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Abstract RAF theory has been established as a useful

and formal framework for studying the emergence and

evolution of autocatalytic sets. Here, we present several

new and additional results on RAF sets. In particular, we

investigate in more detail the existence, expected sizes, and

composition of the smallest possible, or irreducible, RAF

sets. Furthermore, we study a more realistic variant of the

well-known binary polymer model in which the catalysis

events are assigned according to a power law distribution.

Together, these results provide further insights into the

existence and structure of autocatalytic sets in simple

models of chemical reaction systems, with possible

implications for theories on the origin of life.

1 Introduction

RAF theory has been established as a useful and formal

framework for studying the emergence and evolution of

autocatalytic sets (Steel 2000; Hordijk and Steel 2004,

2012a, 2012b, 2013;; Mossel and Steel 2005; Hordijk et al.

2011, 2012; Steel et al. 2013; Hordijk et al. 2014; Smith

et al. 2014), motivated by questions in the context of the

origin of life (Hordijk et al. 2010; Hordijk 2013;2013).

Here, we present additional and more detailed results on

RAF theory, in particular on various aspects of so-called

irreducible RAF sets, and on a more realistic variant of the

original binary polymer model for chemical reaction

systems.

In Steel et al. (2013) several theoretical results were

established on the (expected) sizes of the smallest, or

irreducible, autocatalytic (RAF) sets and the intractability

of actually finding them. Some preliminary computational

results were included as well to support the theoretical

claims. In this paper, we investigate irreducible RAF sets in

more detail and present various additional computational

results. This provides useful empirical insights into the

existence, expected sizes, and composition of the smallest

possible RAF sets.

These investigations are done using the well-known

binary polymer model (Kauffman 1986, 1993). This model

is sometimes criticized for a lack of chemical realism.

However, there exist experimental systems in which the

spontaneous emergence of autocatalytic sets has been

shown or postulated, and which are basically a ‘‘chemical

implementation’’ of (some variant of) the polymer model

(Taran et al. 2010; Vaidya et al. 2012). In fact, such

experimental systems can be modeled very accurately and

efficiently using RAF theory (Hordijk and Steel 2013).

Moreover, chemically more realistic assumption can be

easily built into the binary polymer model, such as tem-

plate-based catalysis (Hordijk et al. 2011; Hordijk and

Steel 2012b; Hordijk et al. 2014). In this paper, we intro-

duce and investigate another chemically more realistic
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variant of the binary polymer model, one in which catalysis

is assigned according to a power law distribution, a sig-

nature characteristic of ‘‘real-world’’ networks. We show

that incorporating this assumption does not change the

overall results of the standard model in terms of the exis-

tence of autocatalytic sets. In fact, in this more realistic

model variant RAF sets may be even more likely to

emerge.

This paper is organized as follows. The next section

provides a brief review of RAF theory and the binary

polymer model. Section 3 then presents the results of

investigating irreducible RAFs in more detail, while

Sect. 4 presents the results of using the binary polymer

model with power law distributed catalysis. Finally, Sect. 5

summarizes the main conclusions and suggests possible

consequences for the role autocatalytic sets may have had

in the origin and early evolution of life.

2 RAF theory

RAF theory is based on the original notion of autocatalytic

sets as introduced by Kauffman (1971, 1986, 1993), in an

attempt to formalize the idea of life as a functionally closed

and self-sustaining chemical reaction system. This notion

of autocatalytic sets is closely related to other such models

and ideas (Gánti 2003; Eigen and Schuster 1979; Maturana

and Varela 1980; Dyson 1985), and they are believed to

have played a crucial role in the origin of life (Kauffman

1993; Hordijk et al. 2010, 2013; Hordijk 2013).

First, we define a chemical reaction system (CRS) as a

tuple Q ¼ fX;R;Cg consisting of a set of molecule types

X, a set of (possible or allowed) chemical reactions R, and

a catalysis set C indicating which molecule types can

catalyze which reactions. Next, a food set F � X is defined

as a subset of molecule types that are assumed to be freely

available from the environment (i.e., they do not neces-

sarily have to be produced by any of the reactions in R).

Finally, an autocatalytic set (or RAF set) is now informally

defined as a subset R0 � R of reactions (and associated

molecule types) which is:

1. reflexively autocatalytic (RA): each reaction r 2 R0 is

catalyzed by at least one molecule type involved in R0,
and

2. food-generated (F): all reactants in R0 can be created

from the food set F by using a series of reactions only

from R0 itself.

