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Abstract We investigate several evolutionary computa-

tion approaches as a mechanism to ‘‘program’’ networks of

excitable chemical droplets. For this kind of systems, we

assigned a specific task and concentrated on the charac-

teristics of signals representing symbols. Given a Boolean

function as target functionality, 2D networks composed of

10 9 10 droplets were considered in our simulations.

Three different set-ups were tested: Evolving network

structures with fixed on/off rate coding signals, co-evolu-

tion of networks and signals, and network evolution with

fixed but pre-evolved signals. Evolutionary computation

served in this work not only for designing droplet networks

and input signals but also to estimate the quality of a

symbol representation: we assume that a signal leading to

faster evolution of a successful network for a given task is

better suited for the droplet computing infrastructure.

Results show that complicated functions like XOR can

evolve using only rate coding and simple droplet types,

while other functions involving negations like the NAND

or the XNOR function evolved slower using rate coding.

Furthermore we discovered symbol representations that

performed better than the straight forward on/off rate

coding signals for the XNOR and AND Boolean functions.

We conclude that our approach is suitable for the explo-

ration of signal encoding in networks of excitable droplets.

Keywords Chemical computer � Droplet network �
Evolutionary algorithm � Logic gate � Signal encoding �
Symbol representation

1 Introduction

In an excitable medium the propagations and collisions of

waves of chemical activity can be used for computation

(Adamatzky 2001; Adamatzky et al. 2005; Szymanski and

Gorecki 2010; Igarashi and Gorecki 2011; Bull et al.

2013). Such a medium could for example be accomodating

the Belousov–Zhabotinsky (BZ) reaction (Zaikin and

Zhabotinsky 1970; Noyes et al. 1972; Field et al. 1972;

Gyorgyi et al. 1990). We refer to droplets as small amounts

of excitable medium floating in oil that are covered with a

layer of lipid molecules. The lipids stabilise the droplets

against merging but still allow two adjacent droplets to

communicate when the lipid molecules form a bilayer

similar to that of biological cells (Aghdaei et al. 2008).

Excitation waves can be transmitted through droplets but

can also interfere with one another, dependent on their

timing and on the chemical properties of the droplets and

the medium within. Hence, droplets arranged in a network

form a potential chemical computer (Gorecki et al. 2003;

Szymanski et al. 2011; Adamatzky et al. 2011a, b; Holley

et al. 2011). An experimental implementation of such a

droplet system is shown in Fig. 1.

While it is clearly possible to rebuild basic and com-

bined logical gates in excitable chemical media (Holley

et al. 2011), this might not necessarily use the capabilities

of unconventional computers to their greatest extent
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(Gentili et al. 2012; Stepney 2012). Nonetheless, in this

work, we will evolve droplet networks fulfilling basic

logical functions because of their simplicity while explor-

ing the impact of different input symbol encodings. So the

focus is not mainly on the evolved functionality but rather

on the varying difficulty of the evolution process.

In a droplet based computer, the spatiotemporal

dynamics of the excitation waves determine the computa-

tion, therefore the topology of the coupled droplets plays a

decisive role when ‘‘programming’’ such devices. Addi-

tionally we can also look at the symbol representation in

order to discover an adequate and efficient interpretation

for them. Here we refer to ‘‘programming’’ in the broadest

sense of specifying the desired functionality of a comput-

ing device in contrast to the typically understood exact

algorithmic specification of data manipulation. Examples

for this unconventional sense of programming could be

evolutionary algorithms, functional programming lan-

guages, amorphous computing, spatial computing, collision

computing, chemical computing, membrane computing,

natural computing, neural computing (Banâtre et al. 2005)

and liquid state machines (Maass et al. 2002).

In this study, we consider evolutionary algorithms (Koza

1989; Weicker 2002; Eiben and Smith 2008) as a mecha-

nism to infer adequate symbol representations when

building logic gates with droplet networks. Given an

optimisation problem, an evolutionary algorithm selects

good individuals in a population of solutions that changes

over time via genetic operators. Starting with a randomly

generated population and guided by the fitness function, the

evolutionary algorithm gives us after several generations

an approximating solution to the problem. The use of

evolutionary algorithms to design logic gates and circuits

has been studied specially in the context of genetic pro-

gramming (Koza 1989) and evolvable hardware (Miller

et al. 2000). Also in the context of excitable media, 2D

cellular automata have been evolved to fulfil binary logic

fitness functions (Stone et al. 2008).

