
Generating and accepting P systems with minimal left and right
insertion and deletion

Rudolf Freund • Yurii Rogozhin • Sergey Verlan

Published online: 17 January 2014

� Springer Science+Business Media Dordrecht 2014

Abstract In this paper we investigate the operations of

insertion and deletion performed at the ends of a string. We

show that using these operations in a P systems framework

(which corresponds to using specific variants of graph

control), computational completeness can even be achieved

with the operations of left and right insertion and deletion

of only one symbol, both in the generating as well as in the

accepting case.

Keywords Computational completeness � Deletion �
Insertion � Matrix grammars � P systems

1 Introduction

The operations of left and right insertion and deletion that

we consider in this article correspond to the operations of

left and right concatenation and quotient with a finite

language. While these operations are known for a long

time, their joint investigation in a distributed framework

originates from the area of natural computing, where they

were used in the context of networks of evolutionary

processors (NEP) (Castellanos et al. 2001). Such networks

are a special type of networks of language processors

(Csuhaj-Varjú and Salomaa 1997) that feature a set of

(rewriting) nodes rewriting languages and after that redis-

tributing some regular subsets between the nodes. In net-

works of evolutionary processors, the rewriting operations

are replaced by three types of operations having a biolog-

ical motivation (point mutations): insertion, deletion, and

substitution. The corresponding systems are quite powerful

and we refer to Dassow et al. (2011) for more details. The

redistribution of the contents of a node is based on a regular

condition, which is a very powerful operation. In accepting

hybrid networks of evolutionary processors (AHNEP) as

considered in Dassow and Manea (2010) and Margenstern

et al. (2005a), this redistribution condition is replaced by

random context conditions, and moreover, the set of

operations is changed now including the operations of

insertion and deletion at the extremities of the strings.

The operations of insertion and deletion at the extrem-

ities of a string can also be seen as a restricted case of the

more general variant where insertion and deletion can be

performed anywhere in the string. The insertion operation

defined in such a way was first considered in Haussler

(1982, 1983) and after that related insertion and deletion

operations were investigated in Kari (1991) and Kari et al.

(1997). Another generalization of the insertion and deletion

operations that involves the checking of contexts for the

insertion and deletion was considered with a linguistic

motivation in Galiukschov (1981) and Marcus (1969) and

with a biological motivation in Benne (1993), Biegler et al.

(2007), Kari et al. (1997) and Păun et al. (1998). Gener-

ally, if the length of the contexts and/or of the inserted and

deleted strings are big enough, then the insertion–deletion

closure of a finite language leads to computational com-

pleteness. There are numerous results establishing the

R. Freund (&)

Faculty of Informatics, Vienna University of Technology,

Favoritenstr. 9, 1040 Vienna, Austria

e-mail: rudi@emcc.at

Y. Rogozhin

Institute of Mathematics and Computer Science, Academy of

Sciences of Moldova, Str. Academiei 5, 2028 Chişinău, Moldova

e-mail: rogozhin@math.md

S. Verlan

LACL, Département Informatique, Université Paris Est, 61,

av. Général de Gaulle, 94010 Créteil, France

e-mail: verlan@univ-paris12.fr

123

Nat Comput (2014) 13:257–268

DOI 10.1007/s11047-013-9396-3

descriptional complexity parameters sufficient to achieve

this goal, we refer to Verlan (2010a, b) for an overview of

this area.

Some descriptional complexity parameters lead to

variants that are not computationally complete. An inves-

tigation of insertion and deletion operations combined with

regulating mechanisms was done for these cases, more

precisely, with the graph-controlled, the matrix, and the

random-context controls (Freund et al. 2010; Ivanov and

Verlan 2011; Petre and Verlan 2010). As it was shown in

these articles, in most of the cases the additional control

leads to computational completeness. The graph-controlled

regulation is of particular interest, as it can be related to the

notion of P systems. Such systems formalize the func-

tioning of a living cell that topologically delimits pro-

cessing units by membranes, thus leading to a tree (or

graph) structure of processing nodes. The elements pro-

cessed in some node (membrane) then are distributed

among the neighbors in the structure. We refer to Păun

(2002) and Păun et al. (2010) and to the web page The P

systems Web page (http://ppage.psystems.eu/) for more

details on P systems. In the case of the operations of

insertion and deletion acting on strings this directly cor-

responds to a graph control where the control nodes cor-

respond to the membranes.

The research on context-free insertion and deletion (i.e.,

without contextual dependency) shows that if the lengths of

the inserted and deleted strings are 2 and 3 (or 3 and 2),

respectively, then the insertion–deletion closure of finite

languages is computationally complete (Margenstern et al.

2005b). When one of these parameters is decreased, this

result is not true anymore (Verlan 2007); moreover, even

the graph-controlled variant cannot achieve computational

completeness (Krassovitskiy et al. 2011). This changes

when a graph control with appearance checking is used

(Alhazov et al. 2011a) or in the case of a random context

control (Ivanov and Verlan 2011). In both variants, mini-

mal operations (involving only one symbol) were consid-

ered, leading to RE (the family of recursively enumerable

languages) in the case of set-controlled random context

conditions and to PsRE (the family of Parikh sets of RE) in

the case of graph control with appearance checking.

We note that the operations of left and right insertion

and deletion are incomparable with normal insertion and

deletion: because of the positional information, the regular

language a?b? can be obtained even with left and right

insertions of only one symbol, yet not when insertions are

possible at arbitrary positions in the string. On the other

hand, the Dyck language cannot be obtained when insertion

is only possible at the ends of the strings, while with nor-

mal insertion this can be done easily. In Alhazov et al.

(2011a, 2012), left and right insertion and deletion opera-

tions (under the name of exo-insertion and -deletion) were

considered in the P systems framework (i.e., with a graph

control) and it was shown that systems with insertion of

strings of length 2 (respectively 1) and deletion of strings

of length 1 (respectively 2) lead to computational com-

pleteness. In the case of minimal insertion and deletion

(i.e., of only one symbol), a priority of deletion over

insertion (corresponding to an appearance check) was used

to show computational completeness.

In this paper, which is an extended version of our paper

(Freund et al. 2012) presented at the conference Uncon-

ventional Computation and Natural Computation 2012 in

Orléans, we continue these investigations by considering P

systems with minimal left and right insertion and deletion,

and we prove that computational completeness can be

achieved even in this case, this time showing computa-

tional completeness for both the generating case and the

accepting case. We also directly show that matrix gram-

mars using minimal left insertion and minimal right dele-

tion rules are computationally complete (with matrices of

length at most 3). Moreover, we prove that using additional

minimal substitutions (substitutions of one symbol by

another one) allows for reducing the height of the tree

structure of the P system to the minimal possible size, i.e.,

to one. In addition, we show that we can even avoid the

target here in the case of channel type P systems using

minimal left and right insertion and deletion, where the

applications of the rules can be interpreted as being carried

out when objects (strings) are passing through a membrane,

in the sense of molecules being modified when passing

through a specific membrane channel from one membrane

(region) to another one.

2 Preliminaries

After some preliminaries from formal language theory, we

define the string rewriting rules to be used in this paper. As

string rewriting systems, we will consider Post systems,

matrix grammars, and sequential P systems. Moreover, we

will give some examples and preliminary results to illus-

trate our definitions.

The set of non-negative integers is denoted by N: An

alphabet V is a finite non-empty set of abstract symbols.

Given V the free monoid generated by V under the opera-

tion of concatenation is denoted by V�; the elements of V�

are called strings, and the empty string is denoted by

k; V� n kf g is denoted by V?. Let a1; . . .; anf g be an arbi-

trary alphabet; the number of occurrences of a symbol ai in

x is denoted by xj jai
; the number of occurrences of all

symbols from V in x is denoted by xj j. The family of

recursively enumerable string languages is denoted by RE.

Two string languages are considered to be equal if they

differ at most in the empty string. For more details of

258 R. Freund et al.

123

http://ppage.psystems.eu/

formal language theory the reader is referred to the

monographs and handbooks in this area as Dassow and

Păun (1989) and Rozenberg and Salomaa (1997).

