0.00 0.00 0 0

KPA3 0.00 0.00 0.00 0.00 5 15 0.00 0.01 0.00 0.00 0 0

KPA4 0.00 0.00 0.00 0.00 5 20 0.00 0.01 0.00 0.00 0 0

KPA5 0.00 0.00 0.00 0.00 5 25 0.00 0.01 0.00 0.00 0 0

KPA6 0.00 0.00 0.00 0.00 5 30 0.01 0.02 0.00 0.00 0 0

KPA7 0.00 0.00 0.00 0.00 5 35 0.01 0.02 0.00 0.00 0 0

KPA8 0.00 0.00 0.00 0.00 5 40 0.00 0.01 0.00 0.00 0 0

KPA9 0.00 0.00 0.00 0.00 5 45 0.00 0.01 0.00 0.00 0 0

KPA10 0.23 0.35 0.16 0.07 0 45 0.00 0.01 0.00 0.00 0 0

KPA11 0.00 0.00 0.00 0.00 5 50 0.00 0.01 0.00 0.00 0 0

KPA12 0.23 0.35 0.16 0.07 0 50 0.00 0.01 0.00 0.00 0 0

KPA13 0.00 0.00 0.00 0.00 5 55 0.00 0.01 0.00 0.00 0 0

KPA14 0.23 0.35 0.16 0.07 0 55 0.00 0.01 0.00 0.00 0 0

KPA15 0.23 0.35 0.16 0.07 0 55 0.00 0.01 0.00 0.00 0 0

KPA16 0.00 0.00 0.00 0.00 5 60 0.00 0.01 0.00 0.00 0 0

KPA17 0.00 0.00 0.00 0.00 5 65 0.00 0.01 0.00 0.00 0 0

KPA18 0.00 0.00 0.00 0.00 5 70 0.00 0.01 0.00 0.00 0 0

KPA19 0.00 0.00 0.00 0.00 5 75 0.00 0.01 0.00 0.00 0 0

KPA20 0.00 0.00 0.00 0.00 5 80 0.01 0.02 0.00 0.00 0 0

KPA21 0.23 0.35 0.16 0.07 0 80 0.00 0.01 0.00 0.00 0 0

KPA22 0.00 0.00 0.00 0.00 5 85 0.01 0.02 0.00 0.00 0 0

KPA23 0.00 0.00 0.00 0.00 5 90 0.01 0.02 0.00 0.00 0 0

KPA24 0.23 0.35 0.16 0.07 0 90 0.00 0.01 0.00 0.00 0 0

KPA25 0.06 0.12 0.03 0.04 0 90 0.00 0.01 0.00 0.00 1 1

KPA26 0.00 0.00 0.00 0.00 5 95 0.01 0.02 0.00 0.00 0 1

KPA27 0.00 0.00 0.00 0.00 5 100 0.01 0.02 0.00 0.00 0 1

KPA28 0.00 0.00 0.00 0.00 5 105 0.01 0.02 0.00 0.00 0 1

KPA29 0.13 0.18 0.07 0.05 0 105 0.02 0.06 0.00 0.03 0 1

KPA30 0.00 0.00 0.00 0.00 5 110 0.00 0.01 0.00 0.00 0 1

20/10000 items WC instances SS instances

Id. Average Worst Best SD Hits Agg. Hits Average Worst Best SD Hits Agg. Hits

% % % % % %

KPA1 0.02 0.07 0.00 0.03 2 2 0.00 0.00 0.00 0.00 5 5

KPA2 0.02 0.07 0.00 0.03 2 4 0.00 0.00 0.00 0.00 5 10

KPA3 0.02 0.07 0.00 0.03 2 6 0.00 0.00 0.00 0.00 5 15

KPA4 0.02 0.07 0.00 0.03 2 8 0.00 0.00 0.00 0.00 5 20

KPA5 0.02 0.07 0.00 0.03 2 10 0.00 0.00 0.00 0.00 5 25

KPA6 0.02 0.07 0.00 0.03 2 12 0.00 0.00 0.00 0.00 5 30

KPA7 0.02 0.07 0.00 0.03 2 14 0.00 0.00 0.00 0.00 5 35

KPA8 0.02 0.07 0.00 0.03 2 16 0.00 0.00 0.00 0.00 5 40

KPA9 0.02 0.07 0.00 0.03 2 18 0.00 0.00 0.00 0.00 5 45