We are not aiming at building a single droplet network

design that could act as a universal computer, solving any

kind of computable problem. But it appears feasible and

useful to build droplet devices that compute results for

different instances of a problem. Therefore, given a prob-

lem instance, input data needs to be specified in some way.

This could either happen through the initial state of the

droplet system or during the runtime, most probably

through external stimulation of certain droplets. In either

way it is an important design decision which encoding is

used to feed inputs into the droplet network. Most probably

the optimal encoding will depend on a number of factors

like the type of task, the number of used symbols,

parameters of the computing substrate, the applied quality

measure, and how much computation can be done outside

the droplet network to generate the encoding.

Since we cannot influence the amplitude of the excita-

tion spikes, a list of times at which we excite particular

droplets should contain all the information that is available

to the computing droplet system. Nonetheless, different

features of this list of excitations might be of more or less

importance. From the neurosciences we know for example

the coding techniques rate coding, population coding and

temporal coding (Brown et al. 2004). In the case of rate

coding, the (averaged) oscillation frequency is used to

distinguish different meanings while the exact timing of the

spikes would be ignored. Population coding on the other

hand would mean that the activity of different sub-popu-

lations of droplets denoted different meanings. For tem-

poral coding, the precise timing differences between

excitation spikes are utilised as information carrier. These

coding schemes might be candidates for excitable droplets

as well.

To find adequate symbol representations for droplet

computers, we start by considering rate coding and evo-

lution of droplet networks that fulfil a functionality, given

by simple Boolean functions. Similar to evolutionary

Fig. 1 Experimental droplet system made from manually aligned

droplets of a Belousov–Zhabotinsky medium, taken from Gruenert

et al. (2011a, b). In the bright red state, the medium is resting and

transparent/white excitation waves propagating between droplets can

be observed. Even though droplets remained relatively stable, a

merger between the central two droplets is shown in the third frame.

(Color figure online)
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algorithms or to genetic programming the evolved droplet

network topology can be seen as the definition for a pro-

gram that can be executed on the droplet computing

architecture. Then we explore the co-evolution of the

droplet network topologies with different symbol encoding

options for two symbols and basic Boolean logic functions.

2 Methods

2.1 Self-exciting droplets

For the simulation studies, we are using a stochastic, dis-

crete state, continuous time simulation model for self-

exciting droplets that was described in (Gruenert et al.

2012b). It allows fast simulations while retaining the pos-

sibility for fine-tuning of the droplet timing parameters and

noise levels. Coarsely, each droplet is simulated as being in

one of three states: excited, refractory or responsive. After

being excited, droplets always stay refractory for some

time, then become responsive for some time and then can

self-excite or be triggered into the next excited state again

to begin a new oscillation. The lengths of the three phases

are drawn from a truncated normal distribution in this case.

Droplets can interact in the following sense: If a droplet in

the excited state is adjacent to a responsive droplet, the

responsive droplet is triggered into an excitation as well.

This means, even though the droplet would self-excite

anyway after some time, the next oscillation cycle is trig-

gered to happen earlier. When a droplet is in the excited or

refractory state, it is not influenced by its neighbours.

Additionally, also drawn from a normal distribution, there

is a signal propagation delay between an excitation and its

influence on an adjacent responsive droplet.

We also use variations of the model for less excitable

droplet types, such that at least two concurrent excitations

are necessary to trigger a droplet into an earlier excitation.

Furthermore, to allow for a richer dynamic behaviour, we

decided to include one more droplet type that would

oscillate slower. The different oscillation period can be

achieved by differently composed BZ mixtures. In this

case, all timing mean values as well as the standard devi-

ations are multiplied by an arbitrary factor of 3
2
.