We here consider string rewriting rules only working at

the ends of a string (they can be seen as restricted variants

of Post rewriting rules as already introduced by Emil Post

in Post (1943)):

Simple Post rewriting rule

P u$x=y$v½ � with u; x; y; v 2 V�:

P u$x=y$v½ � uwxð Þ ¼ ywv for w 2 V�:

Normal Post rewriting rule P x=y½ � with x; y 2 V� :

P x=y½ � wxð Þ ¼ yw for w 2 V�.
Left substitution SL u=y½ � with u; y 2 V� :

SL u=y½ � uwð Þ ¼ yw for w 2 V�.
Right substitution SR x=v½ � with x;v2V� :
SR x=v½ � wxð Þ¼wv for w2V�.

For a simple Post rewriting rule P u$x=y$v½ �we also write

u$x! y$v. A normal Post rewriting rule P x=y½ � is a special

case of a Post rewriting rule P u$x=y$v½ � with u = v = k
(we here consider the mirror version P $x=y$½ � of the normal

form rules P u$=$v½ � as originally considered in Post (1943)

for Post canonical systems; the variant we take in this paper

has already been used several times for proving specific

results in the area of P systems, e.g., see Freund et al.

(2004). Left substitution SL u=y½ � and right substitution

SR x=v½ � are special cases of simple Post rewriting rules as

well, with x = v = k and u = y = k, respectively.

If in a (left or right) substitution SL x=y½ � or SR x=y½ � x is

empty, then we also call it an insertion and write IL y½ � and

IR y½ �, respectively; if in a (left or right) substitution SL x=y½ �
or SR x=y½ � y is empty, then we also call it a deletion and

write DL x½ � and DR x½ �, respectively. If we only insert one

symbol a, then we will also write ?a, a?, -a, and a- for

IL a½ �; IR a½ �;DL a½ �, and DR a½ �, respectively. In general, we

assume that any of these operations considered in this

paper—(left or right) insertion, deletion, and substitution—

at least involves one symbol.

A (string rewriting) grammar G of type X is a construct

V; T ;A;Pð Þ where V is a (finite) set of symbols, T � V is a

set of terminal symbols, A 2 V� is the axiom, and P is a

finite set of rules of type X. Each rule p 2 P induces a

relation ¼)p� V� � V�; p is called applicable to a string

x 2 V� if and only if there exists at least one string y 2 V�

such that x; yð Þ 2¼)p; we also write x ¼)p y. The deri-

vation relation ¼)G is the union of all ¼)p, i.e.,

¼)G¼ [p2P ¼)p. The reflexive and transitive closure of

¼)G is denoted by ¼)
�

G.

The language generated by G is the set of all terminal

strings derivable from the axiom, i.e., L Gð Þ ¼ v 2 T� jf
A¼)�G vg. The language accepted by G is the set of

all terminal strings deriving the axiom, i.e., L Gð Þ ¼
v 2 T� j v¼)�G A
� �

. The family of languages generated

(accepted) by grammars of type X is denoted by

L Xð ÞðLa Xð ÞÞ.
Instead of a single axiom A we may also allow a finite

set of axioms; in this case, we put an A in front of the type

X for this variant of grammars thus obtaining the family of

languages generated (accepted) by grammars of type

X denoted by L A-Xð ÞðLa A-Xð ÞÞ.
In general, we write SL

k,m for a type of grammars using

only substitution rules SL x=y½ � with xj j � k and yj j �m. In

the same way, we define the type SR
k,m for a type of

grammars using only substitution rules SR x=y½ � with xj j � k

and yj j �m; as well as the types IL
m, IR

m, DL
k , and

DR
k , respectively. The type DkIm allows for the deletion of

strings with length B k and for the insertion of strings with

length B m on either side of a string. If, in addition, we

also allow substitutions SL x=y½ � and SR x=y½ � with xj j � k0

and yj j �m0, we get the type DkImSk0m0 ; we observe that the

type DkImSk0m0 is subsumed by the type Sk0m0 if k� k0 and

m�m0. If we allow the parameters k and/or m to be arbi-

trarily large, we just omit them, e.g., DI is the type

allowing to use deletions and insertions of strings of arbi-

trary lengths.

Example 1 Let G ¼ V ; T;A;Pð Þ be a regular grammar,

i.e., the rules in P are of the form A! bC and A! k with

A;C 2 V n T and b 2 T : Then the grammar G0 ¼
V; T ;A; SR A=y½ � j A! y 2 Pf gð Þ with substitution rules

generates the same language as G, i.e., L G0ð Þ ¼ L Gð Þ.
Hence, with REG denoting the family of regular languages,

we obviously have got REG � L S
1;2
R

� �
. h

It is not difficult to check that grammars of type D1I1S1,1

have a rather limited computational power. Indeed, we can

show the following representation of languages generated

or accepted by grammars of type D1I1S1,1:

Theorem 1 Every language L � T� in L D1I1S1;1ð Þ can

be written in the form T�l ST�r where Tl; Tr � T and S is a

finite subset of T�.

Proof Let G ¼ V ; T ;A;Pð Þ be a grammar of type D1I1S1,1

and let N :¼ V n T . We first construct the start set S as

follows: Consider all possible derivations in G from

A with only using substitutions and deletions, but without

loops, i.e., no string is allowed to appear more than once

in such a derivation, which means that all these deriva-

tions are of bounded length (bounded by the number of

strings over V of length at most Aj j). Then S consists of

all terminal strings obtained in this way (finding these

strings is a finitely bounded process, as to each of the

possible strings over V of length at most Aj j, at most

P systems with minimal insertion and deletion 259

123

Pj j rules can be applied). A symbol from N remaining

inside a string blocks that string from ever becoming

terminal by applying rules from P, and deletion of a

symbol can be avoided by just not introducing the symbol

which by a sequence of minimal substitutions would lead

to the symbol to be deleted. Hence, for constructing the

sets Tl (Tr, respectively) we can restrict ourselves to the

terminal symbols b either directly inserted by minimal

insertion rules Il b½ � (Ir b½ �, respectively) or obtained by a

sequence of one minimal insertion together with a

bounded (by Vj j) number of minimal substitutions

Sl a=b½ �ðSr a=b½ �, respectively).

Therefore, in sum L Gð Þ can be written as the finite union

of languages generated by grammars of type I1, i.e.,

L Gð Þ ¼ [w2SL Gwð Þ where

Gw ¼ T; T ;w; Il b½ � j b 2 Tlf g [Ir b½ � j b 2 Trf gð Þ;

which yields the desired form T�l ST�r for describing

L Gð Þ. h

Corollary 1 L A-D1I1S1;1ð Þ ¼ L A-I1ð Þ ¼ La A-D1I1S1;1ð Þ
¼ La A-D1ð Þ:

Proof The representation of languages in L D1I1S1;1ð Þ
elaborated in the preceding proof means that for the type

D1I1S1,1 we could forget minimal deletions and substitu-

tions and instead consider finite subsets of axioms instead

of a single axiom, i.e., we have proved that L A-D1I1S1;1ð Þ
¼ L A-I1ð Þ.

Similar arguments as outlined for the generating case

immediately show that

L A-D1I1S1;1
� �

¼ La A-D1I1S1;1
� �

¼ La A-D1
� �

as well, because in the accepting case insertions have the

same effect as deletions in the generating case and vice

versa, i.e., using Da½b�; a 2 l; rf g, in the accepting gram-

mar means using Ia b½ � in the corresponding generating

grammar. h

2.1 Post systems

A simple/normal Post system is a grammar using only simple/

normal Post rewriting rules, i.e., is a grammar of type SPS /

NPS. A Post system V ; T;A;Pð Þ is said to be in normal form (a

grammar of type PSNF) if and only if the Post rewriting rules

P x=y½ � in P are only of the forms P ab=c½ �;P a=bc½ �;P a=b½ �;
and P a=k½ �, with a; b; c 2 V . A Post system V; T ;A;Pð Þ is

said to be in Z-normal form (a grammar of type PSZNF) if and

only if it is in normal form, A 2 V n T and, moreover, there

exists a special symbol Z 2 V n T such that

– Z appears only once in the string x of a Post rewriting

rule P x=y½ �, and this rule is P Z=k½ �;

– if the rule P Z=k½ � is applied, the derivation in the Post

system stops yielding a terminal string;

– a terminal string can only be obtained by applying the

rule P Z=k½ �.