KPA10 0.02 0.07 0.00 0.03 2 20 0.02 0.11 0.00 0.05 4 49

KPA11 0.02 0.07 0.00 0.03 2 22 0.00 0.00 0.00 0.00 5 54

KPA12 0.02 0.07 0.00 0.03 2 24 0.00 0.00 0.00 0.00 5 59

KPA13 0.02 0.07 0.00 0.03 2 26 0.00 0.00 0.00 0.00 5 64

188 L. Parada et al.

123

Although the three algorithms presented in this paper are

similar in terms of quality, KPA1 is the most complex in its

mode of operation due to a number of nested While loops

(Fig. 3). In fact, this algorithm has a singleWhile loopwhose

stopping condition is both branches 1 and 2, while branch 3

represents the block of instructions of the loop. Remarkably,

during the automatic generation of algorithms for the BKP,

any stopping criteria can also be a set of instructions to be

executed. In detail, in branch 1, the knapsack is filled

according to the pj/wj value of an item (two Add_Dantzig

terminals). As for algorithm 2 (KPA5), branches 2 and 3 of

this KPA1 also operate as a refinement of the solution. First,

an exchange is made between the item with the worst profit/

weight ratio and the one with the highest profit that is not in

the knapsack. The branch ends with the terminal Set_Core,

indicating that the first operation of branch 3 must be run

from the CORE LIST. Finally, in branch 3, an exchange is

made between the item in the knapsack that has the worst

profit and the element outside of the knapsack that has the

most profit. KPA1 starts with three hits with evaluation in

cases of 100 items and reaches 12 hits in the case of evalu-

ation with 10,000 items (See Table 3). This algorithm

obtained a total of 64 hits in the evaluation cases. The

pseudocode of KPA1 is given below.

Algorithm KPA1 from FC16

01 DEFINE Inst_size // the size of the instance is defined as an integer equal
to the number of items in the given instance.

02 n = 1
03 While (KP != FULL && KP != EMPTY && n <= Inst_size)
04 i = 1;
05 While (KP != FULL && KP != EMPTY && i <= Inst_size)
06 While (KP != FULL) Add_Dantzig;
07 j = 1;
08 While (KP != EMPTY && j <= Inst_size)
09 Del_Mindantzig;
10 Add_Maxprofit;
11 j++;
12 End While
13 Set_Core;
14 k = 1;
15 While (KP != EMPTY && n <= Inst_size)
16 Del_Minprofit;
17 Add_Maxprofit;
18 k++;
19 End While
20 i++;
21 End While
22 n++;
23 End While