In this study we use the following parameters: normal

droplets dNorm as well as input and output droplets are

modelled with an expected oscillation period of 16 s, which

is composed of 10 s responsive time sres, 1 s excited time

sex and 5 s refractory time sref. Signal propagation delays

sprop are 1 s. The exact timing parameters for each

phase are sampled using normal distributions with a

standard deviation of 0.05 s around the mean values

given before. Less excitable droplets dLowEx use the same

timing distributions but require at least two adjacent

droplets to be excited at the same time to trigger an

excitation.

2.2 Droplet Networks

We perform in silico experiments of droplet networks in a

10 9 10 grid of simulated droplets that are connected in a

Moore neighbourhood of radius one, such that all directly

adjacent cells can excite each other. These geometric

properties of the networks were chosen based on the size of

networks that can presumably be achieved experimentally

by our collaboration partners in the near future. Up to four

different kinds of cells are used, which represent empty

cells, normal droplets, droplets of lower excitability and

droplets with longer oscillation periods. Furthermore, there

are two fixed input droplets and two fixed output droplets

defined on the network grid. They can be used to dynam-

ically feed a stream of excitations into and out of the

droplet network. The positions of the input and output

droplets are fixed to arbitrary values, coarsely in the middle

of the left and right hand sides of the grid, as visualised in

Fig. 2a.

We represent a specific droplet network instance as an

n by n array:

N ¼

d1;1 d1;2 � � � d1;n

d2;1 d2;2 � � � d2;n

..

. ..
. . .

. ..
.

dn;1 dn;2 � � � dn;n

0
BBBB@

1
CCCCA

di;j 2 f£; dNorm; dLowEx; dSlow; dIn0; dIn1; dOut0; dOut1g

A Moore neighbourhood around each droplet di,j defines the

connectivity of the droplets, i.e. a droplet di,j is connected to a

present droplet dk,l if |i - k| B 1 or if |j - l| B 1.

2.3 Signal encoding

When representing binary signals by rate coding, we

stimulate droplets as much as possible for a symbol ‘1’ and

not at all for a symbol ‘0’. When droplets are maximally

stimulated, the oscillation time will be sex ? sref = 6 s.

Normal droplets that are left alone do not stop oscillating

but their frequencies are lower with periods of sex ?

sref ? sres = 16 s.

To allow more complex symbol representations, we use

a timing pattern that determines which input droplet is

stimulated from the outside at which times as visualized in

Fig. 2b. We divide the length T of the stimulation pattern

up into m small intervals fI1. . .Img; each of the length

4t ¼ T
m
: Hence, interval Ij is defined between the times

ðj� 1Þ � Dt and j � Dt: Considering a single droplet only, we
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define a pattern S(1) as a Boolean vector, which states if the

droplet is stimulated in the interval Ij or not. To describe

meaningful symbols, Dt should be small in comparison to a

droplet’s oscillation period, resulting in a fine temporal

resolution. Meanwhile, the total length T of the symbol

should probably be long in comparison to the droplet’s

oscillation to allow symbols to consist of more than a

single excitation.

Sð1Þ ¼ ðaI1
; aI2

; . . .; aIm
Þ; ai 2 f0; 1g; Sð1Þ 2 f0; 1gm;

m � Dt ¼ T

Because typically more than one input will be used, mul-

tiple droplets will have to be stimulated, e.g., both inputs

for an XOR gate. Furthermore, thinking about population

coding, a single symbol like a logical ‘1’ could affect

multiple droplets with individual stimulation patterns. In

contrast, for the sake of redundancy, a common stimulation

pattern might be supplied to multiple droplets. Here we use

the notion of the droplet channel ci to signify a set of

droplets that receives the same stimulation pattern Sci

ð1Þ.

Two droplet channels ci and cj could now either be used as

components of a single symbol or as independent inputs.

Nonetheless, in the experiments shown in this work, a

symbol will only consist of a single droplet channel.

For stimulation patterns that are composed of many

channels C ¼ fc1; c2; . . .; cjCjg, we can extend the pattern

definition S(1) to an array S(|C|) that stores the activation

state aci,Ij of each channel ci 2 C for each interval Ij:

SðjCjÞ ¼

ac1;I1
ac1;I2

� � � ac1;Im

ac2;I1
ac2;I2

� � � ac2;Im

..

. ..
. . .

