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Abstract We first give an introduction to the field of tile-

based self-assembly, focusing primarily on theoretical

models and their algorithmic nature. We start with a

description of Winfree’s abstract Tile Assembly Model

(aTAM) and survey a series of results in that model, dis-

cussing topics such as the shapes which can be built and the

computations which can be performed, among many others.

Next, we introduce the more experimentally realistic kinetic

Tile Assembly Model (kTAM) and provide an overview of

kTAM results, focusing especially on the kTAM’s ability to

model errors and several results targeted at preventing and

correcting errors. We then describe the 2-Handed Assembly

Model (2HAM), which allows entire assemblies to combine

with each other in pairs (as opposed to the restriction of

single-tile addition in the aTAM and kTAM) and doesn’t

require a specified seed. We give overviews of a series of

2HAM results, which tend to make use of geometric tech-

niques not applicable in the aTAM. Finally, we discuss and

define a wide array of more recently developed models and

discuss their various tradeoffs in comparison to the previous

models and to each other.

Keywords Tile-based self-assembly � Algorithmic self-

assembly � Tile Assembly Model � Wang tiles

1 Introduction

Self-assembly is the process by which a collection of rel-

atively simple components, beginning in a disorganized

state, spontaneously and without external guidance coa-

lesce to form more complex structures. The process is

guided by only local interactions between the components,

which typically follow a basic set of rules. Despite the

seemingly simplistic nature of self-assembly, its power can

be harnessed to form structures of incredible complexity

and intricacy. In fact, self-assembling systems abound in

nature, resulting in everything from the delicate crystalline

structure of snowflakes to many of the structurally and

functionally varied components of biological systems.

Beyond the purely mathematically interesting properties

of self-assembling systems, such systems have been rec-

ognized as an excellent template for the fabrication of

artificial structures on the nanoscale. In order to precisely

manipulate and organize matter on the scale of individual

atoms and molecules, several artificial self-assembling

systems have been designed. In order to model such sys-

tems, theoretical models have been developed, and one of

the most popular among these is the Tile Assembly Model

introduced by Winfree in his1998 Ph.D. thesis (Winfree

1998). Formulated in two basic versions, the abstract Tile

Assembly Model (aTAM) and the kinetic Tile Assembly

Model (kTAM), it was based on a cross between the the-

oretical study of Wang tiles (1963) (flat squares with col-

ored markings on their edges and matching rules for the

ways those edges can be placed next to each other) and

novel DNA complexes being synthesized within Ned Se-

eman’s laboratory (1982). The aTAM provides a more

high-level abstraction which ignores the possibility of

errors and provides a framework for theoretical studies of

the mathematical boundaries to the powers of such sys-

tems. The kTAM, on the other hand, injects more of the

physical reality of the chemical kinetics into the model and

allows for the study of the causes of errors and potential

mechanisms for detecting, preventing, and/or correcting
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them. In fact, the kTAM serves as such a realistic model

that it has helped to accurately predict and shape the

experimental direction of several laboratory experiments in

which actual tile-based assemblies form. Just a few

examples of laboratory implementations include Barish

(2009), Chen (2007), Mao (2000), Rothemund (2004), and

Winfree (1998) where designs from binary counters, to the

fractal pattern known as the Sierpinski triangle, to imple-

mentations of sophisticated error prevention techniques

have been realized.

Tile-based self-assembly has proven to be a very rich

area of research, and the early proof of its computational

universality by Winfree (1998) showed that it can be

algorithmically directed (putting it into the general field of

algorithmic self-assembly). The theoretical results to be

discussed here represent a wide variety of fundamental

insights into the power of self-assembling systems which

are likely to pave the way for even deeper theoretical

results (which impact other areas of theoretical Computer

Science, Mathematics, etc.). They also provide an

increasingly firm foundation for the physical development

of artificial self-assembling systems, continuing in research

laboratories but eventually migrating to large scale fabri-

cation facilities. This paper is an extension of the tutorial

(Matthew 2012) presented at the 11th International Con-

ference on Unconventional Computation and Natural

Computation, and is meant to serve as an introduction to

tile-based self-assembly via the aTAM, kTAM, and several

other related models, as well as a survey of a wide variety

of results related to those models and to the theoretical

study of tile-based self-assembly in general. [For another

excellent survey of this area, the reader is encouraged to

refer to Doty (2012)].

We will first introduce the aTAM, giving a high-level

overview and then the technical definition of the model,

providing comparisons and contrasts between it and Wang

tiling. Next we present a complete example of an aTAM

system to clearly show how the model works and how to

design a basic system in it. After this we will present a

survey of results based on the aTAM, broadly categorizing

much of the work in the field into a series of categories

related to goals such as: what types of shapes can be built,

what computations can be performed, how efficiently (as

measured in a variety of ways) can assemblies be built, etc.

In the second main portion of the paper, we will intro-

duce the kTAM and provide an explanation of relevant

definitions and formulas. We will then provide an example

of how to design a kTAM system to provide basic error

prevention. Next we will survey a series of results based on

the kTAM to provide a picture of the progress that has been

made in terms of algorithmic approaches to error preven-

tion and correction, as well as modifications made to tile

designs toward those ends. We will then introduce the

2-Handed Assembly Model (2HAM), in which, rather than

requiring seeded assemblies which can grow only one tile

at a time, assemblies can spontaneously nucleate and

arbitrarily large assemblies are allowed to combine with

each other two at a time. We will also provide a complete

example of a 2HAM system before discussing a variety of

2HAM results, emphasizing especially those which provide

comparisons and contrasts with the aTAM.

The last main portion of the tutorial will be comprised of

high-level introductions to a wide array of newer, deriva-

tive models. Such models have been introduced for a

variety of reasons: to provide greater resilience to errors, to

potentially provide more feasible laboratory implementa-

tions, to overcome theoretical limitations of the base

models, to more faithfully mimic the behavior of given

natural (especially biological) self-assembling systems, or

simply to more fully explore the vast landscape of alter-

natives. Examples of such models include: temperature and

concentration programming, the Staged Assembly Model,

the Geometric Tile Assembly Model, and the Signal

passing Tile Assembly Model. The results presented for

these models and the discussions provided will attempt to

paint a clear picture of the salient differences between

models and the powers imbued by those differences.

The results surveyed in this paper cannot cover the full

set of work in tile-based self-assembly as it is quite

extensive, and mention of several results is unfortunately

omitted. We hope that the high-level descriptions and

simple examples presented here can provide a solid intro-

duction to the area and perhaps serve as an aid for a course

on the topic. The reader is encouraged to use this as a broad

roadmap covering a large but incomplete collection of

results which attempts to sketch the main lines of research

that have been pursued, but to refer to the full papers ref-

erenced here for much more detail and also for references

to works missing in this survey.

2 Preliminaries and notation

In this section we provide a set of definitions and con-

ventions that are used throughout this paper.

We work in the 2-dimensional discrete space Z
2: Define

the set U2 = {(0, 1), (1, 0), (0, -1), (-1, 0)} to be the

set of all unit vectors in Z
2: We also sometimes refer to

these vectors by their cardinal directions N, E, S, W,

respectively. All graphs in this paper are undirected. A grid

graph is a graph G = (V, E) in which V � Z
2 and every

edge fa~; b~g 2 E has the property that a~� b~2 U2:

Intuitively, a tile type t is a unit square that can be

translated, but not rotated, having a well-defined ‘‘side u~’’

for each u~2 U2: Each side u~ of t has a ‘‘glue’’ with ‘‘label’’
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labeltðu~Þ—a string over some fixed alphabet—and

‘‘strength’’ strtðu~Þ—a nonnegative integer—specified by its

type t. Two tiles t and t0 that are placed at the points a~ and

a~þ u~ respectively, bind with strength strt u~ð Þ if and only if

labelt u~ð Þ; strt u~ð Þð Þ ¼ labelt0 �u~ð Þ; strt0 �u~ð Þð Þ:
In the subsequent definitions, given two partial functions

f, g, we write f(x) = g(x) if f and g are both defined and

equal on x, or if f and g are both undefined on x.

Fix a finite set T of tile types. A T-assembly, sometimes

denoted simply as an assembly when T is clear from the

context, is a partial function a : Z2 ! T defined on at least

one input, with points x~2 Z
2 at which aðx~Þ is undefined

interpreted to be empty space, so that dom a is the set of

points with tiles.

We write |a| to denote |dom a|, and we say a is finite if |a|

is finite. For assemblies a and a0, we say that a is a sub-

assembly of a0, and write aY a0; if dom a � dom a0 and

aðx~Þ ¼ a0ðx~Þ for all x 2 dom a:

3 The abstract Tile Assembly Model (aTAM)

As the aTAM is based on, and similar to in some general

aspects, an older model known as Wang tiling (1961), we

first give a brief introduction to Wang tiling with the goal

being to eventually show how the two models are similar,

but more importantly how they differ as well.

3.1 Wang tiling

Introduced by Hao Wang in (Wang 1961), Wang tiles are

defined as equally sized, two dimensional unit squares

which have colors on each edge. They can be arranged side

by side, with edges aligned, on a regular square grid as long

as abutting edges have matching colors, and each tile has a

fixed orientation so that it cannot be rotated or flipped. The

key problem considered in Wang tiling is, given a set of

Wang tiles, with an infinite number of each type, can they

be placed so that they tile the plane? More specifically, the

question is whether there exists an arrangement of tiles

from a given set such that they completely cover the infi-

nite plane Z
2 leaving no holes and with all adjacent tile

edges having matching colors.

Wang initially conjectured that any set of tiles which

could tile the plane would be able do so in a periodic way.

The implication was that there must exist an algorithm

which can decide whether or not a given set of Wang tiles

can tile the plane. However, Berger disproved this con-

jecture (1965) by showing how to convert an arbitrary

Turing machine definition into a set of Wang tiles which

‘‘simulate’’ the Turing machine in such a way that they

admit a tiling of the plane if and only if the Turing machine

does not halt. Thus, since the halting problem is undecid-

able, so must be the problem of determining whether or not

a given set of Wang tiles can tile the plane. This further

implied the existence of a (finite) set of Wang tiles which

can tile the plane but only aperiodically. Berger’s original

tile set had over 20,000 tile types, but since then several

additional aperiodic tile sets have been discovered with

increasingly smaller and smaller numbers of tile types, with

a sequence of improvements by Berger, Knuth, Läuchli,

Robinson, Penrose, Ammann, and Culik finally resulting in

an aperiodic set of just 13 Wang tiles (Culik II 1996). [Note

that, using different tiling systems, aperiodic tilings of the

plane have been achieved with tiles set as small as 2, as in

the Penrose tilings (Penrose 1979).]

3.2 aTAM definition

The aTAM was developed to, in some sense, be an effec-

tivization of Wang tiling. (See Sect. 3.3 for more about this

relationship.) Namely, it provides a defined process by which

an initial (called the seed) assembly can grow into a resultant

structure. This is essentially accomplished by assigning a

positive integer strength value to each edge color in a set of

Wang tiles and stipulating that when two tile edges are

adjacent, if their colors match then the edges bind with force

equivalent to the strength of the edge color. Then, starting

with a preformed seed assembly (usually taken to be a single

tile of a specified type), additional tiles can attach one at a

time as long as the sum of the strengths of the bonds that each

makes with tiles already in the assembly meets a system wide

threshold value called the temperature.

We now give a brief formal definition of the aTAM. See

Lathrop (2009), Rothemund (2001), Rothemund and

Winfree (2000), Winfree (1998) for other developments of

the model. Our notation is that of Lathrop (2009), which

also contains a more complete definition.