Table 2 continued

20/10000 items WC instances SS instances

Id. Average Worst Best SD Hits Agg. Hits Average Worst Best SD Hits Agg. Hits

% % % % % %

KPA14 0.02 0.07 0.00 0.03 2 28 0.00 0.00 0.00 0.00 5 69

KPA15 0.02 0.07 0.00 0.03 2 30 0.00 0.00 0.00 0.00 5 74

KPA16 0.02 0.07 0.00 0.03 2 32 0.00 0.00 0.00 0.00 5 79

KPA17 0.02 0.07 0.00 0.03 2 34 0.00 0.00 0.00 0.00 5 84

KPA18 0.02 0.07 0.00 0.03 2 36 0.00 0.00 0.00 0.00 5 89

KPA19 0.02 0.07 0.00 0.03 2 38 0.00 0.00 0.00 0.00 5 94

KPA20 0.02 0.07 0.00 0.03 2 40 0.00 0.00 0.00 0.00 5 99

KPA21 0.02 0.07 0.00 0.03 2 42 0.00 0.00 0.00 0.00 5 104

KPA22 0.02 0.07 0.00 0.03 2 44 0.00 0.00 0.00 0.00 5 109

KPA23 0.02 0.07 0.00 0.03 2 46 0.00 0.00 0.00 0.00 5 114

KPA24 0.02 0.07 0.00 0.03 2 48 0.00 0.00 0.00 0.00 5 119

KPA25 0.02 0.07 0.00 0.03 2 50 0.00 0.00 0.00 0.00 5 124

KPA26 0.02 0.07 0.00 0.03 2 52 0.00 0.00 0.00 0.00 5 129

KPA27 0.02 0.07 0.00 0.03 2 54 0.00 0.00 0.00 0.00 5 134

KPA28 0.02 0.07 0.00 0.03 2 56 0.00 0.00 0.00 0.00 5 139

KPA29 0.02 0.10 0.00 0.04 2 58 0.00 0.00 0.00 0.00 5 144

KPA30 0.02 0.07 0.00 0.03 2 60 0.00 0.00 0.00 0.00 5 149

Fig. 3 Algorithm KPA1 evolved from 16 fitness cases

Binary knapsack problem 189

123

The pseudocode of KPA1 shows how versatile the

automatic generation of algorithms for the BKP is. The

structure of this algorithm is more complex than the other

two, but its effectiveness in resolving problem instances is

as high as the other two. The highlights of KPA1 are the

While loops in lines 03 and 05 because both have three

possible stopping conditions. Unless the type of problem

instance to be solved is known, which implies an approx-

imate knowledge about the profit/weight ratio of the items

in the BKP, it is not possible to anticipate how the first two

loops in KPA1 will end, which indicates that KPA1 oper-

ates differently for different types of problem instances.

Algorithms adaptable to different types of problem

instances are robust and generalizable to other instances.

These features are highly desirable and are precisely what

is sought when automatically generating a solution method.

With a total of 64 hits considering all evaluation cases

from the 12 fitness training cases (FC12), KPA5 is the

second-best algorithm obtained according to the criterion

of the number of hits. The structure of this second algo-

rithm is presented in Fig. 4. The algorithm is divided into

three branches to facilitate understanding. In branch 1, the

knapsack is filled. Before this filling, KPA5 invokes the

terminal Set_Weight, which states that the first element

must be obtained from the WEIGHT LIST. Then, it goes to

the While loop that iterates until the terminal T_True

returns false. Thus, the cycle will continue until it meets

one of the following two conditions: no more elements can

be inserted into the knapsack (Add_Dantzig terminal con-

dition) or it calls a terminal Add_Dantzig n times, where

n equals the total number of possible items to be inserted

into the knapsack. Trivially, the first condition met will be

the capacity of the knapsack, leaving branch 1 with a

knapsack filled according to the criterion of item effi-

ciency. To continue to operate on the various data struc-

tures of the knapsack, an item should be removed to thus

‘‘make room’’ for potential items that were not considered

and that could lead to a better solution.

KPA5 can be viewed as a refined Dantzig’s algorithm

because branch 1 corresponds with this algorithm while

branches 2 and 3 refine and improve the search process

through the insertion and removal of elements according to

different criteria. In branch 2, removing items is performed

through the terminal Del_Maxweight, i.e., the item with the

largest weight is removed from the knapsack to make room to

insert the item with the greatest profit (Add_Maxprofit).

Finally, branch 3 has a refining process; it exchanges the item

with the worst profit/weight for the one with the most weight.

In terms of hits, KPA5 finds five optimal results when eval-

uating100 items from the knapsack; that number increases to

12 hits with problem instances of 10000 items (See Table 3).

Overall, branch 2 hasmore influence on the final solution than

branch 3 because branch 3 only performs one exchange of

items of the BKP. Furthermore, a priori one cannot say if this

exchange is for better or worse, i.e., the exchange in branch 3

only improves the solution if the item being inserted has a

higher profit than the item coming out of the knapsack, which

in turn depends on the type of problem instance.

Similar to KPA1, being able to dispense of the functions

Equal, Not and Or increases the readability of the algo-

rithm KPA5, as in the pseudocode given below.