. ..
.

acjCj;I1
acjCj;I2

� � � acjCj;Im

0
BBB@

1
CCCA

2.4 Task definition

To evaluate the quality of a droplet network and of dif-

ferent symbol encodings, we define Boolean functions that

should be fulfilled in terms of their truth tables. As dis-

played in Table 1, we tested seven different functions with

up to two input and output channels.

(a)

(b)

 0  20  40  60  80  100

time

sy
m

bo
ls

Fig. 2 Individuals for the Evolutionary Algorithm, taken from

Gruenert et al. (2012a, b): a Rendering of an evolved 10 9 10

droplet network instance. Each square represents a droplet on a two

dimensional array. Not all positions of the array are filled with

droplets. Horizontally, diagonally and chequered striped circles

represent normal, less excitable and long period droplets respectively.

The input droplets (di1, di2) and output droplets (do1, do2) on

arbitrarily fixed positions are indicated by arrows. Touching droplets

can excite each other, defining the connectivity for the droplet

simulation. b Example of two symbols that evolved together with a

network instance to realise the XOR function. The lower row of the

image represents symbol ‘0’ while the upper row represents symbol

‘1’. Time advances left to right over 100 frames with a time step of

0.5 s, leading to a total length of 50 s per symbol. The input droplets

are stimulated only in the intervals that are represented by white

vertical bars and are left alone where the black vertical bars are

rendered. The symbols are fed into the droplet network repeatedly,

recapitulating the stimulation pattern every 50 s. At least three

oscillation cycles are completed per symbol repetition because the

simulated droplets’ self-excitation periods are around 16 s. Since

droplets are modelled with refractory times, not every white

stimulation bar will actually lead to an excitation in the droplet but

can as well be disregarded in the droplets refractory phases, especially

when two excitations follow each other closely

Table 1 Boolean functions that were used as fitness criteria in

evolution

Expected output ~ocp

Task Input

0 0 0 1 1 0 1 1

Identity 0 0 0 1 1 0 1 1

OR 0 1 1 1

AND 0 0 0 1

NAND 1 1 1 0

XOR 0 1 1 0

XNOR 1 0 0 1

Half-adder 0 0 1 0 1 0 0 1

Two input and up to two output channels were used
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2.5 Fitness evaluation

Ultimately, the aim of these experiments is to find symbols that

can be used by the network internally as input as well as for

output. But to evaluate the fitness of a droplet network for

binary operations using arbitrary symbols, a metric that

determines the similarity between an input symbol and a

recorded output excitation stream would be necessary. As

discussed in Sect. 1, choosing an appropriate metric is not

trivial. Consequently, we are evolving complex symbol rep-

resentations to feed into the network but we do not yet expect

the network to reproduce these complicated symbols as out-

puts. Instead we use simple rate coding for the outputs: high

activity is interpreted as symbol ‘1’ and low activity as symbol

‘0’. Here again, as for the rate coding input, high activity

means droplets are entering the next oscillation cycle very

shortly after leaving the refractory phase, resulting in a high

spike frequency. Low activity, in contrast, means that droplets

are rarely triggered into early excitations by their neighbours

and mostly self-excite, resulting in a low spike frequency.

The evaluation is divided into distinct phases p by

assigning each combination of input symbols to one phase,

resulting in four phases for two binary inputs. Then, for each

phase, we analyse the output droplet channels, i.e., the

activity on the designated output droplets, for their similarity

to an expected output: for each phase p, the system is sim-

ulated with the appropriate input signals for a fixed time and

the number of received excitations at the droplets of output

channel c are stored in ocp. We denote the maximal and

minimal counted peak numbers as omax and omin. The symbol

that is expected at the output droplets for the channel-phase

pair (c, p) is referenced as ~ocp 2 f0; 1g instead.

The final fitness F is influenced by two different aspects,

F1 and F2, of the output behaviour. First, the normed dif-

ference between highly activated and less activated chan-

nel-phase pairs should be maximised to allow some kind of

discrimination. We define the difference between the

maximum and minimum peak numbers divided by the

maximum peak number as F1. F1 is zero if all peak num-

bers are equal and at most one when the minimum value is

zero. Second, the truth table should be fulfilled, leading to a

function F2. Here, the worst case channel-phase pair

defines the overall fitness. Each channel-phase pair peak

number should lie as close as possible to the minimum or

maximum peak number, dependent on the expected output

~ocp: Finally, if a minimum discriminability is exceeded and

also the Boolean function is fulfilled, the distance between

minimum and maximum rates should further be expanded.