Basic results concerning Post systems are folklore since

many years, e.g., see Minsky (1967). For the accepting case

we have the following characterizations of RE:

Theorem 2 For every recursively enumerable language

L � T� there exists a simple Post rewriting system

G;G ¼ V ; T;A;Pð Þ, accepting L, i.e., La SPSð Þ ¼ RE.

As having an idea how the simulations of the actions of

a Turing machine by an accepting grammar and a Post

system work may help for a better understanding of the

proofs elaborated in the following sections, we sketch a

special proof for the following well-known result:

Theorem 3 For every recursively enumerable language

L � T� there exists a Post rewriting system in normal form

G0;G0 ¼ V 0; T ;A0;P0ð Þ, such that G0 accepts L Zf g, where

Z 2 V 0 n T .

Proof Let M ¼ Q;V; T ; Z0;B; d; q0; qf

� �
be a Turing

machine accepting L with Q being the set of states, V the

tape alphabet, T � V the terminal alphabet, Z0 2 V the left

end marker, B 2 V the blank symbol, d the transition

function, q0 and qf the initial and final state, respectively. A

configuration of M may be represented as a string from

Z0f gV�QV� Z1f g where Z1 is the right end marker (a new

symbol not in V) and the symbol to the left of the state

symbol from Q is the current symbol to be read by

M. Without loss of generality, we may assume that the

transitions of M are either (i) rewriting a symbol, (ii) going

one step to the left or (iii) going one step to the right on the

tape. Moreover, we assume that, given the input w 2 T�;M
accepts w if and only if it halts with the final configuration

represented by Z0qfZ1. For M, we now construct a grammar

G00 ¼ V 00; T ;A00;P00ð Þ accepting Z0q0f gL Z1f g as follows:

V 00 ¼ Q [Q0 [Z1f g [V ; A00 ¼ Z0q0f , and P00 contains

the following grammar rules obtained by translating the

transition rules of M:

– rewriting a symbol X 2 V n Z0f g to Y 2 V n Z0f g
going from state q to p is simulated by the rule

Xq! Yp;

– going one step to the left is simulated by the rule

Xq! pX;X 2 V n Z0f g;
– going one step to the right is simulated by the rule

qX ! Xp;X 2 V , in P00; intending to go to the right of

the right end marker Z1 can only happen when trying to

simulate a rule qB! Bp; q 6¼ qf ; the simulation then

has to be carried out by inserting an additional blank

symbol, i.e., by the rules qZ1 ! p0Z1 and p0 ! Bp;

260 R. Freund et al.

123

– the final configuration Z0qfZ1 of M may be represented

in G00 by any string Z0qfB
nZ1 for n C 0; hence, we add

the rules qf B! qf and qf Z1 ! q0f .

Using the well-known technique of ‘‘simulate and

rotate’’, from the accepting grammar G00 ¼ V 00; T ;A00;P00ð Þ
we can easily obtain a Post system in normal form G0 ¼
V 0; T;A0;P0ð Þ accepting L Zf g : V 0 ¼ V 00 [Q� V [V�

Q [Z; Z 0f g; A00 ¼ A0 ¼ Z0q0f , and the rules in P0 are

obtained as follows: as we can only act on the right-hand

side of a string with the result of the application of a rule

being put to the left-hand side, we add the rotation rules

$X ! X$ for all X 2 V 00 n q0f

n o
; the initial configuration is

obtained by the rules $Z ! Z1Z 0$ and $Z 0 ! Z0q0$; a

rewriting rule Xq! Yp is simulated by the rules $Xq!
Y; pð Þ$ and $ Y; pð Þ ! Yp$; the rule Xq! pX is simulated

by the rules $Xq! p;Xð Þ$ and $ p;Xð Þ ! pX$; the rule

qX ! Xp;X 2 V , is simulated by the rules $qX ! X; pð Þ$
and $ X; pð Þ ! Xp$; the rule qZ1 ! p0Z1 is simulated by

the rules $qZ1 ! p0; Z1ð Þ$ and $ p0; Z1ð Þ ! p0Z1$ as well as

p0 ! Bp by $p0 ! Bp$; finally, the rule qf B! qf is sim-

ulated by $qf B! qf $ and qf Z1 ! q0f by $qf Z1 ! q0f $. As

this construction shows, in the accepting case we do not

need rules of the form $X ! $. h

For the proof of our main theorem we need the special

Z-normal form; the following result is an immediate con-

sequence of the proof given for Lemma 1 in Freund et al.

(2004):

Theorem 4 For every recursively enumerable language

L � T� there exists a Post rewriting system G;G ¼
V; T ;A;Pð Þ, in Z-normal form such that L Gð Þ ¼ L; i.e.,

L SPSð Þ ¼ L PSNFð Þ ¼ L PSZNFð Þ ¼ RE.

2.2 Matrix grammars

A matrix grammar of type X is a construct GM ¼ G;Mð Þ
where G ¼ V ; T ;A;Pð Þ is a grammar of type X, M is a

finite set of sequences of the form p1; . . .; pnð Þ, n C 1, of

rules in P. For w; z 2 V� we write w ¼)GM
z if there are a

matrix p1; . . .; pnð Þ in M and strings wi 2 V�;
1 B i B n ? 1, such that w = w1, z = wn?1, and, for all

1� i� n;wi ¼)G wiþ1. The maximal length n of a matrix

p1; . . .; pnð Þ 2 M is called the degree of GM.

LðGMÞ ¼ v 2 T� j A ¼)�GM
v

n o
is the language gener-

ated by GM. The family of languages generated by matrix

grammars of type X (of degree at most n) is denoted by

L X-MATð Þ ðL X-MATnð ÞÞ.

Theorem 5

L D2I2-MAT2ð Þ ¼ L D1I1-MAT3ð Þ ¼ L PSNFð Þ ¼ RE.

Proof From Theorem 4 we know that L PSNFð Þ ¼ RE,

hence, we will only show that for every Post system

G = (V, T, A, P) in normal form we are able to construct

equivalent matrix grammars G1 = (G, M1) and

G2 = (G, M2) of type D2I2 and of type D1I1, respectively:

M1 ¼ DR x½ �; IL y½ �ð Þ j P x=y½ � 2 Pf g;
M2 ¼ DR b½ �;DR a½ �; IL c½ �ð Þ j P ab=c½ � 2 Pf g
[DR a½ �; IL c½ �; IL b½ �ð Þ j P a=bc½ � 2 Pf g
[DR a½ �; IL b½ �ð Þ j P a=b½ � 2 Pf g
[DR a½ �ð Þ j P a=k½ � 2 Pf g:

As each rule in G is directly simulated by a matrix in M1

and in M2, respectively, we immediately infer L Gð Þ ¼
L G1ð Þ ¼ L G2ð Þ. h

Whereas the matrices in M1 are only of length 2, the

degree of M2 is 3; it remains as an open question whether

also with rules of type D1I1 we could decrease the degree to

2 or not; we conjecture that the answer is no. As we have

shown in Theorem 1, with grammars using rules of type

D1I1S1,1 we are not able to obtain RE, we even remain

below the regular language class; hence, we need such

regulating mechanisms as matrices to reach computational

completeness.

2.3 P systems

We now introduce another variant to guide the derivations

in a grammar using rules of those types introduced above,

especially minimal left and right substitution rules.

A (sequential) P system of type X with tree height n is a

construct P ¼ G; l;R; i0ð Þ where G ¼ V; T ;A;Pð Þ is a

grammar with rules of type X and

– l is the membrane (tree) structure of the system with

the height of the tree being n (l usually is represented

by a string containing correctly nested marked paren-

theses); we assume the membranes to be the nodes of

the tree representing l and to be uniquely labeled by

labels from a set Lab; the number of membranes in l
usually is called the degree of l (and the degree of P
itself, too);

– R is a set of rules of the form h; r; tarð Þ where

h 2 Lab; r 2 P, and tar is called the target (indicator)

and is taken from the set here; in; outf g [inj j
�

1� j� ng; the rules assigned to membrane h form the

set

Rh ¼ r; tarð Þ j h; r; tarð Þ 2 Rf g;

i.e., R can also be represented by the vector Rhð Þh2Lab;

– i0 is the initial membrane where the axiom A is put at

the beginning of a computation.