Algorithm KPA5 from FC12

01 DEFINE Inst_size // the size of the instance is defined as an integer equal to
the number of items in the given instance.

02 Set_Weight;
03 While (KP != FULL) Add_Dantzig;
04 n = 1;
05 While (KP != EMPTY && n <= Inst_size)
06 Del_Maxweight;
07 Add_Maxprofit;
08 n++;
09 End While
10 Del_Mindantzig;
11 Add_Maxweight;

Table 3 Hits of the best three algorithms compared to their peers

S100 S200 S500 S1,000 S2,000 S5,000 S10,000

KPA13 4 9 7 12 10 12 12

KPA5 3 7 7 12 11 12 12

KPA1 3 7 7 12 11 12 12

Average 1.90 6.52 4.76 7.51 7.53 9.80 10.33

SD 0.75 1.23 0.81 2.53 1.91 2.22 2.45

Fig. 4 Algorithm KPA5

evolved from 12 fitness cases

190 L. Parada et al.

123

With 66 hits from eight training problem instances

(FC8), KPA13 is the best algorithm found (Fig. 5). Its

method of operation is relatively trivial; KPA13 is divided

into three branches distinguished by a circled number next

to the branch. First, in branch 1, it inserts the first item into

the knapsack according to the minimum weight criteria.

This item is obtained from the CORE LIST because the

terminal Set_Core was called. Then, in branch 2, it pro-

ceeds to fill the knapsack through a While loop whose

insertion terminal is Add_Dantzig. In other words, the

knapsack is filled according to the profit/weight ratio of

each item in decreasing order. Finally, in branch 3, an

‘‘adjustment’’ is made to the current solution, eliminating

those items with the worst profit/weight ratio (Del_Min-

dantzig) and inserting those with the highest weight

(Add_Maxweight). The mode of operation of KPA13 can

be observed as a three-stage process: pretreating the data,

filling the knapsack and refining the solution. These stages

can be found in most of the best algorithms generated.

Figure 5 shows that there are algorithmic structures and

sub nodes that are redundant, in the sense that they do not

alter the various data structures. For example, in branch 1,

there are two terminals that trigger the CORE LIST, but

only one of them is sufficient. Unless they are succeeded by

a terminal of insertion or deletion, Set_Core has no effect.

Another example is the Not function, also in branch 1.

Because it is in a nested Equal that in turn belongs to an

And, it does not matter whether the structure

Not(Add_Minweight) is true or false. The pseudocode of

KPA13 is given below.

To write KPA13 in pseudocode, first we define an

integer corresponding to the size of the problem instance.

This number will act as a stopping criterion for the defined

While cycles. However, this condition is only valid in the

cycle of line 06. In line 04, the loop will only end due to

knapsack capacity because BKP instances have a much

larger number of items than can fit in the knapsack. For the

cycle in line 06, both conditions are required because we

cannot anticipate which will be met first; it depends on the

problem at hand.

Algorithm KPA13 from FC8

01 DEFINE Inst_size // the size of the instance is defined as an integer equal
to the number of items in the given instance.
02 Set_Core;
03 Add_Minweight;
04 While (KP != FULL) Add_Dantzig;
05 n = 1;
06 While (KP != EMPTY && n <= Inst_size)
07 Del_Mindantzig;
08 Add_Maxweight;
09 n++;
10 End While

Because the total number of evaluation cases is 140,

KPA5 has a difference of merely two hits fewer than

KPA13. This suggests that the two have virtually the same

quality. By analyzing both pseudocodes with regard to the

similarities, there are two While loops, and their underlying

objectives are as follows: First, fill the knapsack and then

refine the solution. The differences are the various termi-

nals that that the algorithms use. For example, the KPA13

refinement is performed with the instructions Del_Min-

dantzig—Add_Maxweight, while KPA5 employs

Del_Maxweight—Add_Maxprofit to perform the same task.