F ¼
F1 if F1\0:2
F2 þ 1:0 if F1� 0:2 and F2\0:9
F1 þ 2:0 if F1� 0:2 and F2� 0:9

8<
: ð1Þ

F1 ¼
omax � omin

omax

ð2Þ

F2 ¼ min
c;p

1� ocp�omin

omax�omin
if ~ocp ¼ 0

ocp�omin

omax�omin
if ~ocp ¼ 1

(
ð3Þ

2.6 Experimental set-up

We employed an evolution strategy of the type (8/2,30)-

ES, meaning a comma strategy with 8 parents and 30

children, running for 250 generations where the parents of

each generation are discarded. Two parents are recombined

to produce each child. The best symbol representation of

each generation of a single experiment is displayed in

Fig. 3. For each experiment, we ran a batch of 50 evolu-

tionary optimisations to build mean values. In total, we

conducted 35 experiments for all the combinations of the

seven target functions from Table 1 and the five experi-

mental variations: Network only evolution with three or four

Fig. 3 Evolutionary trajectory of two symbol representations over

250 generations co-evolution with a droplet network (Gruenert et al.

2012a, b). The y-axis denotes the evolutionary generation while the

x-axis represents the stimulation interval for each fitness evaluation

similar to the signal plot in Fig. 2b. The regularities that can be

observed along the x-axis in both graphics are not evolved regularities

but result from the repetition of the pattern: As the pattern of 100

intervals is fed into the simulator during fitness evaluation in a

repeated manner, three repetitions of the input signal are plotted over

300 time frames

Symbol representations and signal dynamics 251
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droplet types, network and signal co-evolution with three or

four droplet types and network only evolution with pre-

evolved symbol representations. The symbol representation

for the pre-evolved signals was taken from the co-evolution

experiment that achieved the best fitness. Using four droplet

types means using empty droplets, normal droplets, less

excitable droplets and long period droplets, while the latter

is discarded for the three droplet type exper-

iments.

For mutating the droplet network, the probability of

switching an arbitrary position is 0.05. When using four

droplet types, the probabilities for changing to an empty

cell, to a normal droplet, to a low-excitability droplet and

to a long-period droplet are 0.4, 0.4, 0.1 and 0.1 respec-

tively. For the runs without the long period droplet type,

the remaining probabilities read 4
9
; 4

9
and 1

9
: Single point

crossover recombination is applied with an uniformly

chosen position in the row-by-row linearised representation

of the droplet network. For the input signal, the probability

of switching an arbitrary position is 0.025. When a muta-

tion occurs, the probability for generating a ‘1’ is 0.1 while

a ‘0’ is generated with probability 0.9. Single point

crossover recombination is applied with an uniformly

chosen position.

3 Results

Small droplet systems of up to 100 droplets were arranged

by means of evolutionary algorithms to satisfy the Boolean

functions Identity, OR, AND, NAND, XOR, XNOR and

half-adder. Based on differentially fast fitness increase,

some target functions are easier to evolve than others (cf.

Fig. 4). As observed in (Adamatzky and Bull 2009), the

reason for this is partially the different problem complexity

and partially the properties of the computing substrate that

favor and disfavor certain kinds of tasks. In the case of our

droplet computing, using rate coding only, the OR and

AND functions evolve fastest, followed by Identity, XOR,

the half-adder, the XNOR, and the NAND function.

Nonetheless, there is a strong qualitative transition between

the XOR and the half-adder function. The mediocre fitness

of the XOR network is based on the some few evolution

runs that produced high fitness XOR networks and many

non-functional ones. The XNOR and NAND evolutions

using rate coding as well as the half-adder with any coding

on the other side did not lead to a single evolution run

producing a functional network.