Given a set T of tile types, an assembly is a partial

function a : Z2 ! T : An assembly is s-stable if it cannot

be broken up into smaller assemblies without breaking

bonds of total strength at least s, for some s 2 N:

Self-assembly begins with a seed assembly r and proceeds

asynchronously and nondeterministically, with tiles adsorbing

one at a time to the existing assembly in any manner that

preserves s-stability at all times. A tile assembly system (TAS)

is an ordered triple T ¼ ðT ; r; sÞ;where T is a finite set of tile

types, r is a seed assembly with finite domain, and s 2 N: A

generalized tile assembly system (GTAS) is defined similarly,

but without the finiteness requirements. We writeA½T � for the

set of all assemblies that can arise (in finitely many steps or in

the limit) from T :An assembly a 2 A½T � is terminal, and we

write a 2 Ah½T �; if no tile can be s-stably added to it. It is

clear thatAh½T � � A½T �:
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An assembly sequence in a TAS T is a (finite or infinite)

sequence a~¼ ða0; a1; . . .Þ of assemblies in which each ai?1

is obtained from ai by the addition of a single tile. The

result resða~Þ of such an assembly sequence is its unique

limiting assembly. (This is the last assembly in the

sequence if the sequence is finite.) The set A½T � is partially

ordered by the relation �! defined by

a�! a0 iff there is an assembly sequence a~¼ ða0;a1; . . .Þ
such that a0 ¼ a and a0 ¼ resða~Þ:

We say that T is directed (a.k.a. deterministic,

confluent, produces a unique assembly) if the relation �
! is directed, i.e., if for all a;a0 2 A½T �; there exists a00 2
A½T � such that a�! a00 and a0 �! a00: It is easy to show

that T is directed if and only if there is a unique terminal

assembly a2A½T � such that r�! a:
In general, even a directed TAS may have a very large

(perhaps uncountably infinite) number of different assem-

bly sequences leading to its terminal assembly. This seems

to make it very difficult to prove that a TAS is directed.

Fortunately, Soloveichik and Winfree (2007) have defined

a property, local determinism, of assembly sequences and

proven the remarkable fact that, if a TAS T has any

assembly sequence that is locally deterministic, then T is

directed. Intuitively, an assembly sequence a~ is locally

deterministic if (1) each tile added in a~ ‘‘just barely’’ binds

to the existing assembly (meaning that is does so with a

summed strength of bonds equal to exactly s); (2) if a tile

of type t0 at a location m~ and its immediate ‘‘output-

neighbors’’ (i.e. those adjacent tiles which bound after the

tile at m~) are deleted from the result of a~; then no tile of

type t = t0 can attach itself to the thus-obtained configu-

ration at location m~; and (3) the result of a~ is terminal.

A set X � Z
2 weakly self-assembles if there exists a

TAS T ¼ ðT; r; sÞ and a set B � T such that a�1ðBÞ ¼ X

holds for every terminal assembly a 2 Ah½T �: Essentially,

weak self-assembly can be thought of as the creation (or

‘‘painting’’) of a pattern of tiles from B (usually taken to be

a unique ‘‘color’’) on a possibly larger ‘‘canvas’’ of un-

colored tiles.

A set X strictly self-assembles if there is a TAS T for

which every assembly a 2 Ah½T � satisfies dom a ¼ X:

Essentially, strict self-assembly means that tiles are only

placed in positions defined by the shape. Note that if

X strictly self-assembles, then X weakly self-assembles.

(Let all tiles be in B.)

Tiles are often depicted as squares whose various sides

contain 0, 1, or 2 attached black squares, indicating whe-

ther the glue strengths on these sides are 0, 1, or 2,

respectively. Thus, for example, a tile of the type shown in

Fig. 1 has glue of strength 0 on the left (W) and bottom (S),

glue of color ‘a’ and strength 2 on the top (N), and glue of

color ‘b’ and strength 1 on the right (E). This tile also has a

label ‘L’, which plays no formal role but may aid our

understanding and discussion of the construction.

3.3 Wang tiling vs. the aTAM

Despite some superficial similarities between Wang tiling

and the aTAM, there are several important differences

between the two which make results in one area not nec-

essarily applicable in the other. In general, the problem

being considered in Wang tiling is whether or not there

exists at least one configuration of tiles such that all

adjacent edges match (i.e. there are no mismatching sides)

and the entire plane is covered. Any partial configuration

which does not completely cover the plane but which

cannot be extended while following the matching rules is

ignored. Also, Wang tiling has no notion of time, or the

growth of a tiling, but instead allows for the instantaneous

appearance of an infinite pattern.

The aTAM differs in several ways. First, finite assemblies

are often (and in fact usually) the desired goal, and the

question typically being asked is whether all assembly

sequences for a given system result in the desired output.

Thus, if any assembly sequence which is possible in the

system represents a valid growth path from its seed structure

into an undesired assembly, including situations where the

system ‘‘gets stuck’’ in a partial assembly which no longer

allows tile attachments, the entire system (not just that

assembly sequence) is considered to be incorrect. This dif-

fers from Wang tiling, where a partial (finite) assembly to

which no tile additions can legally made is completely dis-

counted and left out of the set of producible tilings, and such a

system is still considered ‘‘correct’’ as long as there exists

some correct arrangement. Next, in the aTAM, tile attach-

ments are allowed as long as edges with sufficient summed

strength bind regardless of whether or not any remaining

edges may be mismatched with adjacent tiles. The temper-

ature parameter specifies a threshold for binding which every

tile must meet before being able to attach to the assembly,

making it crucial for at least one growth path to exist where

each incomplete assembly has sufficiently many exposed

glues in the necessary locations to allow further tiles to bind

one by one. This differs from Wang tiling in which it is

sufficient simply for there to exist some arrangement of tiles

which could be perhaps simultaneously placed without

mismatches. Furthermore, in the aTAM a seed tile or

assembly is allowed to be defined as the starting point for an

Fig. 1 An example tile type
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assembly, thus guaranteeing its inclusion in any producible

assembly, while in (traditional) Wang tiling no such seed is

defined and any guarantee of inclusion of a particular tile in a

tiling can only be enforced by careful design of the tile set.

Both models allow for a huge diversity of complex

constructions and are capable of universal computation and

the production of aperiodic structures. However, the dif-

ferences cited above mean that the techniques used to

design systems for each tend to be non-trivially different.

In fact, the exact differences between the models, their

similarities, and methods to transform results between each

are still being explored.

Perhaps a model with more similarity to the aTAM is that

of asynchronous and nondeterministic cellular automata

(ACA). (See Chandesris (2011); Ingerson and Buvel (1984)

as a few of the many references to ACA and what they are

capable of.) A d-dimensional ACA consists of an infinite

d-dimensional array of cells, where each cell maintains it

own state but shares the same transition function (which

causes the state of a cell to transition based on the state of that

cell and the states of its neighbors). ACA allow the transition

of one cell at a time, in arbitrary order. An aTAM system can

be thought of as an ACA where there is exactly one state for

each tile in the aTAM system plus one state representing an

empty location, and all cells other than those representing the

seed begin in the state which represents the empty position,

while the states of the locations corresponding to the seed

tiles begin in the states corresponding to the tiles of the seed.

An empty cell adjacent to cells representing tiles can tran-

sition to a state which represents a particular tile type if the

necessary glue bindings would occur for the corresponding

tiles. The main difference between an ACA system simu-

lating an aTAM system and a general ACA system is that

each cell is allowed to transition from an empty location to a

state representing a tile exactly one time, and then can never

transition to another state again (reflecting the static nature of

tiles that have joined an assembly). This one-time transition,

representing the static nature of tiles and their permanent

occupation of space once placed, plays a very important role

in the design of aTAM systems and what they are capable of,

as will be seen in later sections.

3.4 aTAM example: a binary counter

The aTAM is capable of Turing universal computation, so

our first example will consist of a system which self-

assembles a simple computation, namely an infinite binary

counter. Figure 2a shows three tile types which will be

used to form the boundary of the counter on its bottom and

right sides. Figure 2b shows the additional 4 tile types

needed to perform the actual counting and to display, via

their labels, the bits of each number. We will define our

binary counter TAS as T ¼ fT ; ðS; ð0; 0ÞÞ; 2g; that is, it

will consist of tile set T which will contain all 7 of the tile

types defined in Fig. 2, it will have a seed consisting of a

single copy of a tile of type S placed at position (0,0), and it

will be a temperature 2 system (meaning that free tiles need

to bind with at least a single strength-2 glue or two indi-

vidual strength-1 glues on tiles within an existing assembly

in order to attach to that assembly).

Figure 5 shows a small portion of the infinite assembly

produced by T : In Fig. 3a, the beginning of the formation of

the border is shown. Starting from S, border tiles R can attach

and form an infinite column upward using their strength-2

glues, and B tiles can do the same to the left. No rule tiles can

attach until there are 2 strength-1 bonds correctly positioned

for them to bind to. Figure 3a also shows the first rule tile

which is about to attach into the corner. In Fig. 3b the bot-

tom-right square of width and height 6 of the infinite square

assembly is shown. Each horizontal row represents a single

binary number in the counter, read from left to right (but

which will have an infinite number of leading 0’s to the left),

and each row represents a binary number exactly one greater

than the row immediately beneath it. The computation is

performed by the rule tiles which, essentially, receive as

‘‘input’’ a bit from beneath (representing the current value of

that column) and a bit from the right (representing the carry

bit being brought in from the bit position which is immedi-

ately less significant). The labels and the northern glues of

the rule tiles simply represent the (possibly new) ‘‘output’’ bit

to be represented by that column (based on the two inputs),

and the western glue represents the ‘‘output’’ carry bit which

results. The computation is possible because of the ‘‘coop-

eration’’ between two tiles providing input, enforced by the

system parameter temperature = 2 and the single-strength

glues of the rule tiles.

3.5 Survey of aTAM results

Results in the aTAM can often be mapped into two groups:

(1) What can or can’t self-assemble?, and (2) How hard is

(a) (b)

Fig. 2 This tile set, seeded with the S tile at s = 2, self-assembles

into an infinite binary counter. a The tile types which form the border

of the counter. b The ‘‘rule’’ tile types which compute and represent

the values of the counter
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it to self-assemble a particular object? Thus, sometimes the

interest lies strictly in showing that something is possible

or impossible, but often, even though we may know that

something is possible, it turns out to be interesting to

determine how efficiently it can be done. The most com-

mon measure of efficiency is the number of unique tile

types required, which can be thought of as the size of the

‘‘program’’ being used to direct the assembly. Finding

optimally small tile sets which self-assemble into targeted

shapes is of great interest, both theoretically and also for

the sake of making potential laboratory implementations

more feasible. Another common measure is the scale fac-

tor. Oftentimes it is, perhaps counterintuitively, possible to

design tile sets with many fewer tile types which can self-

assemble a target shape at a blown up scaling factor than it

is to self-assemble the same shape without scaling it up.

Yet another measure may be assembly time. We now

provide an overview of a series of results in the aTAM

which seek to answer these and other questions.

3.5.1 Building n 9 n squares

Since Winfree (1998) showed in his thesis that the aTAM is

computationally universal, we know that we can algorith-

mically direct the growth of assemblies. This ability allows

for not only the creation of complicated and precise shapes,

but also often for them to be created very tile type efficiently

(i.e. they require small tile sets—those with few numbers of

unique tile types). A benchmark problem for tile-based self-

assembly is that of assembling an n 9 n square since this

requires that the tiles somehow compute the value of n and

thus ‘‘know when to stop’’ at the boundaries. In Rothemund

and Winfree (2000) showed that binary counters can be

used to guide the growth of squares and that thereby it is

possible to self-assemble an n 9 n square using O(log n)

tile types.