P systems with minimal insertion and deletion 261

123

As we only have to follow the trace of a single string

during a computation of the P system, a configuration of P
can be described by a pair w; hð Þwhere w is the current string

and h is the label of the membrane currently containing the

string w. For two configurations w1; h1ð Þ and w2; h2ð Þ of P
we write w1; h1ð Þ ¼)P w2; h2ð Þ if we can pass from w1; h1ð Þ
to w2; h2ð Þ by applying a rule h1; r; tarð Þ 2 R; i.e., w1 ¼)r

w2 and w2 is sent from membrane h1 to membrane h2

according to the target indicator tar. More specifically, if

tar = here, then h2 = h1; if tar = out, then the string w2 is

sent to the membrane h2 immediately outside membrane h1;

if tar ¼ inh2
, then the string is moved from membrane h1 to

the membrane h2 immediately inside membrane h1; if

tar = in, then the string w2 is sent to one of the membranes

immediately inside membrane h1.

A sequence of transitions between configurations of P,

starting from the initial configuration A; i0ð Þ, is called a

computation of P. A halting computation is a computation

ending with a configuration w; hð Þ such that no rule from Rh

can be applied to w anymore; w then is called the result of

this halting computation if w 2 T�. L Pð Þ, the language

generated by P, consists of all strings over T which are

results of a halting computation in P.

By L X-LPð ÞðL X-LP nh i� �
Þ we denote the family of lan-

guages generated by P systems (of tree height at most n)

using rules of type X. If only the targets here, in, out are

used, then the P system is called simple, and the families of

languages are denoted by L X-LsPð Þ (L X-LsP nh i� �
). If even

only the targets in and out are used, then the P system is

called a channel type P system, as any change taking place

in such a P system can be interpreted as only happening

when an object (a string) passes through a membrane; the

corresponding families of languages are denoted by

L X-LcPð ÞðL X-LcP nh i� �
Þ.

For the accepting case, i0 is the initial membrane where

the axiom A together with the input w 2 T� is put as wA at the

beginning of a computation, and the input w is accepted if

and only if there exists a halting computation from the initial

configuration wA; i0ð Þ. In contrast to the accepting variant of

sequential grammars, in the case of P systems we do not care

about the contents of the membranes at the end of a halting

computation. By La X-LPð Þ;La X-LsPð Þ, and La X-LcPð Þ
ðLa X-LP nh i� �

;La X-LsP nh i� �
, and La X-LcP nh i� �

) we then

denote the families of languages accepted by P systems,

simple P systems, and channel type P systems (of tree height

at most n) using rules of type X.

Example 2 Let P ¼ G; 1 2½ �2 3½ �3½ �1;R; 1ð Þ be a P system of

type IR
1IL

1 with

G ¼ a; bf g; a; bf g; a; IR b½ �; IL a½ �f gð Þ;
R ¼ 1; IR b½ �; inð Þ; 2; IL a½ �; outð Þf g

The computations in P start with a in membrane 1. In

general, starting with a string an?1bn, n C 0, in membrane

1, we may either add b on the right-hand side by the rule

1; IR b½ �; inð Þ, getting an?1bn?1 as the terminal result in the

elementary membrane 3 (a membrane is called elementary

if and only if it contains no inner membrane) or else go into

membrane 2, from there going out again into membrane 1

with adding another a thus obtaining an?2bn?1. These

considerations show that the language generated by P is

anþ1bnþ1 j n	 0
� �

.

The P system P0 ¼ G; 1 2½ �2 3 4 5½ �5½ �4½ �3½ �1;R; 2ð Þ of type

DR
1DL

1IR
1 with

G¼ a;bf g; a;bf g;k; DL a½ �;DR b½ �;IR #½ �;DR #½ �f gð Þ;
R¼ 2;DL a½ �;outð Þ; 1;DR b½ �;inð Þ; 3;DL a½ �;inð Þ; 3;DR b½ �;inð Þf g
[1;IR #½ �;inð Þ; 2;IR #½ �;outð Þ; 3;DR #½ �;inð Þf g
[4;IR #½ �;inð Þ; 5;DR #½ �;outð Þf g

accepts the same language: traveling between membranes 2

and 1 allows for deleting a symbol a on the left-hand side

and a symbol b on the right-hand side. The last symbol b is

deleted by going into membrane 3. The rules with the trap

symbol # guarantee that an infinite loop, finally looping

between membranes 4 and 5, is entered whenever the input

was not of the form an?1bn?1, n C 0.

Hence, in sum we have shown

anþ1bnþ1 j n	 0
� �

2 L I1
RI1

L-LsP 1h i� �

\ La D1
RD1

LI1
R-LsP 3h i� �

:

i.e., L I1
RI1

L-LsP 1h i� �
as well as La D1

RD1
LI1

R-LsP 3h i� �
contain

a non-regular language. h

Example 3 Let P ¼ G; 1 2½ �2 3½ �3 4½ �4½ �1;R; 1ð Þ be a P sys-

tem of type DR
1IL

2 with

G ¼ a;Bf g; af g; aB; DR a½ �;DR B½ �; IL aa½ �; IL B½ �f gð Þ;
R ¼ 1;DR a½ �; in2ð Þ; 1;DR B½ �; in3ð Þ; 1;DR B½ �; in4ð Þf g
[2; IL aa½ �; outð Þ; 3; IL B½ �; outð Þf g:

The computations in P start with aB in membrane 1. In

general, starting with a string a2n

B; n C 0, in membrane 1,

we may either delete B by the rule 1;DR B½ �; in4ð Þ, getting

a2n

as the terminal result in the elementary membrane 4 or

delete B by the rule 1;DR B½ �; in3ð Þ: With the string a2n

arriving in membrane 3, we get Ba2n

in membrane 1 by the

rule 3; IL B½ �; outð Þ. Now we double the number of symbols

a by applying the sequence of rules 1;DR a½ �; in2ð Þ and

2; IL aa½ �; outð Þ 2n times, finally obtaining a2nþ1

B. In sum we

get L Pð Þ ¼ a2n j n	 0
� �

for the language generated by the

P system P; hence, we have shown that

a2n j n	 0
� �

2 L D1
RI2

L-LP 1h i� �
;

262 R. Freund et al.

123

i.e., L D1
RI2

L-LP 1h i� �
contains a non-context-free

language. h

3 Computational completeness of P systems

with minimal substitution rules

In this section we consider several variants of P systems with

substitution rules of minimal size, the main result showing

computational completeness for simple P systems with rules

of type D1I1. Yet first we show that for any recursively enu-

merable language we can construct a P system, with the height

of the tree structure being only 1 (which is the minimum

possible according to Theorem 1, as the grammars considered

there correspond to P systems with only one membrane, i.e.,

with tree height zero), of type DR
1IL

1SR
1,1, i.e., using minimal left

insertions and minimal right deletions and substitutions.

Theorem 6

RE ¼ L D1
RI1

LS
1;1
R -LP 1h i

� �
¼ La D1

RI1
LS

1;1
R -LP 1h i

� �
.

Proof From Theorem 4 we know that L PSZNFð Þ ¼ RE,

hence, we first show that for every Post system G ¼
V; T ;A;Pð Þ in Z-normal form we are able to construct an

equivalent P system P of type DR
1IL

1SR
1,1. We assume that

the rules in P are labeled in a unique way by labels from a

finite set Lab with 1 62 Lab and z 2 Lab. We now construct

a P system P, P ¼ G0; l;R; 1ð Þ, with a flat tree structure l
of height 1, i.e., with the outermost membrane (the so-

called skin membrane) being labeled by 1, and all the other

membranes being elementary membranes inside the skin

membrane being labeled by labels from

Lab0 ¼ #f g [Lab

[�h j h : P ah=bhch½ � 2 P
� �

[�h j h : P ahbh=ch½ � 2 P
� �

:

G0 ¼ V 0; T;A;P0ð Þ;V 0 ¼ x; �xl j x 2 V; l 2 Lab
� �

[#f g,
and P0 contains the minimal left insertion, right deletion,

and right substitution rules contained in the rules of R as

listed in the following:

h : P ahbh=ch½ � : 1;DR bh½ �; inhð Þ; h; SR ah=�ah
h

� 	
; out

� �
; h; IL #½ �; outð Þ;