Despite these difficulties, even a complicated function

like XOR was evolved, even for single channel rate coding

signal inputs, albeit not as fast as a simple OR or AND

function (cf. Fig. 5). Interestingly, the identity function,

meaning a mere connection between both inputs and out-

puts, is not a simple task compared to AND or XOR when

co-evolving input signals (cf. Fig. 4). Apparently co-

evolving networks and symbol representations for the

identity function is almost as hard as evolving the half-

adder. While using rate coding, in contrast, the identity

function evolved faster than the XOR function. Evolution

with and without the third droplet type with long oscillation

periods did not significantly change the speed or final

quality of the evolution process.

A network successfully implementing the half-adder

functionality did not evolve in our experiments so far. The

reason for this is most probably the difficulty of crossing

over two connections in the two dimensional lattice of
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Fig. 4 Average fitness of population’s best individual over 50

experiments for evolving different target functions from Table 1,

taken from Gruenert et al. (2012a, b). Error bars indicate the standard

error of the mean. Generally, all fitness values are lower for the signal

and network co-evolution because of the higher dimensional search

space. Exceptions are those functions that benefit from a simple

swapping of rate coding signals, i.e. the NAND and XNOR functions
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(a)

(c) (d)

(b)

Fig. 5 Activity plot of an evolved XOR network using different

stimulations at the red input droplets on the left side of the network.

The nodes in the network represent input droplets (red), output droplets

(blue), normal droplets (gray) and less excitable droplets (green). The

arrows in the picture describe the impact of other droplets for the

excitations of each droplet. While a strong loop arrow on top of a

droplet means that the droplet mostly self-excited, an arrow from a

neighbouring droplet means that it was excited by this neighbour many

times. While an input of (0,1) or (1,0) leads to a cyclic propagation of

pulses through the network in either clockwise or counter-clockwise

direction, no excitation at all (0,0) or full stimulation (1,1) results in

pulses that propagate from the left to the right. The cyclic propagation

results in a higher total spike rate arriving at the blue output droplet as

thinner self-excitation loop on top of the output droplet can be

observed. Hence, the droplet network fulfils the function of an XOR

gate when used with rate coding inputs. (Color figure online)
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droplets. A half-adder network could be implemented by an

XOR gate together with an AND gate, each of which

evolved comparatively easy. But to construct the half-adder

from the two gates, both inputs would have to be available

to each of the gates. Thus at least one of the input signals

would need to cross over another one. While we do not

exclude the possibility of a signal crossing over another

one given a suitable construction of a droplet system and a

fitting symbol encoding, we did not observe such a system

in our experiments. At least when trying to evolve a rate

coding identity function with two inputs and two outputs

while crossing over the outputs, the fitness dropped dra-

matically, such that no satisfying solution has evolved.

Shown in Fig. 6, at least in the case of the AND and

XNOR functions, pre-evolved signals exist (cf. Fig. 7) that

are clearly leading to a faster evolution of droplet networks

than simple rate coding. Here droplet networks and signals

were originally co-evolved. Then, one of the best evolved

symbol representations was used consistently through a full

network-only evolution run.

The evolved symbols look similar (cf. Fig. 7a) to rate

coding signals but most probably allow for a better syn-

chronization of arriving spikes. While a single activation

peak remained for the ‘0’ symbol, it had no obvious

influence on the fitness of the symbol. The synchronization

of spikes seems to be important considering that a low

excitability droplet is only activated by other droplets,

when two spikes arrive in a narrow time window. The

length of the window used in our experiments was one

second. So while a constant activation, using rate coding

symbols, leads to the highest frequency of spikes in the

input droplets, the phase of both input droplet oscillations

can randomly drift and is dependent on the initial condi-

tions. When using a slightly lower activation rate instead,

the phases of both input droplets are controlled by the

stimulation, leading to a higher number of concurrent

spikes arriving at low excitability droplets. This, in turn,

leads to a higher influence of the low excitability droplets

on further droplets in the network. We tested an evolved

droplet network and stimulated it with a rate coding sym-

bol, a co-evolved symbol and with an additionally engi-

neered symbol. The engineered symbol includes no

stimulated at all for symbol ‘0’ and regular spike every

seven seconds for symbol ‘1’. With this spike pattern, the

engineered symbol reaches very similar input and output

average spike rates compared to the evolved symbol. The

measured spike frequencies are summarized in Table 2.