The first (RA) part of this definition captures the func-

tionally closed property mentioned above, and the second

(F) part captures the self-sustaining property. A more for-

mal definition of RAF sets is provided in Hordijk and Steel

(2004), Hordijk et al. (2011), including an efficient

(polynomial-time) algorithm for finding such sets in any

(arbitrary) CRS. This RAF algorithm returns the union of

all RAF (sub)sets that exist within a given CRS, or the

empty set if the CRS does not contain any RAF set.

As a simple model of a CRS, we use the binary polymer

model (Kauffman 1986, 1993). In this model, molecule

types are represented by bit strings up to a certain length n,

with the food set made up of bit strings up to a given small

length t (e.g., t ¼ 2). The possible reactions are ligation

(concatenating two bit strings into one larger one) and

cleavage (cutting a bit string into two smaller ones).

Finally, the catalysis events are assigned at random, with a

given probably p that a molecule x 2 X catalyzes a reaction

r 2 R. The idea behind modeling catalysis randomly is that,

in general, little is known about it, and as with chemical

reactions, predicting catalysis is a hard problem (Kayala

et al. 2011). This model has been used in other, related,

computational studies on autocatalytic sets as well (Filisetti

et al. 2011; Vasas et al. 2012).

Using the binary polymer model, it was shown that RAF

sets are highly likely to exist in general CRSs, even for very

moderate and chemically plausible levels of catalysis (Hordijk

and Steel 2004; Mossel and Steel 2005; Hordijk et al. 2010).

Furthermore, this result still holds when (1) a more realistic

‘‘template-based’’ form of catalysis is used where potential

catalysts have to match a certain number of bits around the

reaction site (Hordijk et al. 2011; Hordijk and Steel 2012b),

(2) only the longest polymers can act as catalysts, also in

combination with the template constraint (Hordijk et al.

2014), and (3) a ‘‘partitioned’’ polymer set is used, where

polymers can undergo only reactions within their own parti-

tion, but catalysis can be both within and between partitions,

such as in an RNA/protein world (Smith et al. 2014).

The RAF sets that are found by the RAF algorithm are

called maximal RAF sets (maxRAFs). However, it was

shown that a maxRAF can often be decomposed into

multiple smaller subsets which themselves are RAF sets

(subRAFs) (Hordijk et al. 2012). If such a subRAF cannot

be reduced any further without losing the RAF property, it

is referred to as an irreducible RAF (irrRAF). The exis-

tence of multiple autocatalytic subsets can actually give

rise to an evolutionary process (Vasas et al. 2012), and the

emergence of larger and larger autocatalytic sets over time

(Hordijk et al. 2012).

Finally, RAF sets are not just a theoretical construct, but

have been shown to exist in real chemical systems (Sievers

and von Kiedrowski 1994; Ashkenasy et al. 2004; Lincoln

and Joyce 2009; Vaidya et al. 2012). In fact, RAF theory

can be applied directly and successfully to model such real

chemical reaction systems (Hordijk and Steel 2013), pro-

viding more insight into their structure and properties.

Moreover, RAF sets were recently found to exist in an

actual bacterial metabolic network (Sousa et al. 2014).
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3 Irreducible RAF sets

In Hordijk et al. (2012) it was shown that, in principle,

there can be exponentially many irreducible RAF sets

within a maximal RAF. So, in general it is not possible to

efficiently enumerate all irrRAFs that exist within a given

CRS. Furthermore, in Steel et al. (2013) it was shown that

even finding a smallest irrRAF is an NP-complete problem.

Irreducible RAF sets are important in at least two ways.

First, they represent the smallest possible autocatalytic sets

that can exist within a chemical reaction system, and are

thus likely to emerge first in a dynamical sense. Second,

irrRAFs are the equivalent of the ‘‘viable cores’’ of Vasas

et al. (2012), where it was shown that the existence of

multiple such sets can give rise to an evolutionary process

(provided some other conditions are met as well). In this

sense, the possible existence of exponentially many irr-

RAFs is actually a desirable property.