1;DR �ah
h

� 	
; in�h

� �
; �h; IL ch½ �; outð Þ;

h : P ah=bhch½ � : 1; SR ah=�ah
h

� 	
; inh

� �
; h; IL ch½ �; outð Þ;

1;DR �ah
h

� 	
; in�h

� �
; �h; IL bh½ �; outð Þ;

h : P ah=bh½ � : 1;DR ah½ �; inhð Þ; h; IL bh½ �; outð Þ;
h : P ah=k½ � : 1; SR ah=ah½ �; inhð Þ; h;DR ah½ �; outð Þ; for ah 6¼ Z;

z : P Z=k½ � : DR Z½ �; inzð Þ;

the additional membrane # is used to trap all computa-

tions not leading to a terminal string in an infinite loop by

the rules 1; IL #½ �; in#

� �
and #; IL #½ �; outð Þ; for this

purpose, the rule h; IL #½ �; outð Þ is used in case of

h : P ahbh=ch½ �, too. Due to the features of the underlying

Post system in Z-normal form, all terminal strings from

L Gð Þ can be obtained as final results of a halting com-

putation in the elementary membrane z, whereas all other

possible computations in P never halt, finally being

trapped in an infinite loop guaranteed by the rules leading

into and out from membrane #. Hence, in sum we get

L Pð Þ ¼ L Gð Þ.
For the accepting case, in a similar way we construct

a P system P0 of type DR
1IL

1SR
1,1 equivalent to a Post

system G ¼ V ; T; Z0q0f ;P
� �

in normal form constructed

for a given recursively enumerable language according to

the proof outlined for Theorem 3. P0 ¼ G00; l00;R0; zð Þ
practically has the same ingredients as the P system P
described above, with two main exceptions: we now start

a computation with the input word put into membrane

z and instead of DR Z½ �; inzð Þ take the rule IR Z½ �; outð Þ;
moreover, we take an additional membrane f to finish the

simulation of an accepting derivation in G having lead to

the final string Z0q0f : According to the proof outlined for

Theorem 3, we now may even omit the rules for simu-

lating rules of the form P ah=k½ �: Hence, for the labels of

the membranes inside the skin membrane we take

Lab00 ¼ #; ff g [Lab

[�h j h : P ah=bhch½ � 2 P
� �

[�h j h : P ahbh=ch½ � 2 P
� �

;

moreover, G00 ¼ V 00;T ;k;P00ð Þ;V 00 ¼ x; �xl j x 2 V; l 2 Lab
� �

[#f g, and P00 contains the minimal left insertion, right

deletion, and right substitution rules contained in the rules of R0

as listed in the following:

h : P ahbh=ch½ � : 1;DR bh½ �; inhð Þ; h; SR ah=�ah
h

� 	
; out

� �
; h; IL #½ �; outð Þ;

1;DR �ah
h

� 	
; in�h

� �
; �h; IL ch½ �; outð Þ;

h : P ah=bhch½ � : 1; SR ah=�ah
h

� 	
; inh

� �
; h; IL ch½ �; outð Þ;

1;DR �ah
h

� 	
; in�h

� �
; �h; IL bh½ �; outð Þ;

h : P ah=bh½ � : 1;DR ah½ �; inhð Þ; h; IL bh½ �; outð Þ;
z : P k=Z½ � : IR Z½ �; outð Þ;

as well as 1; IL #½ �; in#

� �
; #; IL #½ �; outð Þ; and DR q0f

h i
; inf

� �

as the additional rules. h

Summarizing the results of Theorems 1 and 6, we get:

Corollary 2 For all n C 1,

L D1I1S1;1
� �

¼ L D1I1S1;1-LP 0h i� �
¼ La D1I1S1;1-LP 0h i� �

� REG � L D1
RI1

LS
1;1
R -LP nh i

� �

¼ La D1
RI1

LS
1;1
R -LP nh i

� �
¼ RE:

P systems with minimal insertion and deletion 263

123

If we want to restrict ourselves to the simple targets

here, in, out and as well to use only minimal insertions and

deletions, then we have to use a more difficult proof

technique than in the proof of Theorem 6.

Theorem 7 L D1I1-LsP 8h i� �
¼ La D1I1-LsP 8h i� �

¼ RE.

Proof In order to show the inclusion RE � L
D1I1-LsP 8h i� �

, as in the proof of Theorem 6 we start from a

Post system G ¼ V ; T;A;Pð Þ in Z-normal form with

assuming the rules in P to be labeled in a unique way by

labels from a finite set Lab with 1 62 Lab and z 2 Lab and

construct an equivalent simple P system P;P ¼
G0; l;R; 1ð Þ, of type D1I1, with G0 ¼ V 0; T ;A;P0ð Þ and

V 0 ¼V [VR [Sf g;VR ¼ D;E;F;H; J;K;Mf g;
P0 ¼ þX;
X j X 2 V [Sf gf g [Xþ;X
 j X 2 V [VRf g;

as follows:

The membrane structure l consists of the skin mem-

brane 1 as well as of linear inner structures needed for the

simulation of the rules in G:

– For every rule h : P ahbh=ch½ � and every rule h :

P ah=bhch½ � in P we need a linear structure of 8

membranes

h;1ð Þ h;2ð Þ. . . h;8ð Þ
� 	

h;8ð Þ. . .
� 	

h;2ð Þ
� 	

h;1ð Þ;

– for every rule h : P ah=bh½ � and every rule h : P ah=k½ � in
P we need a linear structure of 6 membranes

h;1ð Þ h;2ð Þ. . . h;6ð Þ
� 	

h;6ð Þ. . .
� 	

h;2ð Þ
� 	

h;1ð Þ;

– for getting the terminal results by erasing the symbol

Z, we need the linear structure of 3 membranes

z;1ð Þ z;2ð Þ z;3ð Þ
� 	

z;3ð Þ
� 	

z;2ð Þ
� 	

z;1ð Þ:

The simulations of the rules from P are accomplished by

the procedures as shown in Tables 1, 2, 3, 4 and 5, where

the columns have to be interpreted as follows: in the first

column, the membrane (label) h is listed, in the second one

only the rule p 2 P is given, which in total describes the

rule h; p; inð Þ 2 R, whereas the rule p in the fifth column

has to be interpreted as the rule h; p; outð Þ 2 R; the strings

in the third and the fourth column list the strings obtained

when going up in the linear membrane structure with the

rules h; p; inð Þ from column 2 and going down with the

rules h; p; outð Þ from column 5, respectively. The symbol

F cannot be erased anymore, hence, whenever F has been

introduced at some moment, the computation will land in

an infinite loop with only introducing more and more

symbols F.

The main idea of the proof is that we choose the

membrane to go into by the rule 1;Kþ; inð Þ in a non-

deterministic way. The goal is to reach the terminal

membrane z; 3ð Þ by starting with a string wZ;w 2 T�, from

the skin membrane (Table 1).

Tables 2, 3, 4 and 5 are to be interpreted in the same way

as above; yet mostly we only list the results of correct

simulations in column 4 and omit the results of adding the

trap symbol F. Moreover, the rule D- in the skin

Table 2 Simulation of h : P ab=c½ �

h; 8ð Þ ScwDH H-, F?

h; 7ð Þ ?S cwDH ScwD E?, F?

h; 6ð Þ ?c wDH ScwDE M?, F?

h; 5ð Þ H? wD ScwDEM -S, F?

h; 4ð Þ D? w cwDEM M-, F?

h; 3ð Þ a- wa cwDE J?, F?

h; 2ð Þ b- wab cwDEJ J-, F?

h; 1ð Þ K- wabK cwDE E-, F?

1 K? wab cwD D-

cw

Table 3 Simulation of h : P a=bc½ �

h; 8ð Þ SbcwDH H-, F?

h; 7ð Þ ?S bcwDH SbcwD E?, F?

h; 6ð Þ ?b cwDH SbcwDE M?, F?

h; 5ð Þ ?c wDH SbcwDEM -S, F?

h; 4ð Þ H? wD bcwDEM M-, F?

h; 3ð Þ D? w bcwDE J?, F?

h; 2ð Þ a- wa bcwDEJ J-, F?

h; 1ð Þ K- waK bcwDE E-, F?