A further extreme rise in evolution efficiency was

observed for the NAND function. However, this is most

probably only due to a crosswise substitution of the signals

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  50  100  150  200  250

coevolution

rate coding

pre-evolved signals

fit
ne

ss

generation

Fig. 6 Average fitness of populations’ best individual over 50

experiments for evolving the AND function using rate coding, co-

evolution and pre-evolved symbol representation Gruenert et al.

(2012a). Error bars indicate the standard error of the mean. For the

rate coding and co-evolution experiments, two curves are plotted: The

corresponding simulations ran with and without the long period

droplet types, but no significant difference was observed

(a)
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Fig. 7 Evolved symbol representations for the AND and the XNOR

functions that performed better than rate coding, taken from Gruenert

et al. (2012a). a While the AND symbol looks very similar to rate

coding symbols, there is one peak included for symbol ‘0’ that might

serve as a helper for synchronisation. b For the XNOR signals, both

symbols are represented by a series of about 30 s activation followed

by ca. 20 s rest. The difference between both symbol representations

could be either in the shift of the active phases of about 10–20 s or in

the exact pattern of each signal
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for symbols ‘0’ and ‘1’, such that the problem is reduced to

a rate coded OR function. Functions that involve a map-

ping from symbol ‘0’ to low activity like the XNOR, and

NAND functions seemed more difficult with pure rate

coding. This problem of inverting signals should easily be

resolved when using multi-channel symbol representations

that would supply a high and a low activity channel for

each symbol. Problems that did not benefit significantly

from pre-evolved symbol representations were the OR, the

XOR, the Identity function and the half-adder. Nonethe-

less, the pre-evolved symbols never led to worse evolution

trajectories in our experiments.

4 Discussion and future work

Besides designing droplet network structures and symbol

encodings, evolutionary algorithms also served another

purpose in this work: To some extent, evolutionary algo-

rithms also offer a measure of complexity, telling us

whether a problem is simple or hard to solve (Adamatzky

and Bull 2009). Or, given two distinct symbol encodings,

which of them makes searching for a solving network

structure easier.

A straight forward construction of two adequate sym-

bols, representing ‘0’ and ‘1’, might be to maximise the

distance between them. The problem here is to define the

distance metric that would heavily influence the result of

the maximisation. Ideally these experiments would only

depend on the properties of the computing substrate itself

and not on arbitrary definitions that are put in from the

outside. But any kind of metric like the Hamming distance

or the spike train similarity measures from the neurosci-

ences (Dauwels et al. 2008) seem sensible but artificial

with respect to the computing droplet substrate. A mean-

ingful alternative would be to run a nested evolution of a

droplet network simulation as distance metric—the easier it

is to evolve a network that discriminates both signals, the

larger the distance between both symbols. Still, the com-

putational efforts for a single evaluation of the fitness

function appear immense. This led us to the different

approach of co-evolving signals and droplet networks for

simple binary problems at first.

Even though simple logic functions were evolved here,

the automatic construction of larger, more complex sys-

tems might be hard, especially when fitness functions

cannot provide enough gradient for the optimisation algo-

rithm to follow. The ‘‘multi-step’’ fitness functions that we

used in Eq. 1 tries to focus different aspects of generating

the network functions at different times, dependent on how

close to perfect the solution is. But since it is generally

impossible to find all non-dominated solution candidates

by mapping multiple fitness criteria onto a single scalar

value, we will move on to using Pareto optimisation for

future experiments (Schaffer 1985; Zitzler et al. 2004).

Generally the influence of the droplet network dimen-

sions should be interesting—especially how few droplets

can generate the sought-after behaviour, what number of

droplet species are essential, is there a preferential length

for droplet signal patterns and how many input channels

should be used per symbol? For this purpose, we will also

consider population coding (Pouget et al. 2000; Averbeck

et al. 2006) in forthcoming experiments. Also the aspect of

robustness has not yet been in the focus of this work.

Nonetheless it appears important if a droplet network and

symbol representation led to a high score accidentally or if

the performance can be sustained under different initial

conditions and with noise.
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