Figure 4 shows a high-level overview of the construc-

tion. Essentially, log n tile types are required so that each

bit of (a number related to) the dimension n can be encoded

with a unique tile type. The seed is taken to be one of those

tile types so that the row of them forms attached to the

seed. Above that, a fixed-width binary counter (which is

composed of the same constant set of tile types regardless

of n) begins counting upward from that value until it

reaches its maximum possible value (i.e. all 1’s), at which

point it terminates upward growth. With the vertical bar

representing the counter in place, a very basic constant (for

all n) set of tiles can be used to ‘‘pass a signal’’ along a

diagonal path which is limited by the height (and width) of

the counter, and to finally fill in below the diagonal to

finish the formation of the square.

Adleman et al. (2001) improved the previous construc-

tion for squares to require the slightly fewer O log n
log log n

� �
tile

types, which was also proven to be a matching lower bound

(for almost all n) by using an information theoretic

argument.

(a) (b)

Fig. 3 Portions of the assembly

formed by the binary counter. a
Border tiles can attach to the

seed and form arbitrarily long

bottom and right borders. Rule

tiles can bind only once two

‘‘inputs‘‘ are available. b A view

of the 696 square of tiles at the

bottom right corner of the

assembly produced by the

binary counter. Note that the

terminal assembly would

actually continue infinitely far

up and to the left

Fig. 4 The high level schematic for building an n 9 n square using

O(log n) tile types
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Note that while squares can be quite efficiently self-

assembled, the tile complexity of lines and rectangles dif-

fers. For instance, the tile complexity lower bounds for

1 9 n lines is n, and for k 9 n rectangles (where k B n) is
n1=k

k
[which was shown by Cheng et al. (2006)].

As another measure of efficiency, Becker et al. (2008)

considered the time required for squares (and cubes) to self-

assemble. Of course, for this they had to consider that

growth of the assembly need not be constrained to single tile

additions at each step (since in that case an n 9 n square

would clearly take n2 - 1 time steps to grow from a single

seed tile), but instead used a model equivalent to one in

which every tile which can individually attach at any given

step simultaneously attaches (rather than having just one of

them nondeterministically chosen as in the regular aTAM).

They were able to produce constructions for time optimal

assembly of n 9 n squares in 2n - 2 assembly steps.

3.5.2 Building finite shapes

In order to build any given finite shape, it is trivial to define

a TAS which will self-assemble it: simply create a unique

tile type for every point in the shape so that the glue

between each tile and each neighbor is unique to that pair

in that location. Obviously, however, this is the worst

possible construction in terms of tile type complexity.

Soloveichik and Winfree (2007), showed that as long as the

shape can be scaled up (meaning that every point in the

original shape is replaced by a square block of tiles of some

fixed dimension) the tile type complexity for a finite shape

S is bounded above and below by the Kolmogorov com-

plexity of the shape. The Kolmogorov complexity of S,

denoted K(S), is the length in bits of the shortest program

which, when run by a universal Turing machine, outputs

exactly the points of S and then halts. They showed that the

tile complexity of S is H KðSÞ
log KðSÞ

� �
by showing that the

lower bound holds because otherwise it would contradict

the Kolmogorov complexity of the shape, and for the upper

bound they provided a construction in which a Turing

machine is simulated inside of each scaled up block to read

a compressed definition of S and determine which neigh-

boring locations should have blocks filled in and then

passing the program into those blocks and simulating the

Turing machine within them, etc. Therefore, the scaling

factor c is proportional to the running time of the Turing

machine (and thus can be very large), and the tile com-

plexity arises from the compressed definition of S.

Another interesting aspect to the tile complexity of finite

shapes was demonstrated by Bryans et al. (2011) where

they showed that there exist finite shapes which can self-

assemble more tile type efficiently by nondeterministic

systems than by deterministic, or directed, systems. Both

types of systems always create the exact same shape, but

where a directed system does so by ensuring that no matter

which assembly sequence is followed, a given location

always receives a tile of the same type, a nondeterministic

system may allow tiles of differing types to occupy a

particular position based on the assembly sequence fol-

lowed. They also showed that the problem of determining

the minimum number of tile types which are required to

uniquely assemble a given finite shape, if the system isn’t

constrained to being directed, is complete for the com-

plexity class RP
2 ¼ NPNP; while it was shown by Adleman

et al. (2002) to be NP-complete for directed systems. These

results suggest that such nondeterminism adds power and

complexity to the aTAM.

3.5.3 Building infinite shapes

As it has been shown that any finite shape can self-assemble

in the aTAM, in order to test the limits of the model and find

shapes which are impossible to self-assemble, it is

(a) (b) (c)

Fig. 5 Various patterns corresponding to the Sierpinski triangle. a A portion of the discrete Sierpinski triangle. b A portion of the approximate

Sierpinski triangle of Lathrop et al. (2009). c A portion of the approximate Sierpinski triangle of Lutz and Shutters (2012)
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necessary to look at infinite shapes. While the self-assembly

of infinite shapes may not have typical practical (i.e.

physical, laboratory) applications, the study provides

insights into fundamental limitations of self-assembling

systems, in particular regarding their ability to propagate

information through the growth fronts of assemblies.

Due to their complex, aperiodic nature, discrete self-

similar fractals have provided an interesting set of infinite

shapes to explore. Lathrop et al. (2009) showed that it is

impossible for the discrete Sierpinski triangle (see Fig. 5a)

to strictly self-assemble in the aTAM (at any temperature).

Note that this is in contrast to the fact that it can weakly

self-assemble, with a very simple tile set of 7 tile types.

The proof relies on the fact that at each successive stage, as

the stages of the fractal structure grow larger, each is

connected to the rest of the assembly by a single tile. Since

there are an infinite number of stages, all of different sizes,

it is impossible for the single tiles connecting each of them

to the assembly to transmit the information about how large

the newly forming stage should be, and thus it is impossible

for the fractal to self-assemble. Patitz and Summers (2010)

extended this proof technique to cover a class of similar

fractals. It is conjectured by the author of this paper that no

discrete self-similar fractal strictly self-assembles in the

aTAM, but that remains an open question.

Despite the impossibility of strictly self-assembling the

discrete Sierpinski triangle, in 2009 it was shown that an

approximation of that fractal, which the authors called the

fibered Sierpinski triangle, does in fact strictly self-

assemble. The fibered version is simply a rough visual

approximation of the original but with one additional row

and column of tiles added to each subsequent stage of the

fractal during assembly (see Fig. 5b). Not only does the

approximation look similar to the original, it was shown to

have the same fractal (or zeta) dimension. In Patitz and

Summers (2010), the fibering construction was extended to

an entire class of fractals. Along a similar line, Shutters and

Lutz (2012) showed that a different type of approximation

of the Sierpinski triangle strictly self-assembles. This

approximation also retains the same approximate appear-

ance and fractal dimension, but instead of ‘‘spreading’’ out

successive stages of the fractal with fibering, it utilizes a

small portion of each hole in the definition of the shape (see

Fig. 5c). Kautz and Shutters (2011) further extended this

construction to an entire class of fractals.

Similar to their result about finite shapes mentioned in

Sect. 3.5.2, Bryans et al. (2011) also showed a result about

the power of nondeterminism in forming infinite structures,

proving that there exist infinite shapes which can only self-

assemble in non-deterministic systems. This means that no

deterministic system is able to self-assemble such shapes,

and is a further testament to the fact that nondeterminism is

a source of increased power in the aTAM.

3.5.4 Performing computations

Early work in DNA computing by Adleman (1994)

investigated the feasibility of using custom designed DNA

molecules to solve NP-complete problems by performing

massively parallel computations. The general concept is to

have huge numbers of individual molecular complexes

which nondeterministically each select a potential solution

to a given instance of an NP-complete problem and then

each perform the necessary computation to determine if the

selected solution is correct. As long as there is a way to

easily select the correct answers from the sea of failures,

the hope was to provide a method to quickly solve such

problems by harnessing the massive numbers of molecules

which can compute in parallel. Adleman was able to solve

a version of the Hamiltonian path problem for a graph of 7

vertices, proving the concept. Since then, a series of results

by Brun (2008), Cheng et al. (2010), Cheng and Xiao

(2012), and Wang et al. (2011) have continued to demon-

strate the theoretical ability of the aTAM to solve such

problems. Unfortunately, however, as the size of a problem

instance approaches useful sizes (e.g. even a few hundred

nodes for a graph problem), the exponential number of

possible solutions inevitably destroys the utility of this

approach, for reasonably-sized inputs requiring the number

of assemblies to be at least equivalent to the number of

particles in the universe.

While tile-based self-assembly may not be practically

useful for solving computationally intractable NP-complete

problems, there are still many other interesting problems to

ask about its computational power. While the previously

mentioned methods for solving such problems was to use

many assemblies in parallel, it is interesting to consider

what is possible for any individual assembly in terms of

computation. Since the aTAM has been shown to be

computationally universal, a single seeded assembly can

simulate an arbitrary Turing machine. However, there are

even more complicated computations which can be con-

sidered, and in doing so one of the fundamental charac-

teristics of tile-based self-assembly is confronted:

computational space, which is consumed by tiles attaching

to an assembly, is analogous to write-once memory. Once a

tile is placed, having performed its part of the computation

(by converting the information encoded by its input glues

into information encoded by its output glues), it can never

change or be removed. This causes difficulties related to

performing computations which are unique to such a

physical model, and the following results have helped to

uncover the complex ways in which geometry can be

related to computation.

Patitz and Summers (2011) showed that a set of natural

numbers D � N is decidable if and only if D 9 {0} and

Dc 9 {0} weakly self-assemble. That is, the canonical
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representations of D and the complement of D weakly self-

assemble. For D 9 {0} to weakly self-assemble, at every

point along the x-axis such that the value of the x coordi-

nate is contained in D, the tile placed at that location is

colored black. All other locations remain either untiled or

receive a tile which is not black. The construction for Patitz

and Summers (2011) is a relatively straightforward

‘‘stacking’’ of Turing machine simulations, so that a given

Turing machine M which decides the language in question

is first simulated on input 0, then immediately above that

M(1) is simulated, etc. As each simulation completes, the

‘‘answer’’ of whether or not that input is in the language is

propagated via a one-tile-wide path down the side of the

previous computations to the x-axis where the appropri-

ately colored tile attaches.

Lathrop et al. (2011) answered the more complicated

question of whether a similar result applied to computably

enumerable (a.k.a. recursively enumerable) languages.

They showed that a set of natural numbers D � N is com-

putably enumerable if and only if the set XA = {(f(n),0) |

n [ D} weakly self-assembles (where f is a roughly qua-

dratic function). For that construction, since any Turing

machine M used to determine membership in D cannot be

guaranteed to halt for non-members, the simple ‘‘stacking’’

construction cannot work. Instead, the construction per-

forms the infinite series of computations side-by-side,

spread out along the x-axis (hence the need for f), providing

a potentially infinite amount of tape space for each com-

putation while ensuring that none of them collide and a path

to the relevant point on the x-axis always remains available

for cases in which a black tile must be placed. The space

reserved for each computation is achieved by a scheme in

which each computation proceeds with each row simply

copying the row beneath it for most rows, and then with a

frequency half that of the computation to its immediate left,

a row performs a new step of the computation. This, com-

bined with a unique and well-defined slope for the assembly

representing each computation ensures that the potentially

infinite space requirements for every computation can be

assured.