So, despite their computational intractability, it would

still be useful to have more insight into the (expected) sizes

and structure of irrRAFs. In Steel et al. (2013), a search

algorithm was introduced to randomly sample irrRAFs

within a given RAF set R0. Briefly, this algorithm works as

follows [see Steel et al. (2013) for details]:

irrRAF sampling algorithm

1. Randomly reorder the reactions ri in the given RAF set

R0.
2. For each next reaction ri 2 R0, remove ri and apply the

RAF algorithm to R0 � frig, resulting in a subRAF

R00 � R0.

(a) If R00 ¼ ;, return ri to R0.
(b) Otherwise, replace R0 with R00.

3. Go back to step 2, until all reactions have been

considered for removal.

4. Return the resulting irreducible RAF set R0.
Note that the particular irrRAF that is returned by this

algorithm depends on the order in which the reactions inR0
are considered for removal. Therefore, the reactions in the

given RAF R0 are randomly reordered each time the

algorithm is applied, so a (possibly) different irrRAF can

be found.

Using the above randomized algorithm, Steel et al.

(2013) presented some preliminary results on the average

sizes of irrRAFs. In the current paper, we perform a more

detailed and thorough investigation into several properties

of irrRAFs. For this, separate and independent implemen-

tations of both the irrRAF sampling algorithm and the

binary polymer model were created (in Python 3.3). Next,

the algorithm was applied to many instances of the binary

polymer model for different values of the parameters n and

p (with t ¼ 2), and various statistics on irrRAFs were

collected.

3.1 Average irrRAF sizes

First, to verify the correctness of both the new imple-

mentation and the previous (preliminary) results, Fig. 1

(left) reproduces the results of Steel et al. (2013) on the

average sizes (in number of reactions) of maxRAFs and

irrRAFs for increasing levels of catalysis. The level of

catalysis f is defined as the average number of reactions

catalyzed per molecule, which is f ¼ pjRj in the binary

polymer model. A maximum molecule length of n ¼ 10 is

used, and each data point is averaged over 39 model

instances. Note that for n ¼ 10, RAF sets start showing up

(with low probability) for a level of catalysis around

f ¼ 1:2, exist in about 50% of model instances for f ¼ 1:3,

and are very common for values of f ¼ 1:4 and larger.

As Fig. 1 (left) shows, the average size of maxRAFs

increases linearly with increasing levels of catalysis. In

other words, when maxRAFs become more common, they

also become larger. However, somewhat surprisingly, the

size of irrRAFs remains constant with increasing values of

f , and thus seems to be independent of the level of catal-

ysis. In fact, the size of an irrRAF even seems to be

independent of the size of the maxRAF it is a subset of.

Figure 1 (right) shows the average size of irrRAFS against

the size of the maxRAF they were sampled from (50 irr-

RAFs per maxRAF), for n ¼ 10 and p ¼ 0:000083

ðf ¼ 1:36Þ. Even though the sizes of the maxRAFs range

from about 1,400–1,950 reactions, the (average) size of

their irrRAFs has a very small variance around about 600

reactions.

In the limit of very high levels of catalysis (most mol-

ecules catalyzing most reactions), one would expect to find

small irrRAFs. So an interesting question is how large the

level of catalysis needs to be before the average irrRAF

size starts to decrease and become very small. Figure 2

shows this kind of data for three different values of n

(averaged over 16 model instances for each data point).

Again somewhat surprisingly, it requires rather high levels

of catalysis to start seeing small irrRAFs. Note the log-

scale on the horizontal axis, with levels of catalysis one to

two orders of magnitude larger compared to Figure 1.

In conclusion, in the range of realistic values of the level

of catalysis, the (average) size of irrRAFs seems to depend

mostly on the value of n (or, similarly, on the size of the

full reaction network), but is independent of the value of p

(probability of catalysis) or the size of the maxRAF they

are part of. So, whether they are rare or common, the sizes

of irrRAFs can be expected to be about the same for

similarly sized CRSs, and cannot be expected to be very
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small. In Steel et al. (2013) it was already proved that it is

unlikely to find very small irrRAFs at a level of catalysis

where RAF sets are just starting to show up (with low

probability). However, the current results seem to indicate

that this fact still holds over a much larger range of f

values.