1 K? wa bcwD D-

bcw

Table 4 Simulation of h : P a=k½ �; a 6¼ Z

h; 6ð Þ SwDH H-, F?

h; 5ð Þ ?S wDH SwD E?, F?

h; 4ð Þ H? wD SwDE S-, F?

h; 3ð Þ D? w wDE J?, F?

h; 2ð Þ a- wa wDEJ J-, F?

h; 1ð Þ K- waK wDE E-, F?

1 K? wa wD D-

w

Table 1 Getting the terminal string w 2 T�

z; 3ð Þ w

z; 2ð Þ Z- wZ F?

z; 1ð Þ K- wZK wF F?

1 K? wZ wFF

264 R. Freund et al.

123

membrane is the only one in the whole system which uses

the target here, i.e., it has to be interpreted as 1;D
; hereð Þ.
From the descriptions given in Tables 2, 3, 4 and 5, it is

easy to see how a successful simulation of a rule h :

P xh=yh½ � 2 P works. If we enter a membrane h; 1ð Þ with a

string v not being of the form uxh, then at some moment the

only chance will be to use F?, introducing the trap symbol

F which cannot be erased anymore and definitely leads to a

non-halting computation. The additional symbols

D, E, H, J, M intermediately introduced on the right-hand

side of the string guarantee that loops inside the linear

membrane structure for the simulation of a rule h :

P xh=yh½ � 2 P cannot lead to successful computations as

well. In sum, we conclude L Pð Þ ¼ L Gð Þ.
As in the proof of Theorem 6, the construction for an

accepting P system P0 is only slightly different from what

has already been discussed above:

The initial input string is put into membrane z; 3ð Þ in the

linear structure of 3 membranes z;1ð Þ z;2ð Þ z;3ð Þ
� 	

z;3ð Þ
� 	

z;2ð Þ
� 	

z;1ð Þ;

which allows us to insert a symbol Z on the right-hand side of

the input string (Table 6).

Only the last two columns describe the computations to

happen at the beginning, whereas whenever a string v gets

back into membrane z; 1ð Þ from membrane 1 by using the

rule K? there, we end up with introducing the trap symbol

F.

Checking for the final string Z0q0f is accomplished in the

additional linear structure of 3 membranes f ;1ð Þ f ;2ð Þ f ;3ð Þ
���

� f ;3ð Þ� f ;2ð Þ� f ;1ð Þ (Table 7).

For any v 6¼ Z0q0f we return back to membrane 1 with

vFF, thus finally ending up in an infinite loop. The

remaining ingredients for P0 are exactly the same as for P
in the generating case, except that we need not take into

account rules of the form h : P a=k½ �. Hence, we have

shown RE � La D1I1-LsP 8h i� �
, too. h

Due to the matrix-like membrane structure of the simple

P systems constructed in the preceding proof, we could

obtain the computational completeness of matrix grammars

of type D1I1 as an obvious consequence of Theorem 7, yet

the direct transformation of the construction given in the

proof of this theorem would yield a lot of matrices with

lengths more than 3, whereas the direct proof given in

Theorem 5 only needed matrices of length at most 3.

In the construction given in the preceding proof, there

was only one rule using the target here, but this could not

be avoided at all when simulating normal Post rules not

keeping the parity of symbols. In order to avoid this, we

now use an encoding for the strings which instead of one

symbol a uses two symbols â�a.

Theorem 8 L D1I1-LcP 8h i� �
¼ La D1I1-LcP 8h i� �

¼ RE.

Proof For any arbitrary alphabet R, let g : R! R̂ �R be the

morphism defined by g að Þ ¼ â�a for a 2 R:We first consider

the accepting case, i.e., we want to show the inclusion

RE � La D1I1-LcP 8h i� �
. The main idea for avoiding the

target here now is to work on strings g wð Þ instead of w, as the

length of a string g wð Þ is always even. As a first example,

consider the Post rewriting rule h : P a=bc½ �; which then

extends to g hð Þ : $â�a! b̂�bĉ�c$. Yet any rule of the form

l : $uv! wxyz$ can be replaced by the rules

l0 : $uv! z$D0l; l
00 : $D0l ! xy$Dl, and l000 : $Dl ! w$.

Whereas l000 already is a normal Post rewriting rule, it is quite

easy to simulate these rules l0 and l00 based on the tables

explained in the proof of Theorem 7 (Tables 1, 2, 3, 4, 5, 6, 7).

For example, simulating a rule of the form $a! bc$Dh

corresponds to take the simulation table of the rule $a! bc$

ending up with the symbol Dh on the right-hand-side of the

string, i.e., in the table for the simulation of h : P a=bc½ � we

replace D by the specific Dh and, of course, have no rule with

target here working on Dh in membrane 1 (Table 8).

In the same way, the simulation of any rule of the form

$ab! c$Dh corresponds to take the simulation table of the

rule $ab! c$ ending up with the symbol Dh on the right-

hand-side of the string (Table 9).

The Post rewriting rule h : P ab=c½ � extends to

g hð Þ : $â�ab̂�b! ĉ�c$. Yet any rule of the form l : $uvwx!
yz$ can be replaced by the rules l0 : $wx! z$D0l; l

00 :

Table 5 Simulation of h : P a=b½ �

h; 6ð Þ SbwD D-, F?

h; 5ð Þ ?S bwD Sbw E?, F?

h; 4ð Þ ?b wD SbwE -S, F?

h; 3ð Þ D? w bwE J?, F?

h; 2ð Þ a- wa bwEJ J-, F?

h; 1ð Þ K- waK bwE E-, F?

1 K? wa bw

Table 6 Getting the initial string wZ from w 2 T� in z; 3ð Þ

z; 3ð Þ vZKFF w Z?, F-

z; 2ð Þ F? vZKF wZ D?, F?

z; 1ð Þ F? vZK wZD D-, F?

1 K? vZ wZ

Table 7 Checking for the final string Z0q0f

f ; 3ð Þ Z0

f ; 2ð Þ q0f
 Z0q0f v F?

f ; 1ð Þ K- Z0q0f K vF F?

1 K? Z0q0f vFF

P systems with minimal insertion and deletion 265

123

$vD0l ! z$Dl; and l000 : $uDl ! $. Whereas l0 and l00 are

rules of the form $ab! c$Dh; l
00 is a new kind of rule, but

easily to be simulated in the P system P to be constructed

following the constructions elaborated in the proof of

Theorem 7 (Table 10).

The rule h : P a=k½ � extends to g hð Þ : $â�a! $, which is

of the form just described above. The rule h : P a=b½ �
extends to g hð Þ : $â�a! b̂�b$, which can be replaced by the

rules h0 : $â�a! �b$Dh and h00 : $Dh ! b̂$; both are of

forms already described above.

The main challenge to finish the proof for the accepting

case is to encode a given input string w into g wð Þ, as we

need some other technical tricks to stay within the frame-

work of linear membrane structures inside the skin mem-

brane and to avoid the target here. A given recursively

enumerable language L therefore is divided into two lan-

guages L1 and L2 containing exactly those strings from

L which are of odd and even lengths, respectively.

According to Theorem 3, for both L1 and L2 there exist Post

systems in normal form G1 and G2 accepting ef gL1 Z 1ð Þf g
and L2 Z 2ð Þf g, where e is an additional (terminal) symbol.

Given an input string w, in the P system P to be con-

structed for accepting L1[L2, we start with the initializa-

tion procedure, with the input string being put into the

input membrane I; 4ð Þ (Table 11).

We then, from wU ~U; non-deterministically generate

ÛwU2 for strings w of even lengths and ÛewU1 for strings

w of odd lengths (if this guess is wrong, no successful

computation in P will be possible). In the case of input

strings of odd lengths, we have to insert a single symbol

e at the beginning of w (as then ew is of even length). In

sum, we have to simulate the Post rewriting rules $U ~U !
Û$U2 and $U ~U ! Ûe$U1; the latter rule can be split into

the sequence of rules $ ~U ! Ûe$ ~U1 and $ ~U1 ! $U1,

which itself can be simulated easily (Table 12).