To analyze how ‘‘good’’ these three algorithms are in

relation to their peers, Table 3 is presented. Table 3 has the

number of hits obtained by the previous three algorithms in

its first three rows, shown with different cases of evaluation

from S100 to S10,000. The fourth and fifth rows reflect data

from the rest of the 147 best algorithms obtained in the

study. The average row indicates the average number of

hits obtained by the rest of the algorithms, while the SD

row is the standard deviation of the recorded average val-

ues, fulfilling the function of a complementary measure of

dispersion. It is observed that the three best algorithms

outperform the average for each case of adaptation. Fur-

thermore, each of these three best algorithms exceeds the

total of the average by over 10 hits (adding each row to the

right). Because the average of the algorithms reaches a

total of 51 hits (rounded up to the nearest integer), the

difference of more than 10 hits means that each of the three

best algorithms is at least 20 % better than average.

The 150 algorithms generated during the evolutionary

process solved the 140 problem instances with low com-

putational time. The time required for all 21,000 evaluation

executions (150 times 140) was 1 h and 58 min (approxi-

mately 7,132 s). Thus, for each evaluation, on average,

0.34 s were required per instance and algorithm, with a

standard deviation of 1 s. The highest times were 10 min

when solving some 10,000 item problem instances but for

only a limited number of algorithms. For the vast majority,

however, the time required was only fractions of a

millisecond.

Fig. 5 Algorithm KPA13 evolved from 8 fitness cases

Binary knapsack problem 191

123

5 Discussion

Of the three algorithms presented, there are important

perspectives to highlight. For example, inserting elements

into the knapsack is always carried out according to the

profit/weight ratio in descending order using our

Add_Dantzig terminal, which indicates that of the five

insertion terminals, Add_Dantzig was always privileged by

evolution over its peers. This aspect is not minor for the

automatic generation of algorithms for the BKP because

the algorithms can also refine the solution in addition to

inserting any item. While the refining process sometimes

totally changes the initial solution generated by the initial

insertion of elements, it is preferable that the items be

inserted appropriately. In other words, the initial order or

arrangement of the elements in the knapsack does matter

for generating quality solutions. Therefore, the structure

While(Add_Dantzig) can be regarded as a successful

structure for GP because it is present in the best algorithms.

Another result of analysis comes from the exploitation of

the terminals used. Given that the best algorithms have

repeated terminals that do not contribute to the solution of

the BKP, the imposed number of 14 terminals is still high.

Algorithms can obtain similar quality with fewer nodes,

facilitating monitoring the operation of the algorithms.

When analyzing the pseudocodes shown, the algorithms

could operate differently when tested with different prob-

lem instances, which was the result of the different stop-

ping conditions in the While loops of the generated

algorithms. Specifically, in KPA1, the pseudocode has

loops where it was not possible to anticipate the end. Thus,

in general, when generated algorithms contain multiple

nested While loops, the mode of operation depends on the

type of problem instance to be solved, which is an evidence

of algorithms that can adapt to different types of problem

instances.

With the definition of functions and terminals designed

specifically for this automatic generation algorithm, the

hyper-heuristic is more compact than that found in the

current literature (Burke et al. 2010), because the approach

can generate an integrated solution method, which solves

the problem as a whole and not ‘‘move by move’’. Some

current hyper-heuristics are a concatenation of heuristics

where nearly every movement is performed with a different

heuristic. While they have good performance in computing,

hyper-heuristics such as those just mentioned are specific

to a problem, and their generalization to other problems of

a different nature is not trivial.

The comparison between generated algorithms with

state of the art methods is expressed through the error

obtained when solving a set of evaluation instances. This is

because the error is measured using the best known

solution given by the best algorithm in the state of the art.

For the larger instances such error was less than 1 %.

6 Conclusions

In this study, automatically generated algorithms for the

BKP are presented. Such algorithms are generated from

evolutionary computation, specifically GP. The process

follows a hyper-heuristic framework that considers three

levels that travel from the innermost layer, the solutions to

the BKP, through low-order heuristics that operate on the

data structures of the BKP, to the outermost layer, where an

evolutionary algorithm creates an algorithm for the BKP.