On the other hand, showing a limitation to the power of

computation by self-assembly in the aTAM, in 2011 they

showed there there exist decidable sets of pairs of integers,

or points (i.e. D � Z
2), which do not weakly self-assemble

in the aTAM. Their proof leverages the fact that space is

not reusable in aTAM assembly, and that new space must

therefore constantly be used to perform each subsequent

step of a computation. They designed a pattern consisting

of an infinite sequence of concentric diamonds which were

centered on the origin and whose diameters were specified

by a decidable set of natural numbers. By employing the

time hierarchy theorem (Hartmanis and Stearns 1965), they

were able to show that there exist sets of diameters whose

time complexity is so great (i.e. the amount of time

required to computer whether a value is in the set) that if

the pattern of diamonds with those diameters could self-

assemble it would contradict the time complexity of the

set. Essentially, the computation to determine whether or

not the diamond at some particular diameter should be

included in the pattern could not be performed by tiles

from within that diamond and must therefore use space

that may be required to mark subsequent diamonds. This

result shows a limitation to the computational power of the

aTAM, and the strong correlation between geometry and

computation within it.

3.5.5 Speed of assembly

An important efficiency measure which we’ve discussed

for several of the previous results is tile complexity.

However, another interesting and important measure which

has been investigated is the speed at which an assembly can

form, or the number of assembly steps required by a system

to reach the final, desired target structure. Of course, in the

basic aTAM where each step of assembly consists of a

single tile addition, the assembly time for a shape con-

sisting of n points cannot vary, and is fixed at n - s steps

(where s is the number of tiles in the seed, usually 1).

However, by considering slight variants of the model, such

as a version where at each time step all tiles which are able

to individually attach do so, the assembly time becomes

variable and an interesting metric.

Adleman et al. (2001) proved that the deterministic

assembly of a shape of diameter d requires time XðdÞ: Doty

and Chen (2012) showed that this bound also holds for

nondeterministic systems. In 2001 they provided a

matching upper bound for a construction which was able to

self-assemble an n 9 n square and also used the optimal

Oð log n
log log n

Þ tile types. See Sect. 3.5.1 for more discussion of

assembly time related to n 9 n squares.

3.5.6 The influence of temperature

To this point, the example and results discussed have been

largely based upon aTAM systems where the temperature

parameter is 2. At temperature 2 and above, it is possible to

design systems which make use of a feature commonly

referred to as cooperation in which the prior placement of

two tiles in specific relative positions is required before the

attachment of a third tile is possible. This cooperative

behavior is what is commonly attributed with providing the

aTAM with its ability to perform computations, and dis-

appears at temperature =1. Thus, for aTAM systems whose

temperature is 1, it is conjectured that both: (1) Turing
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universal computation by a deterministic aTAM system is

impossible, and (2) any aTAM system which determinis-

tically produces an n 9 n square requires a minimum of

2n - 1 tile types. Partial progress toward the proof of these

conjectures was achieved by Doty et al. (2011). Maňuch

et al. (2010) also studied a variant of the problem, focusing

on finite assemblies in which mismatches are not allowed,

and proved that in such cases XðnÞ tile types are required to

assemble a shape whose diameter is n. Nonetheless, the

general problem remains open.

Despite the previous conjectures about the aTAM at

temperature 1, it was shown by Cook et al. (2011) that, by

slightly relaxing the requirements, Turing universal com-

putation is in fact possible. Namely, if the assembly is

allowed to proceed into the third-dimension, utilizing only

2 planes, or if the computation is allowed to prematurely

terminate with some arbitrarily low probability, then a

universal Turing machine can be simulated at temperature

1. (See Sect. 3.5.7 for related results.)

Moving in the other direction, Chen et al. (2011) showed

that there exist TASs which require temperatures expo-

nential in the number of tile types they contain. They

showed that for every n, there exists a TAS with n tile types

whose ‘‘behavior’’ cannot be preserved while using a

temperature less than 2n/4, which means that it is not pos-

sible to modify the system to use a lower temperature while

ensuring that all tiles are still only able to bind using the

same subsets of sides, and produce the same result. For this

result they utilize cooperative binding on 3 sides, which

they call 3-cooperative, as opposed to the 2-cooperative

systems previously discussed. It turns out that while

3-cooperativity results in systems which require tempera-

tures exponential in the number of tile types they contain,

2-cooperative system only require temperatures linear in

the number of tile types. (Note that these results are based

on the assumption of integer strength glues, which is in fact

how the aTAM is defined.) They also gave an algorithm

which is able to find the minimal tile system to build an

n 9 n square at any temperature in polynomial time. Fur-

ther, Seki and Okuno (2012) show that given a temperature

s[ 4 and a shape, it is NP-hard to find the minimum TAS

which assembles the shape at or below temperature s, and

that it is also NP-hard to find the optimal (lowest) tem-

perature for a system for which the glue strengths and

temperature are not specified, but the cooperative behaviors

of the tiles are (i.e. how they can cooperate to form suffi-

cient bonds).

3.5.7 Intrinsic universality

An intrinsically universal model is one which contains

some system U, such that for any arbitrary system T within

that model, U can be given a starting condition based on

T such that U will then completely simulate the behavior of

T. That is, U will mimic all behaviors of T, but at a re-

scaling in which each n 9 n block within U, for some

n 2 N; can be mapped to a single element of T. Cellular

automata and Turing machines are both examples of

models which are intrinsically universal. While an aTAM

system can be designed to simulate an arbitrary Turing

machine, which could computationally simulate an arbi-

trary aTAM system, another interesting question was

whether or not the aTAM is intrinsically universal, or: Is

there a single tile set which can be used to simulate the

behavior of any arbitrary aTAM system? Essentially, if the

tiles of this ‘‘universal’’ tile set could be arranged to form a

seed structure such that that structure contains an encoding

of some other aTAM system, say T ; could additional

copies of tiles from the universal tile set attach to grow into

an assembly which simulates the system T ? Of course, the

simulation would be a scaled up version of the original

system, but it must be the case that every behavior that T is

capable of, the simulating system is also capable of. Pre-

liminary work by Doty et al. (2009) showed that for a

constrained set of aTAM systems, namely those in which

all tiles bind with exactly strength s and there are no glue

mismatches between adjacent tile edges, that class is

intrinsically universal. Furthermore, it was later shown by

Doty et al. (2012) that the entire, unconstrained class of

aTAM systems is intrinsically universal. In fact, they

demonstrated a tile set U and a method for using the def-

inition of an arbitrary aTAM system T of any temperature

to form a seed structure for U so that the system with that

seed, the tiles from U, and at temperature 2, can simulate

T : Thus, a single tile set in a properly seeded system at

temperature 2 can simulate the behavior of any aTAM

system at any temperature.

The previous result shows a powerful symmetry to the

aTAM, since there is a system within it that can behave

exactly like any other system within it. Meunier et al.

(2013) showed that the temperature 2 parameter for sys-

tems using the intrinsically universal tile set is in fact a

lower bound. They showed that no aTAM tile set exists

which can simulate arbitrary aTAM systems of temperature

[1, while operating in a system of temperature 1, proving

that the cooperative behavior provided by temperature 2

self-assembly can not be simulated at temperature 1. Fur-

ther, their impossibility result extends to 3D, showing that

even 3D temperature 1 aTAM systems cannot simulate 2D

temperature 2 aTAM systems, which is contrasted with the

facts that 3D temperature 1 systems are capable of uni-

versal computation (see Sect. 3.5.6, and the second result

of (Meunier et al. 2013) shows that 3D temperature 1

systems can simulate arbitrary 2D temperature 1 systems.

These results especially emphasize the fact that the

power to perform universal computation does not imply the
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power to simulate arbitrary behaviors of algorithmic self-

assembly.

3.5.8 Verification of aTAM systems

Several ‘‘verification problems’’ (answering the question of

whether or not a given system has a specific property) have

been studied in relation to the aTAM, and characterized by

their complexity. Among them are:

1. Does aTAM system T uniquely produce a given

assembly? This was shown to require time polynomial

in the size of the assembly and tile set by Adleman

et al. (2002).

2. Does aTAM system T uniquely produce a given

shape? This was shown to be in co-NP-complete for

temperature 1 by Cannon et al. (2012) and co-NP-

complete for temperature 2 (Cheng et al. 2005).

3. Is a given assembly terminal in aTAM system T ? This

was shown to require time linear in the size of the

assembly and tile set in Adleman et al. (2002).

4. Given an aTAM system T ;does it produce a finite

terminal assembly? An infinite terminal assembly?

These were both shown to be uncomputable in Cannon

et al. (2012).

3.5.9 PATS problem and tile set generation

In order to produce a surface with a complex template for

potentially guiding the attachment of functional materials,

an interesting problem in tile-based self-assembly is the

Patterned self-Assembly Tile set Synthesis (PATS) prob-

lem. The PATS problem is concerned with finding the

minimal tile set which will self-assemble into a given 2-D

pattern of colors (where tile types are assumed to be

assigned colors) and was introduced by Ma and Lombardi

(2008). Göös and Orponen (2010) presented an exhaustive

branch-and-bound algorithm which works well for finding

exact solutions to patterns of sizes up to 6 9 6, and

approximate solutions for larger patterns. Lempiäinen et al.

(2011) modified the previous algorithm to be more efficient

(but still require exponential time). Czeizler and Popa

(2012) proved that the PATS problem is NP-hard, and Seki

(2013) examined the parameterized version of the problem,

c-PATS, in which any given pattern is guaranteed to con-

tain at most c colors, and showed that 59-PATS is NP-hard

by using a 3-SAT reduction.

3.5.10 Simulators and programming tools

In order to visualize complex constructions and to help

verify their correctness, several simulators have been

developed and released to the research community. Inclu-

ded among them are Winfree’s xgrow, which simulates the

aTAM as well as the kTAM (see Sect. 4), and Patitz’s

(2009) ISU TAS, which simulates the aTAM (in 2-D and

3-D), kTAM, and 2HAM (see Sect. 5) as well as providing

a graphical tile type editor. The xgrow simulator is spe-

cifically designed to accommodate a wide variety of

options for experimentally accurate kTAM simulations,

while ISU TAS is designed with more of an emphasis on

aTAM simulations and ease of use for beginners, while

also allowing for larger tile sets and simulated assemblies.

Since the generation of large tile sets can be tedious,

difficult, and error-prone, work has been done to abstract

some of the high-level notions utilized by researchers

developing tile sets and to turn those into tools which can be

used to algorithmically generate tile sets. In particular, the

idea of ‘‘signals’’ propagating through an assembly, as a

series of glue bindings which propagate a particular piece of

information, has been studied. Becker (2009) showed how to

design systems of signals for given sets of shapes and then

how to transform the defined signals into tile sets which self-

assemble into those shapes. Doty and Patitz (2009) exploited

a similar notion of signal propagation, combined with the

notion of tiles performing computations based on input sig-

nals and providing the output to the computations in the form

of output signals. They developed a domain specific pro-

gramming language which could be used to programmati-

cally generate tile sets and also created a graphical editor for

designing systems using their language.

4 The kinetic Tile Assembly Model (kTAM)

In reality, DNA tile self-assembly is a more complicated

process than that modeled by the aTAM, and therefore a

different model is required for a realistic simulation of the

physical process of self-assembling DNA tiles. Whereas

the aTAM is a great model for studying the capabilities and

limitations of tile assembly, and for programming tile sets

to understand issues related to computation and geometry,

the kinetic Tile Assembly Model (kTAM) (Winfree 1998)

was developed as a more physically realistic model for

laboratory settings, and considers the reversible nature of

self-assembly, factoring in the rates of association and

dissociation of basic molecular elements (so-called mono-

mers, or tiles) within the original framework provided by

the aTAM. The kTAM describes the dynamics of assembly

according to a set of reversible chemical reactions: A tile

can attach to an assembly anywhere that it makes even a

weak bond, and any tile can dissociate from the assembly

at a rate dependent on the total strength with which it

adheres to the assembly. In this section, we first give a

more formal definition of the kTAM, then describe the
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types of errors that it captures, and then discuss several

results which have successfully demonstrated methods for

reducing those errors. Techniques such as those discussed

below have been responsible for a rapid and steady decline

in the frequency of errors seen in laboratory experiments,

plummeting from error rates of 10 % per tile in 2004 to

only 0.13 % by 2009, and continuing to shrink.