3.2 Smallest irrRAF sizes

Even though finding a smallest irrRAF set is, in general, an

NP-complete problem (Steel et al. 2013), with the irrRAF

sampling algorithm it is still possible to get an idea of the

overall range and distribution of irrRAF sizes. Figure 3

shows two histograms of irrRAF sizes sampled from one

particular maxRAF in an instance of the binary polymer

model with n ¼ 10. The histogram on the left is for a

sample size of 250 irrRAFs, while the one on the right is

for a sample size of 1,000. The main difference between

the two sample sizes is that for the larger sample the his-

togram approaches a bell-shaped distribution more closely.

A striking observation, however, is that all irrRAFs in the

sample turn out to be unique. In other words, none of the

1,000 irrRAFs sampled consist of the exact same subset of

reactions, even though many of them have the same size. In

principle there can be exponentially many irrRAFs within a

maxRAF (Hordijk et al. 2012), and these sampling results

indicate that indeed, in general, many different irrRAFs

exist within a given maxRAF (although they may overlap

in at least some reactions). As already mentioned, from an

evolutionary point of view this is a useful feature.

As Fig. 3 clearly shows, the range of irrRAF sizes does

not seem to depend on the sample size. In other words,

using a larger sample size does not make it more likely to

find even smaller or larger irrRAFs. Given that it is unli-

kely that very small irrRAFs exist, according to the above

results, the smallest irrRAF found in this sample is likely to

be close to the actual minimum size. However, the question

remains whether it is possible to get an analytical or effi-

ciently computable bound on the size of the smallest

irrRAFs.

In Steel et al. (2013) it was suggested to look for

directed cycles in the catalysis graph. The catalysis graph

GðRÞ of a CRS Q ¼ fX;R;Cg is a graph where each node

corresponds to a reaction in R, and with an arc from node

ri to node rj if some product xk of reaction ri catalyzes
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reaction rj, i.e., if ðxk; rjÞ 2 C. Assuming that no food

molecules catalyze any reactions (a constraint that can be

easily imposed on the binary polymer model without sig-

nificantly changing any of the main results), an RAF set

R0 � R generates a (directed) cycle in GðRÞ (Contreras

et al. 2011; Steel et al. 2013). So, if Q contains an RAF set

then GðRÞ contains at least one cycle, although, impor-

tantly, the reverse is not necessarily true. Also note that this

cycle can be of any length, and does not necessarily include

all reactions that are part of the RAF set (i.e, the length of

the cycle can be much smaller than the size of the RAF

set).

Using this idea, we constructed the catalysis graphs

GðR0Þ of several irreducible RAF sets R0 as found in

instances of the binary polymer model with n ¼ 7, and then

used a function from the NetworkX Python package

(NetworkX Developers 2013) to detect the simple cycles in

these graphs. However, it turns out that the lengths of such

cycles is generally much smaller than the sizes of the irr-

RAFs themselves, as shown in Fig. 4. The irrRAF sizes

range from 70 to 125 reactions, whereas the simple cycle

lengths never exceed 20. Obviously, these smaller cycles

cannot correspond to RAF sets, as the catalysis graphs are

explicitly constructed from irrRAFs, which (by definition)

do not contain any smaller RAF subsets. The picture is the

same when computing the strongly connected components

in the catalysis graph. In this case, the largest component

found is of size 24, still much less than the sizes of the

irrRAF sets themselves. In other words, the lengths of

cycles or sizes of strongly connected components in the

catalysis graph do, unfortunately, not provide a useful

bound on the size of the smallest irrRAFs.

However, these results do have important consequences

for drawing conclusions about the existence of

autocatalytic sets in reaction networks R by merely look-

ing for cycles or strongly connected components in the

corresponding catalysis graph GðRÞ, as for example done

in Filisetti et al. (2011). First, the presence of a cycle or

connected component does not necessarily imply the

existence of an RAF set. Second, as the current results

(Fig. 4) show, even if the presence of a cycle or component

in the catalysis graph GðRÞ does correspond to an actual

RAF set, they still do not necessarily represent the full RAF

set (at least not in the binary polymer model). These cycles

or components do represent reflexively autocatalytic (RA)

sets, but they are not necessarily food-generated (F), and

are thus not self-sustaining.
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3.3 Structural properties of (irr)RAFs

Finally, we looked at some structural properties of RAF

sets. In particular, one can ask how important individual

molecules and reactions are to maintain a given maxRAF

or irrRAF. Figure 5 shows the (average) number of irr-

RAFs that molecules of different lengths are part of. Data

points are averaged over 39 instances of the binary polymer

model with n ¼ 10 and p ¼ 0:000083, with an irrRAF

sample of size 50 for each of the 39 maxRAFs. Then for

each molecule it was counted in how many of those 39�
50 ¼ 1;950 irrRAFs it occured, and those counts were

averaged for each possible molecule length. As the figure

shows, all molecules up to length four occur in all the

irrRAFs sampled. Molecules of length five are part of most

of the irrRAFs, but then the number drops off quickly to

about one quarter of the irrRAFs for the longest molecules

(length 10).