The results of the study indicated that the algorithms

have high computational efficiency and effectiveness in the

sense that they rapidly find a solution for each problem

instance of the BKP and find a near optimal solution for

such problem instances. The tables of results indicate that

the algorithms are robust to larger problem instances, i.e.,

maintaining or improving their performance, but that there

is no improvement in quality resulting from the training of

the algorithms with more fitness cases. Furthermore, the

control of parameters of interest such as the population size

and the size of the algorithm reduces the computational

effort involved, making the process more efficient as a

whole. Regarding the structure of the algorithms, we

observed that these do not contain all of the terminals and

functions defined in the experiment, which indicates that

some components are privileged over others by GP. In

addition, within the algorithms, we detected three clearly

defined processes, which are pretreating the data, filling the

knapsack and refining the solution. In the top three algo-

rithms, the knapsack is always filled with the Add_Dantzig

terminal within a While loop. The pre-treatment and

refinement of the knapsack consist of exchanging BKP

items according to different criteria that GP favored.

Although the results of this study are promising addi-

tional research should be conducted to verify if efficient,

effective and robust algorithms also emerge for other

combinatorial optimization problems. Since every algo-

rithm starts its operation with an empty initial solution, the

resulting algorithms are the combination between con-

structive and refinement terminals. If a feasible initial

solution is always considered then the refinement terminals

become more relevant and different algorithmic structures

can be explored. In particular, structures corresponding to

metaheuristics. Further research in this field would allow to

study the automatic generation of metaheuristics.

Acknowledgments The authors would like to thank the Complex

Engineering Systems Institute ICM: P-05-004-F, CONICYT: FBO16,

192 L. Parada et al.

123

DICYT: 61219-USACH, ECOS/CONICYT: C13E04, STICAMSUD:

13STIC-05.

References

Affenzeller M, Winkler S, Wagner S, Beham A (2009) Genetic

algorithms and genetic programming: modern concepts and

practical applications, 1st edn. CRC, Chapman and Hall

Ahmed A, Shaikh AW, Ali M et al (2011) Hyper-heuristic approach

for solving scheduling problem: a case study. Aust J Basic Appl

Sci 5(9):190–199

Alinia A, Vakil B, Badamchi Z et al (2012) Hybrid particle swarm

optimization transplanted into a hyper-heuristic structure for

solving examination timetabling problem. Swarm Evol Comput

7:21–34. doi:10.1016/j.swevo.2012.06.004

Angelelli E, Mansini R, Grazia S (2010) Kernel search: a general

heuristic for the multi-dimensional knapsack problem. Comput

Oper Res 37(11):2017–2026

Balas E, Zemel E (1980) An algorithm for large zero-one knapsack

problems. Oper Res 28(5):1130–1154

Bienstock D (2008) Approximate formulations for 0-1 knapsack sets.

Oper Res Lett 36(3):317–320

Bilgin B, Demeester P, Misir M et al (2012) One hyper-heuristic

approach to two timetabling problems in health care. J Heuristics

18(3):401–434. doi:10.1007/s10732-011-9192-0

Burke E, Kendall G, Newall J et al (2003) Hyper-heuristics: an

emerging direction in modern search technology. Handbook of

metaheuristics, pp 457–474

Burke E, Hyde M, Kendall G et al (2010) A classification of hyper-

heuristic approaches. In: Handbook of metaheuristics (interna-

tional series in operations research & management science, vol

146). Nottingham, UK, pp 449–468

Burke E, Hyde M, Kendall G et al (2012) Automating the packing

heuristic design process with genetic programming. Evol Com-

put 20(1):63–89. doi:10.1162/EVCO_a_00044

Darehmiraki M, Mishmast N (2007) Molecular solution to the 0–1

knapsack problem based on DNA computing. Appl Math

Comput 187(2):1033–1037

Demeester P, Bilgin B, De Causmaecker P et al (2012) A

hyperheuristic approach to examination timetabling problems:

benchmarks and a new problem from practice. J Sched

15(1):83–103. doi:10.1007/s10951-011-0258-5

Fortnow L (2009) The status of the P versus NP problem. Commun

ACM 52(9):78–86

Fraser A, Weinbrenner T (1993) GPC??-genetic programming C??

class library. [Online]. ftp://cs.bham.ac.uk/pub/authors/W.B.