4.1 Model definition

In the kTAM (Fujibayashi et al. 2009; Winfree 1998;

Winfree and Bekbolatov 2003), a monomer tile can be

added to the assembly with some association (forward)

rate, or removed from the assembly with some dissociation

(reverse) rate. Similar to the aTAM, only the singleton tiles

are allowed to attach to, and in this case detach from, a

seeded assembly. These rates are denoted by rf and rr,b,

respectively. At every available site on the perimeter of an

assembly (i.e. the frontier), every possible monomer tile

can associate to the assembly, regardless of whether the

monomer is correct or not (i.e. whether or not the glues

match). The forward rate depends only on the monomer tile

concentration, [monomer]:

rf ¼ kf ½monomer� ¼ kf e
�Gmc ð1Þ

where Gmc [ 0 is the non-dimensional entropic cost of

associating to an assembly. In the kTAM, for simplicity it

is assumed that tile concentrations remain constant at

½monomer� ¼ e�Gmc : Therefore, since the forward rate

constant kf is a constant, the entire forward rate rf is also

constant.

The reverse rate is dependent upon the binding strength

b of the tile to the assembly, and in fact the relationship is

exponential:

rr;b ¼ kr;b ¼ kf e
�bGse ð2Þ

where Gse is the non-dimensional free energy cost of

breaking a single bond and b is the number of ‘‘single-

strength’’ bonds the tile has made.

The kTAM’s equivalent to the aTAM’s temperature s
parameter is the ratio of the concentration of the tiles to the

strength of their individual bonds, or Gmc/Gse. As a sim-

plifying assumption, the tile concentrations are considered

to remain constant during assembly (despite the fact that

singleton tiles will be transitioning from freely floating

individual tiles to being attached to growing assemblies),

which in turn causes the temperature parameter to remain

constant. (It should be noted that despite this and other

simplifying assumptions, the kTAM does in fact provide a

quite accurate model of the systems observed in laboratory

settings.) Because the kTAM allows for the binding of tiles

whether or not their glues correctly match those on the

boundary of a growing assembly, bindings which would be

considered errors in the aTAM are possible. By lowering

the ratio of Gmc/Gse, which is intuitively similar to lower-

ing the temperature s threshold in the aTAM, assembly

happens more quickly but is more error prone. If the

number of correct bonds that a tile has with an assembly, b,

is less than s, then a tile is more likely to detach than to

attach.

Because the kTAM accurately models the behavior of

DNA based tile self-assembly in the laboratory, most

especially the common types of errors observed, it has

provided an excellent foundation for work in error pre-

vention and correction.

4.2 Error types

In order to discuss the types of errors that can occur during

self-assembly in the kTAM, we will refer to an example

system which is designed to weakly self-assembly the

Sierpinski triangle. See Fig. 6 for details.

The errors that occur during assembly can be divided

into three general types: (1) growth errors (or mismatch

errors), (2) facet errors, and (3) nucleation errors (Fuji-

bayashi et al. 2009). A growth error, an example of which

can be seen in Fig. 7, occurs when one or more sides of a

tile which binds to an assembly have glues which do not

match the adjacent glues (called glue mismatches). Such a

tile may bind with insufficient strength to remain perma-

nently bound, but before it has an opportunity to dissociate,

a previously unoccupied neighboring position may be filled

by a tile which binds without mismatches, thus resulting in

an assembly where every tile has sufficient strength to

remain permanently attached despite the mismatch. This

essentially ‘‘locks’’ the incorrect tile into place and

potentially allows assembly to proceed with an incorrectly

placed tile which may cause further deviations from the

desired shape or pattern. Somewhat similarly, a facet error

also occurs on the edge of a growing assembly. A facet

error (see Fig. 8 for an example) again occurs when a tile

binds with insufficient strength for permanent attachment

(but this time with no mismatches), and again is locked into

place by a subsequent tile addition. The third type of errors,

nucleation errors, occur when tiles aggregate with each

other without any attachment to the seed structure, and thus

‘‘seed’’ a new type of assembly.

4.3 Survey of kTAM results

The ability of the kTAM to accurately model the errors

seen in laboratory settings coupled with its clean theoreti-

cal definition make it an ideal model in which to study

mechanisms of error prevention and correction. Addition-

ally, the algorithmic nature of self-assembly in the kTAM

provides the opportunity to effectively apply a variety of
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algorithms from seemingly unrelated fields such as data

transmission to make kTAM systems more robust.

While simply adjusting the ratio of Gmc to Gse is suffi-

cient to drive error rates arbitrarily low, that comes at the

cost of a huge slow-down to the overall assembly process.

We now provide a brief overview of some results in the

kTAM which are focused on one or both of the dual goals

of decreasing the rate of errors during assembly and min-

imizing assembly time. Note that there are several labo-

ratory experiments which utilize novel techniques aimed at

meeting these and other goals which are omitted from this

discussion.

4.3.1 Error suppression via block replacement

Kinetic proofreading, which was independently discovered

by Hopfield (1974) and Ninio (1975), is an error correcting

mechanism employed by a variety of biological processes

(e.g. RNA to protein translation) where a sequence of steps

are utilized such that the process must progress through

each, with step each ‘‘testing’’, or helping to ensure, the

correctness of the last step. Winfree and Bekbolatov (2003)

demonstrated such a technique (which they simply called

proofreading) to reduce growth errors in the kTAM. In

proofreading, individual tile types are replaced by

n 9 n blocks of unique tile types such that the perimeter of

the n 9 n block formed by them represents the same glues

as the original single tile. (New glues are created for the

interior of the block which are specific to the tile types

composing each particular block.) However, those original

glues are now split into n separate glues. The goal is to

force multiple errors to occur before an incorrect

n 9 n block can fully form, as opposed to the single error

which would allow the analogous incorrect tile from the

original tile set to bind. They found that by increasing n, it

is possible to reduce the growth errors—or alternatively to

increase the speed of assembly while maintaining the same

error rate.

For this example, we construct two of the substitutions

for the 2 9 2 proofreading tile set for the Sierpinski tri-

angle (shown in its original form in Fig. 6a). In Fig. 9, two

of the tiles from the original set are replaced by 4 tiles

(a) (b)

Fig. 6 Details of the Sierpinski

triangle example. a The tile

types for weakly selfassembling

the Sierpinski triangle. b A view

of the 9 9 9 square of tiles at

the bottom right corner of the

weakly self-assembled

Sierpinski triangle. Note that the

terminal assembly would

actually continue infinitely far

up and to the left

(a) (b) (c)

Fig. 7 Example growth error in the kTAM: a tile initially binds with

insufficient strength due to a mismatch, but the error is then ‘‘locked

in’’ by a tile which arrives later. a A partial assembly which is error-

free. b The binding of a tile with one glue match and one mismatch

(shown by arrow). c Before the erroneously attached tile can detach,

another tile (shown by arrow) attaches with 2 matching bonds so that

all tiles are nowconnected by two correctly formed bonds
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each. Note how each group of 4 tiles forms a 2 9 2 block

whose perimeter has versions of the glues from the original

tile in corresponding locations. For example, the 0 glue on

the south side of each original tile is now represented by

two separate glues, 0L and 0R, which correspond to the left

0 glue of each 2 9 2 block, and the right 0 glue. The glues

on adjacent edges of tiles in the interior of blocks are

replaced by new glues which are specific to each such

location.

The tile set resulting from such a transformation reduces

errors in the following way. In order for an incorrect block

to assemble in a given location (i.e. a block which doesn’t

match the input from one of the two input directions), it

must have more than one tile originally bind with only

strength 1. Each of those tiles must then get ‘‘locked in’’ by

subsequent tile attachments before falling off. Since it is

much more unlikely for multiple instances of such errors to

be locked in before detachment than it is for one, the

overall likelihood of error is smaller for the proofreading

system.

The block replacement scheme necessarily imposes a

scaling factor on the transformed, more error resistant

system, making a trade off of resolution for correctness.

Reif, Sahu, and Yin (Majumder et al. 2007b) introduced a

scheme of compact proofreading in which no scaling factor

is required. However, the tradeoff imposed by their trans-

formation is an increase in tile complexity, in fact an

exponential increase. Unfortunately, it turns out that any

compact proofreading scheme would, for the general case

(ignoring a relatively small set of special cases), require

such an exponential explosion, and this was proven by

Soloveichik and Winfree (2005).

4.3.2 Facet error handling

Winfree and Bekbolatov (2003), the proofreading tech-

nique previously discussed was sufficient to reduce growth

errors, but was ineffective for handling facet errors. These

types of errors were more common in systems ‘‘whose

growth process[es] intrinsically involve facets’’, meaning

that they frequently require growth to be initiated by

extending from a flat surface. In order to reduce these

errors, Winfree and Bekbolatov were able to redesign a

system used to build an n 9 n square by changing the

pattern of growth to one which avoids large facets. Spe-

cifically, the design used to build the square in Fig. 4 was

redesigned so that, instead of using a single binary counter

growing along one side and then filler tiles which are

dependent upon facet growth, two binary counters were

used used to form two sides of the square and then filler

tiles which use cooperative attachments between those

walls. These modifications (along with a few other small

changes) were able to greatly reduce the incidence of errors

in the growth of squares.

4.3.3 Snaked proofreading

Chen and Goel (2004) demonstrated a tile set transfor-

mation which provided improvements over the previous

proofreading technique. In fact, their snaked proofreading

technique not only provides substantial improvements in

error correction, it also provides for ‘‘provably good’’

assembly time, or specifically that it allows for close to

linear assembly time (within a logarithmic factor of irre-

versible error-free growth). Snaked proofreading relies on a

block replacement scheme similar to the proofreading of

Winfree and Bekbolatov (2003), but with a different

internal bond structure. An example of the difference can

be seen in Fig. 10. The general technique is to force mul-

tiple insufficient attachments to occur and be locked into

place before an error can persist.

Especially notable is the fact that snaked proofreading

does not only provide benefits in simulations of the kTAM,

but Chen et al. (2007b) actually created a tile set which

utilized the technique and experimented with it in a wet-lab

setting. They created tile sets which self-assembled into

long ribbons, some which were designed to implement

snaked proofreading and some which were not, and were

(a) (b) (c)

Fig. 8 Example facet error in the kTAM. a A partial assembly which is error-free. b The binding of a tile via a single glue. c Before the

erroneously attached tile can detach, another tile attaches with 2 matching bonds so that all tiles are now connected bytwo correctly formed bonds
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able to verify via atomic force microscopy that the snaked

proofreading tile sets experienced a 4-fold reduction in

facet nucleation errors.

4.3.4 Self-healing

First studied by Winfree in 2006, the notion of self-healing

is that in which a growing assembly is damaged (perhaps

by the removal of a group of tiles somewhere in its interior)

but then it can correctly re-grow to ‘‘heal’’ the damage

without allowing internal errors. The major problem is that

many computations are not reversible (meaning that if

you’re given the output from the computation, you can’t

know for sure what the inputs were), but when an assembly

whose normal forward growth is determined by such a

computation (e.g. the system forming the Sierpinski trian-

gle pattern, which performs the xor operation) receives

such damage, it is likely to re-grow on all edges of the hole.