Another way of looking at the importance of molecules

is as follows. For each molecule xi that is part of a maxRAF

R0, remove that molecule from R0 and re-apply the RAF

algorithm, resulting in a (possibly smaller) RAF set R00.
Then consider the difference in size between the original

maxRAF R0 and the resulting RAF set R00. Figure 6 (left)

shows the results of such an analysis for one particular

maxRAF (with 1,511 reactions) found in an instance of the

binary polymer model with n ¼ 10 and p ¼ 0:0000792.

The food molecules were not included in this analysis, as it

is obvious that they are essential.

As the histogram shows, most (non-food) molecules do

not have any impact on the size of the maxRAF at all. In

fact, about half of the molecules (769; off the scale of the

histogram) have no impact. Most of the remaining mole-

cules only have a very small impact, and just a few mol-

ecules have a large impact (a reduction in the maxRAF size

of, say, more than 100 reactions). In this particular

instance, there are actually four molecule types that, when

removed, reduce the maxRAF to size zero, i.e., the max-

RAF reduction is of size 1511 (also off the scale of the

histogram). These are what we call ‘‘essential’’ molecules:

they are necessarily part of every possible irrRAF within

the maxRAF.

A similar analysis can, of course, be performed by

removing individual reactions instead of molecules. Fig-

ure 6 (right) shows a similar histogram, but for removing

reactions from a maxRAF of size 2,300. As expected, the

overall pattern is similar: most reactions have no (1,634

reactions; off the scale) or only a small impact on the

maxRAF size, while only a few reactions have a large

impact. In this particular instance, there are 55 essential

reactions (off the scale), i.e., they will have to be part of

every irrRAF.

Looking at other instances, the overall pattern is again

similar, except that not all maxRAFs always have essential

reactions. In fact, many maxRAFs do not have any

essential reactions at all. They may have reactions that,

when removed, have a large impact on the maxRAF size,

but they do not necessarily reduce this size to zero. Fig-

ure 7 shows a histogram of the number of essential reac-

tions in a sample of 400 maxRAFs (for n ¼ 10 and

p ¼ 0:000079). About 130 of these maxRAFs do not have

any essential reactions at all, and only a few instances have

a large number of essential reactions.

These results give some interesting insights into various

structural properties of RAF sets. Since the binary polymer

model is just an abstract model of a CRS, it is difficult to

attach any biological interpretation to these results. How-

ever, in a separate study a similar ‘‘sensitivity’’ analysis is

performed on RAF sets in the metabolic network of E. coli,

in which case the results do have a clear biological inter-

pretation (Sousa et al. 2014). Hence, the structural analysis

as described here can indeed be quite useful.

4 Power law distributed catalysis

In Hordijk et al. (2011), Hordijk and Steel (2012b), a more

realistic version of the binary polymer model was investi-

gated. In particular, a constraint was imposed on the

catalysis events, so that a molecule can only be assigned as

a catalyst to a reaction if that molecule matches a certain

number of bits around the reaction site. This was inspired

by, for example, base-pair complementarity in RNA mol-

ecules. In Hordijk et al. (2014), the constraint that only the

longest polymers can be catalysts was investigated, also in
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combination with the template-match constraint. Here, we

investigate another variant of the binary polymer model in

an effort to include more biological realism. In particular, a

common property among ‘‘real-world’’ networks (includ-

ing biological ones) seems to be a power law degree dis-

tribution (Dorogovtsev and Mendes 2003; Newman 2010).

There are usually many nodes in such networks that have a

very low connectivity, and a few nodes that have a very

high connectivity.