The initial encoding now in principle works on strings of

even lengths between Û and Ui; i 2 1; 2f g, where for U1

we have the terminal alphabet extended by the special

symbol e. In order to avoid that the simulations in the P

system P of computations in G1 and G2 interfere, we

assume the alphabets of G1 and G2 to be disjoint, i.e., even

for terminal symbols a we have different copies a 1ð Þ and

a 2ð Þ. Hence, we have to simulate Post rewriting rules of the

form $abUi ! â ið Þ�a ið Þb̂ ið Þ�b ið Þ$Ui and finally $ÛUi !
$Ẑ ið Þ �Z ið Þ. In sum, we then have obtained an encoded

string g1 ewZð Þ or g2 wZð Þ where gi að Þ ¼ â ið Þ�a ið Þ. The rules

$abUi ! â ið Þ�a ið Þb̂ ið Þ�b ið Þ$Ui can be split into a sequence

of rules $bUi ! �b ið Þ$Ui bð Þ; $Ui bð Þ ! �a ið Þb̂ ið Þ$U0i að Þ
(here, we non-deterministically guess which will be the

next symbol a), and $aU0i að Þ ! â ið Þ$Ui.

Table 8 Simulation of h : $a! bc$Dh

h; 8ð Þ SbcwDhH H-, F?

h; 7ð Þ ?S bcwDhH SbcwDh E?, F?

h; 6ð Þ ?b cwDhH SbcwDhE M?, F?

h; 5ð Þ ?c wDhH SbcwDhEM -S, F?

h; 4ð Þ H? wDh bcwDhEM M-, F?

h; 3ð Þ Dh? w bcwDhE J?, F?

h; 2ð Þ a- wa bcwDhEJ J-, F?

h; 1ð Þ K- waK bcwDhE E-, F?

1 K? wa bcwDh

Table 9 Simulation of h : $ab! c$Dh

h; 8ð Þ ScwDhH H-, F?

h; 7ð Þ ?S cwDhH ScwDh E?, F?

h; 6ð Þ ?c wDhH ScwDhE M?, F?

h; 5ð Þ H? wDh ScwDhEM -S, F?

h; 4ð Þ Dh? w cwDhEM M-, F?

h; 3ð Þ a- wa cwDhE J?, F?

h; 2ð Þ b- wab cwDhEJ J-, F?

h; 1ð Þ K- wabK cwDhE E-, F?

1 K? wab cwDh

Table 11 Initialization for input w

I; 4ð Þ w U?

I; 3ð Þ wU ~Uþ
I; 2ð Þ wU ~U D?

I; 1ð Þ vK vK wU ~UD D-, F?

1 K? v wU ~U

Table 12 Simulation of the rule i : $ ~U1 ! $U1

i; 6ð Þ SwU1D H?, F?

i; 5ð Þ D? SwU1 SwU1DH J?, F?

i; 4ð Þ ?S wU1 SwU1DHJ J-, F?

i; 3ð Þ U1? w SwU1DH S-, F?

i; 2ð Þ ~U1
 w ~U1 wU1DH H-, F?

i; 1ð Þ K- w ~U1K wU1D D-, F?

1 K? w ~U1 wU1

Table 10 Simulation of h : $ab! $

h; 5ð Þ wD H?, F?

h; 4ð Þ D? w wDH J?, F?

h; 3ð Þ a- wa wDHJ J-, F?

h; 2ð Þ b- wab wDH H-, F?

h; 1ð Þ K- wabK wD D-, F?

1 K? wab w

266 R. Freund et al.

123

According to the simulation tables, the P system P now

can simulate the corresponding Post systems in normal

form G1 and G2.

Checking for the final string corresponding to Z0q0f

means checking for the final string Ẑ0 ið Þ�Z0 ið Þq̂0f ið Þ�q0f ið Þ
with i 2 1; 2f g. As in the proof of Theorem 7 it is sufficient

to check for the appearance of the last symbol (Table 13).

The last two columns show what happens if we enter

membrane f ; 1ð Þ with a wrong string v.

Hence, in sum we have shown RE � La D1I1-LcP 8h i� �
.

In the generating case, again a given recursively enu-

merable language L is divided into two languages L1 and L2

containing exactly those strings from L which are of odd

and even lengths, respectively. According to Theorem 4,

for both L1 and L2 there exist Post systems in Z-normal

form G1 and G2 generating ef gL1 Z 1ð Þf g and L2 Z 2ð Þf g,
where e is an additional (terminal) symbol. Again we

assume the alphabets of G1 and G2 to be disjoint, i.e., even

for terminal symbols a we have different copies a 1ð Þ and

a 2ð Þ. Let Gi ¼ Vi; Ti; Si;Pið Þ, i 2 1; 2f g, with Si 2 Vi n Ti.

The P system P we now describe simulates the computa-

tions in both Post systems G1 and G2. P in principle has the

same structure as the one already described in Theorem 7,

and it starts with the initial string Ŝ�S in membrane 1, then

simulating the Post rewriting rules $Ŝ�S! Ŝi
�Si$ (as already

shown above, these rules can be simulated by the rules

$Ŝ�S! �Si$Ŝ0i and $Ŝ0i ! Ŝi$). The simulations of the rules

from G1 and G2 can be performed as already described

above.

Finally, we end up with the strings g1 ew1Z1ð Þ and

g2 w2Z2ð Þ, respectively, with the strings ew1 and w2 being

of even lengths; these strings g1 ew1Z1ð Þ and g2 w2Z2ð Þ now

have to be decoded to the terminal results w1 and w2,

respectively: As soon as the simulation of G1 or G2 has

yielded g1 ew1Z1ð Þ or g2 w2Z2ð Þ, respectively, we start the

decoding procedure with simulating the Post rewriting rule

$Ẑi
�Zi ! ~Zi$Zi. Then, the decoding for two consecutive

symbols is executed, i.e., we have to simulate the rule

$â ið Þ�a ið Þb̂ ið Þ�b ið ÞZ ! ab$Z, which can be decomposed into

the sequence of rules $b̂ ið Þ�b ið ÞZi ! $Zi bð Þ; $�a ið ÞZi bð Þ !
b$Z 0i að Þ; as well as $â ið ÞZ 0i að Þ ! a$Zi for i; að Þ 6¼ 1; eð Þ;
the rule $b̂ ið Þ�b ið ÞZi ! $Zi bð Þ can be simulated easily, too

(Table 14).

At the end, we reach one of the situations w2
~Z2Z2 or

w1
~Z1êZ 01 eð Þ, which leads to the following final procedures

in P (Tables 15, 16)

Terminal strings of even lengths appear in membrane

f ; 2ð Þ; 4ð Þ, terminal strings of odd lengths arrive in mem-

brane f ; 1ð Þ; 5ð Þ.
Hence, we have also shown RE � L D1I1-LcP 8h i� �

. h

4 Conclusion

In this paper we have considered string rewriting systems

using the operations of minimal left and right insertion and

deletion. Using even only the operations of minimal left

insertion and minimal right deletion, matrix grammars

reach computational completeness with matrices of length

at most 3; our conjecture is that this required length cannot

be reduced to 2. As our main result, we have shown that

sequential P systems using the operations of minimal left

and right insertion and deletion are computationally com-

plete, thus solving an open problem from Alhazov et al.

Table 13 Checking for the final string corresponding to Z0q0f

f ; 3ð Þ Ẑ0 ið Þ �Z0 ið Þq̂0f ið Þ
f ; 2ð Þ �q0f 1ð Þ
; �q0f 2ð Þ
 Ẑ0 ið Þ �Z0 ið Þq̂0f ið Þ�q0f ið Þ v F?

f ; 1ð Þ K- Ẑ0 ið Þ �Z0 ið Þq̂0f ið Þ�q0f ið ÞK vF F?

1 K? Ẑ0 ið Þ �Z0 ið Þq̂0f ið Þ�q0f ið Þ vFF

Table 14 Simulation of h : $b̂ ið Þ�b ið ÞZi ! $Zi bð Þ

h; 8ð Þ SwZi bð ÞD H?, F?

h; 7ð Þ D? SwZi bð Þ SwZi bð ÞDH E?, F?

h; 6ð Þ ?S wZi bð Þ SwZi bð ÞDHE E-, F?

h; 5ð Þ Zi bð Þþ w SwZi bð ÞDH -S, F?

h; 4ð Þ b̂ ið Þ
 wb̂ ið Þ wZi bð ÞDH H-, F?

h; 3ð Þ �b ið Þ
 wb̂ ið Þ�b ið Þ wZi bð ÞD J?, F?

h; 2ð Þ Zi- wb̂ ið Þ�b ið ÞZi
wZi bð ÞDJ J-, F?

h; 1ð Þ K- wb̂ ið Þ�b ið ÞZiK wZi bð ÞD D-, F?