Thus, it will attempt to grow ‘‘backwards’’ in some areas,

with tiles attaching to the assembly using their ‘‘output’’

sides, causing nondeterministic choices for the inputs to the

computational steps represented by those tiles, frequently

resulting in mistakes.

Soloveichik et al. (2008) showed that both proofreading

and self-healing properties can be incorporated into tile set

transformations which make them robust to both problems

simultaneously. In a remarkable example of self-healing,

Chen et al. (2007a) demonstrated a method to allow an

entire n 9 n square to regrow from any subassembly which

has at least one dimension which is 2 log n or greater. With

scaling, they can apply their technique to general shapes.

4.3.5 Enhanced tile design

While the above (and other) work has successfully dem-

onstrated several techniques for reducing errors that occur

during DNA tile-based self-assembly, they have all done so

without allowing for the modification of the basic struc-

tures of the tiles themselves. However, the simple and

static nature of DNA tiles lends itself to the possibility of

extension.

Majumder et al. (2007a) proposed such an extension.

Namely, the authors defined a model in which the ‘‘input’’

glues of tiles are ‘‘active’’ (that is, free to bind to com-

plementary glue strands) when the tiles are freely floating

in solution, but their ‘‘output’’ glues are ‘‘inactive’’ (this is,

prevented from forming bonds). Only once a tile has

associated to an assembly and bound with its input sides

are its output sides activated. They presented a theoretical

model of such systems and showed that they provide

instances of compact (i.e. not requiring scaling factors over

the original tile set), error-resilient, and self-healing

assembly systems. Furthermore, they provided a possible

physical implementation for such systems using DNA

polymerase enzymes and strand displacement.

Fujibayashi et al. (2009) introduced a similar approach

in order to provide for both error-resilience and fast speed

of assembly. The Protected Tile Mechanism and the Lay-

ered Tile Mechanism, which utilize stand displacement,

were presented. These mechanisms make use of additional

DNA strands which ‘‘protect’’, or cover, glues either par-

tially or fully. By balancing the length of the glue strands

available for binding on input and output sides at various

stages of tile binding, they were able to demonstrate—via

simulation—that these mechanisms can in fact improve

error rates while maintaining fast assembly.

(a) (b)

Fig. 9 Example tile substitution by 2 9 2 blocks of tiles for proofreading. Each image shows a single rule tile for the Sierpinski triangle tile set

on the right and the 4 tiles which replace it in the proofreading tile set on the left. a Replacing a ‘‘0 - 1’’ rule tile. b Replacing a ‘‘0 - 0’’ rule tile

(a) (b) (c)

Fig. 10 A comparison of the block replacement transformations used

in standard proofreading and snaked proofreading. a A tile type from

the original, unaltered tile set. b The block used as a replacement in

standard proofreading. c The block used as a replacement in snaked

proofreading
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4.3.6 Controlling nucleation

Another major source of potential errors is caused by

spurious nucleation, or the formation of an assembly sep-

arate from and not containing the designated seed structure.

Typically, systems are designed so that growth begins from

a seed which essentially provides the initial input to the

algorithm that directs the growth of the assembly. Thus,

when an assembly forms in the absence of the seed, it has

the possibility of ‘‘running the algorithm’’ starting at a

random point and as though from a random input (and

perhaps even running it in reverse as well from that point).

In order to combat the problem of spurious nucleation,

Schulman and Winfree (2009) designed systems which

were able to quickly grow from seeded assemblies, but

which were highly unlikely to form large unseeded

assemblies due to high kinetic barriers. The ‘‘zig-zag’’

systems they introduced grow as fixed-width ribbons (i.e.

long and thin rectangles) such that to increase the length of

the strip, the assembly must grow a row first in one

direction across the growing end, and then the next row

grows back in the opposite direction. They were able to

provide simulations to prove the effectiveness of their

systems at resisting spurious nucleation and yet growing

relatively quickly and correctly from seeds.

To further improve the ability of experimentalists to

create seed structures, especially those which contain a

reasonable amount of information used to direct a growing

assembly, Barish et al. (2009) demonstrated, in a wet-lab, the

use of DNA origami (introduced by Rothemund in 2006) to

serve as a seed structure. They were able to design DNA

origami seeds which displayed up to 32 glues and binding

sites to which tiles could attach, and these seeds provided the

relatively easy production of high-yield, low error-rate

TASs. They were able to successfully demonstrate the use of

DNA origami seeds to nucleate the growth of three different

algorithmically directed systems. (See Sect. 6.3 for another

example of tiles created using DNA origami.)

5 The 2-Handed Assembly Model (2HAM)

5.1 Informal model description

The 2HAM (Cheng et al. 2005; Demaine et al. 2008) is a

generalization of the aTAM meant to model systems where

self-assembly of multiple sub-assemblies can occur sepa-

rately and in parallel, and then those sub-assemblies can

combine with each other. The ‘‘2-handed’’ portion of the

name comes from the fact that each combination is of

exactly two assemblies at a time. Note that variations of

this model have appeared in several papers and by several

different names (e.g. hierarchical self-assembly, polyomi-

noes, etc.) (Adleman 2000; Adleman et al. 2001; Cheng

et al. 2005; Demaine et al. 2012; Luhrs 2008; Winfree

2006). We now give a brief, informal, sketch of the 2HAM.

The 2HAM is formulated without a seed structure, so

that all individual tiles have equal status in the initial

solution, and assembly begins as separate assemblies

nucleate in parallel. Each step of assembly occurs as any

two existing assemblies (which at first are just the singleton

tiles) which are able to bind to each other, with strength at

least equal to the temperature parameter and without any

overlaps, combine to form a new assembly. Since it is

experimentally challenging to enforce the seeded nature of

growth in the aTAM (see Sect. 4.3.6), the 2HAM provides

a perhaps more experimentally feasible model in that

respect, by removing the seed constraint. However, since

the 2HAM allows for pairs of arbitrarily large assemblies

to combine with each other as long as there are no overlaps

of any portions of those assemblies in the final configura-

tion, two new difficulties arise in terms of experimental

viability. First, the rate of diffusion of assemblies will

decrease as their sizes increase, making it less and less

likely for combinations of larger assemblies to occur.

Second, in order to enforce the requirement that pairs of

assemblies can only join in configurations in which they

don’t contain overlaps, it would need to be the case that

assemblies are completely rigid (which is certainly not the

case with DNA implementations of tiles) so that portions of

the assemblies couldn’t bend to avoid the overlaps. The

fact that the 2HAM allows for the combination of arbi-

trarily large assemblies gives rise to the phenomenon that,

although all interactions are local in the context of being

between exactly two assemblies which are immediately

adjacent to each other, there is also a notion of instanta-

neous long range interactions on the scale of individual

tiles. This is because the existence of a tile at a location

arbitrarily far from another can dictate whether or not that

tile will be able to bind to a tile in another assembly by

perhaps providing enough cooperative binding, or instead

perhaps by blocking the assemblies from achieving a

binding configuration. This long range interaction provides

for a great amount of difference in the power of the 2HAM

versus the aTAM, and is also the reason that the 2HAM

isn’t immediately similar to ACA systems (see Sect. 3.3).

A supertile (a.k.a., assembly) is a positioning of tiles on

the integer lattice Z
2: Two adjacent tiles in a supertile

interact if the glues on their abutting sides are equal and

have positive strength. Each supertile induces a binding

graph, a grid graph whose vertices are tiles, with an edge

between two tiles if they interact. The supertile is s-stable

if every cut of its binding graph has strength at least s,

where the weight of an edge is the strength of the glue it
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represents. That is, the supertile is stable if at least energy s
is required to separate the supertile into two parts. A

2HAM TAS is a pair T ¼ ðT ; sÞ; where T is a finite tile set

and s is the temperature, usually 1 or 2. Given a TAS

T ¼ ðT ; sÞ; a supertile is producible, written as a 2 A½T � if
either it is a single tile from T, or it is the s-stable result of

translating two producible assemblies without overlap.1 A

supertile a is terminal, written as a 2 Ah½T � if for every

producible supertile b; a and b cannot be s-stably attached.

A TAS is directed if it has only one terminal, producible

supertile. Given a connected shape X � Z
2; we say a TAS

T self-assembles X if every producible, terminal supertile

places tiles exactly on those positions in X (appropriately

translated if necessary).

5.2 Formal model definition

We now give a more formal definition of the 2HAM. For

most readers, the informal description of Sect. 1 should be

sufficient and the more technical description in this section

can be skipped.

Two assemblies a and b are disjoint if doma \ domb ¼
£: For two assemblies a and b, define the union a [ b to

be the assembly defined for all x~2 Z
2 by ða [ bÞðx~Þ ¼ aðx~Þ

if aðx~Þ is defined, and ða [ bÞðx~Þ ¼ bðx~Þ otherwise. Say

that this union is disjoint if a and b are disjoint.

The binding graph of an assembly a is the grid graph

Ga = (V, E), where V = dom a, and fm~; n~g 2 E if and

only if (1) m~� n~2 U2; (2) labelaðm~Þ n~� m~ð Þ ¼
labelaðn~Þ m~� n~ð Þ; and (3) straðm~Þ n~� m~ð Þ[ 0: Given s 2 N;

an assembly is s-stable (or simply stable if s is understood

from context), if it cannot be broken up into smaller

assemblies without breaking bonds of total strength at least

s; i.e., if every cut of Ga has weight at least s, where the

weight of an edge is the strength of the glue it represents. In

contrast to the model of Wang tiling, the nonnegativity of

the strength function implies that glue mismatches between

adjacent tiles do not prevent a tile from binding to an

assembly, so long as sufficient binding strength is received

from the (other) sides of the tile at which the glues match.

For assemblies a; b : Z2 ! T and u~2 Z
2; we write aþ

u~ to denote the assembly defined for all x~2 Z
2 by ðaþ

u~Þðx~Þ ¼ aðx~� u~Þ; and write a ^ b if there exists u~ such

that aþ u~¼ b; i.e., if a is a translation of b. Define the

supertile of a to be the set ~a ¼ fbja ’ bg: A supertile ~a is

s-stable (or simply stable) if all of the assemblies it con-

tains are s-stable; equivalently, ~a is stable if it contains a

stable assembly, since translation preserves the property of

stability. Note also that the notation j~aj � jaj is the size of

the super tile (i.e., number of tiles in the supertile) is well-

defined, since translation preserves cardinality (and note in

particular that even though we define ~a as a set, j~aj does not

denote the cardinality of this set, which is always @0).

For two supertiles ~a and ~b; and temperature s 2 N;

define the combination set Cs
~a;~b

to be the set of all supertiles

~c such that there exist a 2 ~a and b 2 ~b such that (1) a and b
are disjoint (steric protection), (2) c : a [ b is s-stable,

and (3) c 2 ~c. That is, Cs
~a;~b

is the set of all s-stable super-

tiles that can be obtained by attaching ~a to ~b stably, with

jCs
~a;~b
j[ 1 if there is more than one position at which b

could attach stably to a.

It is common with seeded assembly to stipulate an

infinite number of copies of each tile, but our definition

allows for a finite number of tiles as well. Our definition

also allows for the growth of infinite assemblies and finite

assemblies to be captured by a single definition, similar to

the definitions of Lathrop et al. (2009) for seeded assembly.

Given a set of tiles T, define a state S of T to be a

multiset of supertiles, or equivalently, S is a function

mapping supertiles of T to N [ f1g; indicating the mul-

tiplicity of each supertile in the state. We therefore write

~a 2 S if and only if Sð~aÞ[ 0:

A (two-handed) tile assembly system (TAS) is an

ordered triple T ¼ ðT; S; sÞ; where T is a finite set of tile

types, S is the initial state, and s 2 N is the temperature. If

not stated otherwise, assume that the initial state S is

defined Sð~aÞ ¼ 1 for all supertiles ~a such that j~aj ¼ 1; and

Sð~bÞ ¼ 0 for all other supertiles ~b: That is, S is the state

consisting of a countably infinite number of copies of each

individual tile type from T, and no other supertiles. In such

a case we write T ¼ ðT ; sÞ to indicate that T uses the

default initial state.