To include this property in the binary polymer model,

we assign the catalysis events according to a power law

distribution. In the standard (‘‘uniform’’) binary polymer

model, each molecule-reaction pair ðx; rÞ is included in the

catalysis set C with independent probability p. In the power

law variant of the model, instead of considering individual

molecule-reaction pairs, we first independently draw a

random number si from a power law distribution for each

molecule type xi 2 X. Then, for each molecule type xi, a

total of si reactions from R are chosen randomly (with

equal probability and without replacement), to which xi is

assigned as a catalyst. This way, most molecules will cat-

alyze only few reactions, while some may catalyze many

reactions.

The power law distribution we use is the Zipf distribu-

tion with parameter a:

faðkÞ ¼
k�a

fðaÞ

where f is the Riemann Zeta function and k ranges over the

positive integers. This probability density function is

named after the linguist Zipf, who noted that the frequency

of any word in a sample of a language is inversely pro-

portional to its rank in the frequency table (Zipf 1932). The

NumPy Python library provides a function for drawing

random numbers from this distribution, from which we

then subtract one to also allow for molecules catalyzing no

reactions. The parameter a in the power law variant of the

binary polmer model plays the same role as the parameter p

in the standard model. However, comparing them directly

is meaningless. Instead, we calculate the level of catalysis f

(the average number of reactions catalyzed per molecule),

which depends on p (standard model) or a (power law

model), and can then compare the values of f between the

two model variants.

Figure 8 shows the resulting distribution of the number

of reactions catalyzed per molecule in one particular

instance of the binary polymer model with this power law
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catalysis assignment for n ¼ 10 and a ¼ 2:35 (black bars).

For comparison, the equivalent distribution for the standard

model is shown as well for n ¼ 10 and p ¼ 0:00008 (gray

bars). These distributions are indeed as expected: a Poisson

distribution in the standard model (Newman 2010) and a

power law distribution in the model variant. In the instance

of the standard model, the average number of reactions

catalyzed per molecule is f ¼ 1:31, while in the instance of

the power law model it is f ¼ 1:21, i.e., the (average) level

of catalysis is similar in both these instances.

Figure 9 shows the probability of finding RAF sets in

instances of the power law model variant for various values

of n (different curves) and (average) levels of catalysis f

(on the x-axis), averaged over 1,000 instances for each data

point. In other words, each data point in the figure represent

a particular combination of values for n and a (converted to

the corresponding value for f ), and for each such combi-

nation of parameter values, 1000 instances of the model

were generated. The probability Pn of finding RAF sets (on

the y-axis) is then the fraction of these 1000 instances that

contain an RAF set (as determined by the RAF algorithm).

For comparison, similar data for n ¼ 10 from the stan-

dard model is included as well in Fig. 9 (the black dots). As

in the standard model, in the power law case there is a

fairly quick transition from not finding RAF sets ðPn ¼ 0Þ
to finding them most of the time (Pn close to one). How-

ever, the transition is less sharp, but RAF sets already start

to show up at a lower level of catalysis (value of f ) com-

pared to the standard model.

A surprising feature in Fig. 9 is that for the power law

model there does not seem to be any increase in the level of

catalysis f necessary to find autocatalytic sets for increas-

ing values of n. In the standard model, a linear growth rate

in the required level of catalysis f is observed for

increasing n, i.e., the S-shaped curves (for each next larger

value of n) move to the right at a linear rate (Hordijk and

Steel 2004). However, for the power law model, as Fig. 9

shows, all the S-shaped curves intersect at a probability Pn

between 0.5 and 0.6. Also, the transition from low to high

Pn for a given n (with increasing level of catalysis f )

becomes sharper for larger values of n. So, it seems that in

this more realistic model variant, RAF sets are actually

even easier to get (they already start showing up for smaller

levels of catalysis) than in the standard model, and do not

require a larger level of catalysis for larger system sizes.

The corresponding values for the parameter a in the Zipf

distribution where this transition happens is roughly in the

range a 2 ½2:2; 2:7�. RAF sets start to show up (with low

probability) for values of a smaller than 2.7, exist in about

half the instances for a value of a around 2.35, and are

always present for a smaller than 2.2. This transition range

corresponds very well with ‘‘real-world’’ networks, which

tend to have a value for their power law parameter between

two and three (Newman 2010). Furthermore, as just

observed, this range does not seem to depend on the actual

value of n (at least not in the range of n values used here).