1 K? wb̂ ið Þ�b ið ÞZi
wZi bð Þ

Table 15 Extracting the terminal string w2 from w2
~Z2Z2

f ; 2ð Þ; 4ð Þ w2

f ; 2ð Þ; 3ð Þ ~Z2
 w2
~Z2 F?

f ; 2ð Þ; 2ð Þ Z2- w2
~Z2Z2 F?

f ; 2ð Þ; 1ð Þ K- w2
~Z2Z2K F?

1 K? w2
~Z2Z2

Table 16 Extracting the terminal string w1 string from w1
~Z1êZ 01 eð Þ

f ; 1ð Þ; 5ð Þ w1

f ; 1ð Þ; 4ð Þ ~Z1
 w1
~Z1 F?

f ; 1ð Þ; 3ð Þ ê
 w1
~Z1ê F?

f ; 1ð Þ; 2ð Þ Z 01 eð Þ
 w1
~Z1êZ 01 eð Þ F?

f ; 1ð Þ; 1ð Þ K- w1
~Z1êZ 01 eð ÞK F?

1 K? w1
~Z1êZ 01 eð Þ

P systems with minimal insertion and deletion 267

123

(2011b). Computational completeness was not only proved

for the generating case, but for the accepting case as well.

In Theorem 6 we have shown that using minimal left

insertion, minimal right deletion, and, in addition, minimal

right substitution (substitution of one symbol by another

one on the right-hand side of a string) we can obtain a P

system with the height of the tree structure being the

minimum 1, at the same time even avoiding the use of the

target here. The P systems constructed in the other proofs

showing computational completeness with only using the

operations of minimal left and right insertion and deletion,

had rather large tree height; it remains an open question to

reduce this complexity parameter.

References

Alhazov A, Krassovitskiy A, Rogozhin Yu, Verlan S (2011a) P

systems with minimal insertion and deletion. Theor Comput Sci

412(1–2):136–144

Alhazov A, Krassovitskiy A, Rogozhin Yu, Verlan S (2011b) P

systems with insertion and deletion exo-operations. Fundam

Inform 110(1–4):13–28

Alhazov A, Krassovitskiy A, Rogozhin Yu (2012) Circular post

machines and P systems with exo-insertion and deletion. In:

Gheorghe M et al (eds) Membrane computing—12th interna-

tional conference, CMC 2011, Fontainebleau, France, August

23–26, 2011, revised selected papers. Lecture notes in computer

science 7184. Springer, New York, pp 73–86

Benne R (1993) RNA editing: the alteration of protein coding

sequences of RNA. Ellis Horwood, Chichester

Biegler F, Burrell MJ, Daley M (2007) Regulated RNA rewriting:

modelling RNA editing with guided insertion. Theor Comput Sci

387(2):103–112

Castellanos J, Martı́n-Vide C, Mitrana V, Sempere JM (2001) Solving

NP-complete problems with networks of evolutionary proces-

sors. In: Mira J, Prieto AG (eds) IWANN 2001. Lecture notes in

computer science 2084. Springer, New York, pp 621–628

Csuhaj-Varjú E, Salomaa A (1997) Networks of parallel language

processors. In: Păun Gh, Salomaa A (eds) New trends in formal

languages. Lecture notes in computer science 1218. Springer,

New York, pp 299–318

Dassow J, Manea F (2010) Accepting hybrid networks of evolution-

ary processors with special topologies and small communication.

In: McQuillan I, Pighizzini G (eds) Proceedings of the 12th

workshop on descriptional complexity of formal systems,

EPTCS 31, pp 68–77

Dassow J, Păun Gh (1989) Regulated rewriting in formal language

theory. Springer, New York

Dassow J, Manea F, Truthe B (2011) On normal forms for networks

of evolutionary processors. In: Calude CS, Kari J, Petre I,

Rozenberg G (eds) Proceedings of the unconventional compu-

tation 10th international conference, UC 2011, Turku, Finland,

June 6–10, 2011. Lecture notes in computer science 6714,

pp 89–100

Freund R, Oswald M, Păun A (2004) Gemmating P systems are

computationally complete with four membranes. In: Ilie L,

Wotschke D (eds) Pre-proceedings DCFS 2004. The University

of Western Ontario, Rep. No. 619, pp 191–203

Freund R, Kogler M, Rogozhin Yu, Verlan S (2010) Graph-controlled

insertion–deletion systems. In: McQuillan I, Pighizzini G (eds)

Proceedings of the 12th workshop on descriptional complexity of

formal systems, EPTCS 31, pp 88–98

Freund R, Rogozhin Yu, Verlan S (2012) P systems with minimal left

and right insertion and deletion. In: Durand-Lose J, Jonoska N

(eds) Unconventional computation and natural computation,

11th international conference, UCNC 2012, Orleans, France,

September 3–7, 2012. Lecture notes in computer science 7445.

Springer, New York, pp 82–93

Galiukschov B (1981) Semicontextual grammars. Logica i Matem.

Lingvistika. Tallin University, pp 38–50 (in Russian)

Haussler D (1982) Insertion and iterated insertion as operations on

formal languages. PhD thesis, University of Colorado at

Boulder, Boulder

Haussler D (1983) Insertion languages. Inf Sci 31(1):77–89

Ivanov S, Verlan S (2011) Random context and semi-conditional

insertion–deletion systems. arXiv, CoRR abs/1112.5947

Kari L (1991) On insertion and deletion in formal languages. PhD

thesis, University of Turku, Turku

Kari L, Păun Gh, Thierrin G, Yu S (1997) At the crossroads of DNA

computing and formal languages: characterizing RE using

insertion–deletion systems. In: Rubin H, Wood DH (eds) DNA

based computers III. Proceedings of the 3rd DIMACS workshop

on DNA based computing, University of Pennsylvania, Phila-

delphia. DIMACS series in discrete mathematics and theoretical

computer science 48, pp 318–333

Krassovitskiy A, Rogozhin Yu, Verlan S (2011) Computational

power of insertion–deletion (P) systems with rules of size two.

Nat Comput 10(2):835–852

Marcus S (1969) Contextual grammars. Rev Roum Math Pures Appl

14:1525–1534

Margenstern M, Mitrana V, Pérez-Jiménez M (2005a) Accepting

hybrid networks of evolutionary systems. In: Ferretti C, Mauri

G, Zandron C (eds) DNA computing: 10th international work-

shop on DNA computing, DNA10, Milan, Italy, June 7–10,

2004. Revised selected papers. Lecture notes in computer

science 3384. Springer, New York, pp 235–246

Margenstern M, Păun Gh, Rogozhin Yu, Verlan S (2005b) Context-free

insertion–deletion systems. Theor Comput Sci 330(2):339–348

Minsky ML (1967) Computation: finite and infinite machines.

Prentice Hall, Englewood Cliffs

Păun Gh (2002) Membrane computing. An introduction. Springer,

New York

Păun Gh, Rozenberg G, Salomaa A (eds) (1998) DNA computing:

new computing paradigms. Springer, New York

Păun Gh, Rozenberg G, Salomaa A (2010) The Oxford handbook of

membrane computing. Oxford University Press, Oxford

Petre I, Verlan S (2010) Matrix insertion–deletion systems. arXiv,

CoRR abs/1012.5248

Post EL (1943) Formal reductions of the general combinatorial

decision problem. Am J Math 65(2):197–215

Rozenberg G, Salomaa A (1997) Handbook of formal languages, 3

vols. Springer, New York

Verlan S (2007) On minimal context-free insertion–deletion systems.

J Autom Lang Comb 12(1–2):317–328

Verlan S (2010a) Recent developments on insertion–deletion systems.

Comput Sci J Moldova 18(2):210–245

Verlan S (2010b) Study of language-theoretic computational para-

digms inspired by biology. Habilitation thesis, University of

Paris Est, Paris

268 R. Freund et al.

123

	Generating and accepting P systems with minimal left and right insertion and deletion
	Abstract
	Introduction
	Preliminaries
	Post systems
	Matrix grammars
	P systems

	Computational completeness of P systems with minimal substitution rules
	Conclusion
	References