Given a TAS T ¼ ðT ; S; sÞ; define an assembly

sequence of T to be a sequence of states S~¼ ðSi j
0� i\kÞ (where k = ? if S~ is an infinite assembly

sequence), and Si?1 is constrained based on Si in the fol-

lowing way: There exist supertiles ~a; ~b; ~c such that (1) ~c 2
Cs

~a;~b
; (2) Siþ1ð~cÞ ¼ Sið~cÞ þ 1;2 (3) if ~a 6¼ ~b; then Siþ1ð~aÞ ¼

Sið~aÞ � 1; Siþ1ð~bÞ ¼ Sið~bÞ � 1; otherwise if ~a ¼ ~b; then

Siþ1ð~aÞ ¼ Sið~aÞ � 2; and (4) Siþ1ð ~xÞ ¼ Sið ~xÞ for all ~x 62
f~a; ~b; ~cg: That is, Si?1 is obtained from Si by picking two

supertiles from Si that can attach to each other, and

attaching them, thereby decreasing the count of the two

reactant supertiles and increasing the count of the product

supertile. If S0 = S, we say that S~ is nascent.

1 The restriction on overlap is a formalization of the physical

mechanism of steric protection. 2 with the convention that 1 ¼1þ 1 ¼ 1� 1
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Given an assembly sequence S~¼ ðSi j 0� i\kÞ of T ¼
ðT; S; sÞ and a supertile ~c 2 Si for some i, define the pre-

decessors of ~c in S~ to be the multiset predS~ð~cÞ ¼ f~a; ~bg if

~a; ~b 2 Si�1 and ~a and ~b attached to create ~c at step i of the

assembly sequence, and define predS~ð~cÞ ¼ f~cg otherwise.

Define the successor of ~c in S~ to be succS~ð~cÞ ¼ ~a if ~c is a

predecessor of ~a in S~; and define succS~ð~cÞ ¼ ~c otherwise. A

sequence of supertiles ~a~¼ ð~ai j 0� i\kÞ is a supertile

assembly sequence of T if there is an assembly sequence

S~¼ ðSi j 0� i\kÞ of T such that, for all 1� i\k; succS~

ð~ai�1Þ ¼ ~ai; and ~a~ is nascent if S~ is nascent.

The result of a supertile assembly sequence ~a~ is the unique

supertile resð~a~Þ such that there exist an assembly a 2 resð~a~Þ
and, for each 0 B i \ k, assemblies ai 2 ~ai such that doma ¼S

0� i\k domai and, for each 0� i\k; aiYa: For all supertiles

~a; ~b;we write ~a!T ~b (or ~a! ~b whenT is clear from context)

to denote that there is a supertile assembly sequence ~a~¼ ð~ai j
0� i\kÞ such that ~a0 ¼ ~a and resð~a~Þ ¼ ~b: It can be shown

using the techniques of Rothemund (2001) for seeded systems

that for all two-handed TASsT supplying an infinite number of

each tile type,!T is a transitive, reflexive relation on supertiles

of T . We write ~a!1
T

~bð~a!1 ~bÞ to denote an assembly

sequence of length 1 from ~a to ~b and ~a!� 1
T

~bð~a!� 1 ~bÞ to

denote an assembly sequence of length 1 from ~a to ~b if ~a 6¼ ~b;

and otherwise (i.e. ~a ¼ ~b) an assembly sequence of length 0.

A supertile ~a is producible, and we write ~a 2 A½T �; if it

is the result of a nascent supertile assembly sequence. A

supertile ~a is terminal if, for all producible supertiles
~b;Cs

~a;~b
¼ ;:3 Define Ah½T � � A½T � to be the set of ter-

minal and producible supertiles of T : T is directed (a.k.a.,

deterministic, confluent) if jAh½T �j ¼ 1:

Let X � Z
2 be a shape. We say X self-assembles in T if,

for each ~a 2 Ah½T �; there exists a 2 ~a such that dom

a = X; i.e., T uniquely assembles into the shape X.

5.2.1 An example 2HAM system

In this section we provide an example of a simple 2HAM

system and show exactly what assemblies are producible

within it in order to help clarify the ways in which assemblies

are produced within the model.

Let T ¼ ðT ; 2Þ be a 2HAM system where T is defined as

the tile types in Fig. 11a. Figures 11a–12c show the com-

plete set of 29 supertiles which make upA½T �; and Fig. 12c

shows the single member of Ah½T �: The producible su-

pertiles are broken into groups to show the earliest step of

combinations during which they can appear, although for

some there are multiple paths of combinations which can

form them. (We don’t show duplicate copies.) Furthermore,

recall from the definition of the model that all producible

supertiles are available at every step, so for example a su-

pertile produced in step 2 may combine with one produced

in step 1 to create a new supertile in step 3. Also note that

the use of ‘‘steps’’ is merely a convenience for discussing

this example, but typically the sets A½T � and Ah½T � are

simply defined as those supertiles producible in the limit.

5.3 Survey of 2HAM results

We now provide a brief, incomplete review of some results

in the 2HAM.

5.3.1 Simulation of the aTAM

The aTAM assumes a controlled, well-defined origin for the

initiation of all assemblies, while the 2HAM allows for

‘‘spontaneous’’ nucleation caused by any two producible

assemblies (including singleton tiles) which can bind with

sufficient strength. Given this much greater level of freedom,

the question of whether or not that could be constrained and

forced to behave in a way similar to the aTAM was asked by

Cannon et al. (2012). The answer was ‘‘yes’’, and in fact in

Cannon et al. (2012) a construction was presented which,

given an arbitrary aTAM system T ; provides for a way to

construct a 2HAM systemSwhich can faithfully simulateT ;
the cost is a constant scaling factor of 5. The general tech-

nique is to allow S to form 5 9 5 blocks which represent the

tiles in T but in a very constrained way so that the blocks can

only fully form and present their output glues once they’ve

attached to a growing assembly which contains a seed block

(and therefore they can’t spontaneously combine away from

the ‘‘seeded’’ assembly). This result is especially notable

since, as long as the constant scaling factor is allowed, it

shows that any seeded growth of the aTAM can be simulated

by a system in the unseeded 2HAM, making it unnecessary

for the model itself to enforce a particular starting point for

growth, but instead each system can be designed to enforce a

well-defined starting point of growth, if desired.

5.3.2 Intrinsic universality in the 2HAM

The existence of a single tile set which can be configured to

simulate any aTAM system was discussed in Sect. 3.5.7. In

contrast, Demaine et al. (2013) proved that no such tile set

3 Note that a supertile ~a could be non-terminal in the sense that there

is a producible supertile ~b such that Cs
~a; ~b
6¼ ;; yet it may not be

possible to produce ~a and ~b simultaneously if some tile types are

given finite initial counts, implying that ~a cannot be ‘‘grown’’ despite

being non-terminal. If the count of each tile type in the initial state is

?, then all producible supertiles are producible from any state, and

the concept of terminal becomes synonymous with ‘‘not able to

grow’’, since it would always be possible to use the abundant supply

of tiles to assemble ~b alongside ~a and then attach them.
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exists for the 2HAM. More precisely, they showed that for

every 2HAM system at temperature s, there exists some

system at temperature s ? 1 which cannot be simulated by

it. Their proof is based upon the ability of the 2HAM to

simultaneously utilize the binding of multiple glues posi-

tioned on tiles arbitrarily far apart. They describe a system

which produces assemblies which look like ladders that

each have s ? 1 rungs and form in such a way that each

half of a ladder with all s ? 1 half-rungs must fully form

before binding to a complementary half-ladder to form a

full ladder. They then prove that any system whose tem-

perature is \ s ? 1 can’t simulate such a system, since it

would have to ‘‘fake’’ the binding of one or more rungs and

must therefore also be able to form ladders which have

\s ? 1 rungs. Since the original system couldn’t form

these, the simulator can’t correctly simulate it.

While the entire 2HAM is not intrinsically universal, in

Demaine et al. (2013) they went on to show how, for each

individual s[ 1, the class of 2HAM systems at s is

intrinsically universal. This means that for each temperature

s, there exists a single tile set which can simulate all 2HAM

systems at temperature s. Their constructions showed a

variety of tradeoffs in the number of unique input supertiles

required for each simulation, their sizes, and the scale factor

of the simulations. For their final result, they exhibited a

construction which provides a single tile set for each s

which requires no input supertiles and which simulta-

neously and in parallel simulates every 2HAM system at

temperature s.

As a corollary to their results related to intrinsic uni-

versality in the 2HAM, the authors of Demaine et al.

(2013) show that within the 2HAM there is an infinite set

of infinite hierarchies of 2HAM systems with strictly

increasing power within each hierarchy, which creates a

much more complex landscape than the fully unifying

result of Doty et al. (2012) for the aTAM!

5.3.3 Verification of 2HAM systems

Given that the 2HAM allows for a greater variety of

behaviors than the aTAM, and in fact in some sense for the

transmission of information over arbitrary distances (by the

placements of glues and general geometric shapes of arbi-

trarily large supertiles which are combining), it shouldn’t be

surprising that many verification problems are more diffi-

cult for the 2HAM than for the aTAM (see Sect. 3.5.8).

Several verification problems have been characterized in

terms of their complexity, some of which include:

1. Does 2HAM system T uniquely produce a given

assembly? This was shown to be co-NP-complete for

3D temperature 2 systems in the 2HAM Cannon et al.

(a) (b)

Fig. 11 An example 2HAM

system and some producible

assemblies. a The tile set (a.k.a.

singleton tiles) for the 2HAM

example system. b The new

supertiles producible after one

step of combinations

(a) (b) (c)

Fig. 12 Continuation of the example 2HAM system’s producible

assemblies. a The new supertiles producible after the second step of

combinations. b The only new supertile producible after the third step

of combinations. c The only new supertile producible after the fourth

step of combinations, and which is the unique terminal assembly of

the system
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(2012). The complexity of this verification problem is

still open in 2D. (But note that it is solvable in

polynomial time in the aTAM in both 2D and 3D.)

2. Does 2HAM system T uniquely produce a given

shape? This was shown to be in co-NP for temperature

1 and co-NP-complete for temperature 2 by Cheng

et al. (2005).

3. Is a given assembly terminal in 2HAM system T ? In

Cannon et al. (2012) this was shown to be uncomput-

able for temperature 2 systems in the 2HAM [while it

is computable in polynomial time in the aTAM

(Adleman et al. 2012), and also for the 2HAM at

temperature 1 (Cannon et al. 2012).]

4. Given a 2HAM system T ; does it produce a finite

terminal assembly? This was shown to be uncomput-

able in Cannon et al. (2012).

5. Given a 2HAM system T ; does it produce an infinite

terminal assembly? This was shown to be uncomput-

able for temperature 2 2HAM systems in Cannon et al.

(2012).

5.3.4 Impossibility and efficiency comparisons

with the aTAM

Given that the 2HAM can simulate the aTAM (and that the

converse is not true), it seems that the 2HAM is more

powerful. Thus, it may be somewhat surprising that in

Cannon et al. (2012) it was shown that there is a simple

class of shapes (so-called loops) which can be assembled

with slightly greater tile type efficiency in the aTAM at

temperature 1 than in the 2HAM at temperature 1. (How-

ever, this separation disappears at temperature 2.) None-

theless, in Cannon et al. (2012) it was also shown that there

are shapes called staircases which can self-assemble in the

2HAM using roughly n tile types, while the aTAM requires

a number exponential in n (and this can in fact be extended

to the busy beaver function, BB(n)). In terms of impossi-

bility, it was shown that there is a class of infinite shapes

which self-assembles in the aTAM but not the 2HAM, and

also a class of shapes which can self-assemble (in a weaker

sense) in the 2HAM but not in the aTAM.