Note that the values on the horizondal axis (level of

catalysis) in Fig. 9 are averaged over many model instan-

ces. In the standard model, there is little variance in the

average level of catalysis between different model instan-

ces for the same values of the parameter p (given a fixed

value for n). However, in the power law case, this variance
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is much larger for a given value of a (the equivalent of p in

the standard model). Figure 10 (left) shows this quite

clearly, where a histogram of the average number of

reactions catalyzed per molecule ðf Þ is shown for n ¼ 10

and a ¼ 2:35 for 1000 instances of the power law model.

The observed mean of this sample (1.395) is indeed very

close to the expected mean (1.391), but the variance is

quite large, with a few instances even having a level of

catalysis of f [ 5.

However, we prefer to present the results for the power

law model in terms of the (average) level of catalysis ðf Þ,
rather than the parameter a, since in this way they can be

more easily interpreted and compared to the standard

model. Also, this averaging, even though there is a large

variance, does not seem to change the overall trends very

much. Alternatively, the results can be presented unaver-

aged, as done in Fig. 10 (right) for the sizes of maxRAFs

and irrRAFs against the value of f in close to 500 instances

of the power law model with n ¼ 10 and a ¼ 2:35. This

graph shows the same trend as can be observed in Fig. 1 for

the standard model: the size of maxRAFs increases linearly

with increasing level of catalysis, but the size of irrRAFs is

more or less constant. However, note that (for the same

value of n), the maxRAFs are larger (ranging from about

2,000 to 8,000 reactions vs. 1,200 to 3,000), but the irr-

RAFs are smaller (around 200 reactions vs. around 600) in

the power law case compared to the standard model.

In conclusion, by incorporating this more realistic way

of assigning catalysis events, it appears that RAF sets

already start showing up for smaller levels of catalysis, and

the irrRAFs are smaller (and thus require fewer molecule

types and reactions) compared to the standard model.

Moreover, in the power law model there does not seem to

be any increase in the level of catalysis necessary with

increasing n to maintain the same probability of finding

RAF sets. Other results, such as the (average) irrRAF sizes

being independent of the level of catalysis or the maxRAF

size (for a given n), the observed size range of irrRAFs

being independent of the irrRAF sample size, and the

impact of removing molecules or reactions from the RAF

set, are very similar to those for the standard model.

5 Conclusions

We have investigated several aspects of RAF theory in

more detail. First, a more thorough analysis of irreducible

RAF sets was performed. Our results confirm that there are

indeed many different such subsets within a given max-

RAF. This has positive consequences for the evolvability

of autocatalytic sets, which could have been crucial in the

early stages of the origin and evolution of life. Rather than

having to wait for one or a few specific chemical organi-

zations to emerge, different (irreducible) RAF sets seem

likely to have existed in large numbers. Their sizes do not

seem to depend on the actual level of catalysis present, or

the size of the maxRAF they are part of. In fact, even for

low levels of catalysis, when RAF sets are just starting to

show up, irrRAFs are already quite large, thus immediately

giving rise to a significant amount of chemical complexity.

Overall, the RAF sets we investigated seem to have

common structural properties. They usually contain many

molecules and reactions that have a low impact on main-

taining the set as a whole, and a few that have a very high

impact on the inegrity of the system. Also, a significant

fraction of RAF sets contain so-called ‘‘essential’’ mole-

cules and reactions, the removal of which would break

down the RAF set completely (and which, therefore, will
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be part of every possible irrRAF set within the larger RAF

set). As expected, food molecules and other small mole-

cules that are produced directly from food molecules tend

to be essential.

As a word of warning, simply looking for cycles in the

catalysis graph of a reaction system does most likely not

result in actually finding autocatalytic sets. These cycles

(especially the simple cycles) do represent RA sets, but they

are not necessarily food-generated (F). However, using the

RAF algorithm and the randomized irrRAF sampling algo-

rithm, RAF (sub)sets can be found efficiently (although in

the case of irrRAFs not necessarily exhaustively).

Finally, we have investigated a more realistic variant of

the binary polymer model where the catalysis events are

assigned according to a power law distribution. In this

model variant, it seems that RAF sets are even more likely

to show up (i.e., at lower levels of catalysis), and irre-

ducible RAFs tend to be smaller (requiring fewer molecule

types and reactions) compared to the standard model.

Furthermore, the results suggest that no growth rate in the

level of catalysis is necessary with increasing system sizes

(the parameter n). It would be an interesting extension to

combine this power law model variant with other more-

realistic assumptions such as the previously investigated

template-based catalysis constraint.
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