Langdon/weinbenner/gp.html. Accessed 17 Dec 2013

Garey M, Johnson D (1979) Computers and intractability. A guide to

the theory of NP-completeness. A series of books in the

mathematical sciences. WH Freeman and Company, San Fran-

cisco, Calif

Garrido P, Castro C (2012) A flexible and adaptive hyper-heuristic

approach for (dynamic) capacitated vehicle routing problems.

Fundam Inform 119(1):29–60. doi:10.3233/FI-2012-726

Gómez JC, Terashima-Marı́n H (2012) Building general hyper-

heuristics for multi-objective cutting stock problems. Computa-

cion y Sistemas 16(3):321–334

Koza J (1992) Genetic programming: on the programming of

computers by means of natural selection. The MIT press,

Massachusetts

Koza J, Bennett F, Andre D et al (1997) Automated synthesis of

analog electrical circuits by means of genetic programming.

IEEE Trans Evol Comput 1(2):109–128. doi:10.1109/4235.

687879

Koza J, Keane M, Streeter M, Mydlowec W, Yu J, Lanza G (2005)

Genetic programming IV: routine human-competitive machine

intelligence. Kluwer Academic Publishers, Norwell

Kumar R, Singh P (2010) Assessing solution quality of biobjective

0–1 knapsack problem using evolutionary and heuristic algo-

rithms. Appl Soft Comput 10(3):711–718

Martello S, Toth P (1990). Knapsack problems: algorithms and

computer implementations (revised). University of Bologna,

Bologna, Italy

Pisinger D (2005) Where are the hard knapsack problems? Comput

Oper Res 32(9):2271–2284

Poli R, Langdon W, McPhee N (2008) A field guide to genetic

programming. Published via http://lulu.com and freely available

at http://www.gp-field-guide.org.uk

Rajni A, Chana I (2013) Bacterial foraging based hyper-heuristic for

resource scheduling in grid computing. Future Gener Comput

Syst 29(3):751–762. doi:10.1016/j.future.2012.09.005

Sabar N, Ayob M, Qu R et al (2012) A graph coloring constructive

hyper-heuristic for examination timetabling problems. Appl

Intell 37(1):1–11. doi:10.1007/s10489-011-0309-9

Taghipour H, Rezaei M, Esmaili H (2013) Solving the 0/1 knapsack

problem by a biomolecular DNA computer. Advances in

bioinformatics

Ye L, Zhang M (2013) Solutions to the 0-1 knapsack problem based

on DNA encoding and computing method. J Comput 8(3):669–

675

Binary knapsack problem 193

123

http://dx.doi.org/10.1016/j.swevo.2012.06.004
http://dx.doi.org/10.1007/s10732-011-9192-0
http://dx.doi.org/10.1162/EVCO_a_00044
http://dx.doi.org/10.1007/s10951-011-0258-5
ftp://cs.bham.ac.uk/pub/authors/W.B.Langdon/weinbenner/gp.html
ftp://cs.bham.ac.uk/pub/authors/W.B.Langdon/weinbenner/gp.html
http://dx.doi.org/10.3233/FI-2012-726
http://dx.doi.org/10.1109/4235.687879
http://dx.doi.org/10.1109/4235.687879
http://lulu.com
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1016/j.future.2012.09.005
http://dx.doi.org/10.1007/s10489-011-0309-9

	Evolution of new algorithms for the binary knapsack problem
	Abstract
	Introduction
	The process of generating algorithms
	Modeling the problem
	Genetic programing and the evolutionary process
	Data structures of the algorithms
	Function and terminals definition
	The fitness function

	Numerical results
	Computational time required to evolve algorithms
	Robustness of the generated algorithms
	Three of the best generated algorithms

	Discussion
	Conclusions
	Acknowledgments
	References