5.3.5 Speed of assembly

Since the 2HAM allows for assemblies to begin forming in

parallel and then to combine in pairs, it would seem that

perhaps this would allow for sublinear assembly times.

However, Chen and Doty (2012) developed a physically

inspired timing model for the 2HAM (referred to there as

the Hierarchical aTAM) and showed that it is impossible to

build shapes of diameter n in time less than XðnÞ in deter-

ministic systems under that timing model. Nonetheless,

they then exhibited a nondeterministic system which can

assemble an n 9 n0 rectangle (where n [ n0) in time O(n4/

5log n), breaking the linear-time lower bound (which

applies not only to deterministic 2HAM systems, but also to

seeded aTAM systems as mentioned in Sect. 3.5.5).

5.3.6 Fuzzy temperature fault tolerance

Recall that the 2HAM allows for the nucleation of an

assembly by any pair of tiles with binding strength equal to

the temperature. It therefore seems that self-assembly in

the 2HAM at temperature 1, where every pair of matching

glues on any pair of tile edges is sufficient to initiate the

growth of an assembly, is doomed to either (1) make

nothing but the most simple of periodic structures, or (2)

require tile complexity equivalent to the number of points

in the desired shape. However, temperature 2 assembly in

the 2HAM is computationally universal, so, as in the

aTAM, the question becomes: is temperature 1 provably

strictly weaker? While that remains an open question, Doty

et al. (2010) introduced a variation to the model where the

temperature parameter isn’t fixed, but instead can drift

between 1 and 2, staying at one or the other for arbitrarily

long. However, there is a guarantee that the temperature

will eventually at some point return to 2 and stay there for

arbitrarily long. They called this model fuzzy temperature,

and showed that they could develop systems which

exhibited strong fault-tolerance in such conditions (mean-

ing that they were guaranteed to always produce the correct

assembly) while building n 9 n squares using only O(log

n) tile types. To obtain this fault tolerance, the construction

had to ensure that any unintended growth that occurred

during a phase of temperature 1 could not become stably

‘‘locked in’’ at temperature 2, meaning that they would

always have to dissolve when the temperature raised.

6 Newer Models

The wide variety of previously discussed results in the

aTAM and 2HAM have helped researchers to develop a

much stronger understanding of the fundamental powers

and limitations of systems in which:

1. The entire growth process is guided solely by local

interactions of the constituent components, with no

global source of information input.

2. The glues of tiles are simple in that they each bind with

a positive-valued integer strength bond to only other

copies of the same glue and have no interaction with

other glues.

3. The properties of individual tiles (i.e. the glues they

possess, their shapes, etc.) are fixed and unchanging.
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4. Once a tile attaches to an assembly it never detaches.

While much power has been demonstrated for systems

within these restrictive models, they are still bounded by

several fundamental limitations (some of which have been

shown). In order to both determine if and how such theo-

retical limitations may be surpassed, as well as to help

guide the design of artificial self-assembling systems

within the laboratory, a large array of derivative models

have been defined and developed. The goal for many of

these models is to find (at least theoretically) plausible

methods of removing one or more of the above restrictions.

Thus, these models tend to be more powerful, and an

important aspect of studying such models is to carefully

characterize the differences between them and the original

models, along with the provably different powers of the

models. In this way, we gain a much better understanding

of which powers are afforded by which properties of self-

assembling systems. Such understanding is theoretically

very interesting, but also can help with the design of lab-

oratory systems by providing insight into which properties

are most valuable and the tradeoffs between them.

In this section, we provide high-level descriptions of sev-

eral models which have been developed to extend the aTAM

and/or 2HAM, along with a few of the results in those models.

We attempt to characterize the fundamental differences

between these models and to show how their powers differ.

6.1 Probabilistic assembly and concentration

programming

It was previously discussed in Sect. 3.5.2 that nondeter-

minism provides additional power over deterministic sys-

tems in the aTAM. Extending work along that front,

Chandran et al. (2009), introduced the Probabilistic Tile

Assembly Model (PTAM) in which a tile set is defined as a

multi-set of tiles (meaning that more than one tile of each

type can be included in the tile set), and at each step of

assembly a tile is chosen with uniform probability from the

tiles in that multi-set. They were able to effectively harness

nondeterminism by designing PTAM systems where tiles

of more than one type can bind at many points during the

assembly, and demonstrated a construction which produces

lines of expected length n using a tile set with a mere

Hðlog nÞ tiles, along with a matching lower bound of

Xðlog nÞ: This is an enormous improvement over the lower

bound of n in the aTAM, at the cost of a bit of imprecision

due to variance in the length of the lines actually produced.

Furthermore, by introducing a variant of the PTAM in

which each edge of a tile can have multiple glues and

allowing binding to occur between tiles as long as a single

glue matches, they were able to lower both of those bounds

by a factor of log log n, i.e. to Hð log n
log log n

Þ and Xð log n
log log n

Þ:

In the standard aTAM, the ‘‘program’’ that is being

executed during self-assembly can be thought of as being

specified by the specific tile types of the system. It is the

information encoded in the glues that direct the behavior of

the system and guide assembly. Also, it is assumed that not

only do the concentrations of free tiles in solution remain

constant during assembly (clearly a simplifying assumption

as long as new tiles are not added to the solution during

assembly), it is also assumed that tiles of all types have the

same concentration. Tile concentration programming,

introduced by Becker et al. (2006), allows for the manip-

ulation of tile concentrations and thus the inclusion of

additional information as input to a TAS as the relative

concentrations of the various tile types (somewhat similar

to the multiplicity of tile types within PTAM tile sets). This

can be thought of as a global source of information as the

concentrations are set as global ratios between tile types.

This tool has been used for reducing both assembly time

and the frequency of errors in the kTAM. It has also been

used in a variant of the aTAM to provide nondeterministic

‘‘competitions’’ between tiles of different types for binding

at specified locations. The results of these competitions can

be used by the system to sample the relative concentrations

of the tile types and thus ‘‘read’’ the input information thus

provided.

In a series of results by Becker et al. (2006) to Kao and

Schweller (2008) to Doty (2010), it was shown how to use this

information to efficiently build shapes such as squares with

increasing precision. Most recently, Doty (2010) showed how

to combine tile concentration programming with a constant

tile set to form any n 9 n square with high probability (for

sufficiently large n), and also how to self-assemble arbitrary

scaled shapes using a constant tile set and tile type concen-

trations dependent upon the definition of the shape.

Adleman et al. (2002) examined the effects of varying

the relative concentrations of tile types in order to optimize

assembly time and provided an algorithm to find the tile

type concentrations which approximate the minimum

expected assembly time within a O(log n) factor. Jang et al.

(2006), and Chen and Kao (2011), studied the effects of

varying concentrations on both error prevention and

assembly time and found that it is possible to improve both.

Chen and Kao (2011), they showed that the rate of growth

errors is minimized by setting the concentration of tiles of

type Ti proportional to the square root of the number of

times that tiles of type Ti appear in the final assembly

(outside of the seed structure). Further, by using those

concentrations the expected assembly time is also mini-

mized for constrained systems where the size of the growth

frontier (i.e. the number of locations where a tile can attach

correctly and with sufficient strength) is limited to 1 at all

times. (Note that such systems, although constrained, have

been shown to be computationally universal.)
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6.2 Staged self-assembly

Self-assembly in the aTAM is considered a ‘‘one pot’’

reaction, meaning that all assembly for a given system occurs

in one test tube. Furthermore, during the entire assembly

process all tile types are present. Demaine et al. (2008)

defined the Staged Tile Assembly Model in which arbitrary

subsets of tile types and previously produced assemblies can

be placed into distinct test tubes, or bins, for portions of the

assembly process. Once the assemblies in each bin have

reached terminal states, it is possible to combine or separate

the contents of bins and individual tile types into new bins,

and perform the next stage of assembly. (During each stage,

assemblies are allowed to combine as in the 2HAM.) This

increases the resources required for a self-assembling sys-

tem, but provides additional input in the form of the staging

algorithm (the definition of the series of stages) and dra-

matically increases in the power of such systems. For

instance, in Demaine et al. (2008) they were able to dem-

onstrate that a constant tile set can be used to self-assemble

arbitrary shapes—with no scaling! This construction

requires a number of bins and stages dependent on the par-

ticular shape, and they presented a variety of constructions

which exhibited tradeoffs between the number of tile types,

number of bins, number of stages, and scaling factor.

In a more recent paper, Demaine et al. (2012) studied

the problem of assembling labeled 1 9 n lines, i.e. lines

where each position is assigned a character from a given

alphabet and thus each assembly represents a string over

that alphabet. Tile labels were used to represent the char-

acters. They considered the original formulation of the

staged model in which the output of each mixing operation

is restricted to being a single terminal assembly, and also a

version in which multiple terminal assemblies can be

produced by each. They were able to show that in both

versions, the minimum number of stages required is within

a constant factor of the size of the smallest context-free

grammar which generates exactly the string.

A simplification of staged self-assembly (and introduced

before it), step assembly was introduced by Reif (1999) as a

model where only one bin is used, but with the additional

constraint that assembly growth can only happen one tile at

a time, similar to the aTAM. Maňuch et al. (2009) showed

that in step assembly 24 tile types are sufficient to assemble

any shape at a scale factor of 2, but with a number of steps

proportional to the number of points in the shape. Also,

Behsaz et al. (2012) showed that both staged and step

assembly models are Turing universal at temperature 1.

6.3 Geometrically complex tiles

Work in the aTAM is generally done with the assumption

of a ‘‘diagonal’’ glue function, which means that the

function that maps the strength of interaction between pairs

of glues returns a 0 for all pairs of glues where both are not

the same glue type, and a positive number for pairs of glues

of matching type. Given such a glue function, which is the

standard, as previously mentioned the lower bound on the

unique number of tile types which can self-assemble an

n 9 n square is O log n
log log n

� �
. However, for a non-diagonal

(or flexible) glue function, which is one that allows inter-

actions between each glue type and any subset of other glue

types, that lower bound falls to
ffiffiffiffiffiffiffiffiffiffi
log n
p

as shown by Cheng

et al. (2005). In order to provide a potentially realistic

means of implementing non-diagonal glue functions, the

Geometric Tile Assembly Model (GTAM) was introduced

by Fu et al. (2012), and a series of constructions in the

GTAM were presented which:

1. Self-assemble an n 9 n square in the optimal

Oð
ffiffiffiffiffiffiffiffiffiffi
log n
p

Þ tile types and at temperature 1

2. Simulate a computationally universal class of temper-

ature 2 aTAM constructions at temperature 1

3. In a 2-handed version of the GTAM (and allowing 4

planes to be used in the third dimension), self-

assemble an n 9 n square using only O(log log n) tile

types

In experimental work, Woo and Rothemund in 2011

fabricated tiles from DNA origami, but rather than relying

on Watson–Crick base pairing as the bonding mechanism

between tile edges, they instead relied solely on non-spe-

cific blunt-end stacking interactions and instead enforced

specificity by making use of geometrically diverse edges

which enforced shape complementarity, using a method-

ology quite similar to that of Fu et al. (2012).

6.4 Tiles which are not square

Kari et al. (2012) studied systems with tiles of various

shapes, including triangular and hexagonal. They showed

that by some definition of simulate, systems of square tiles

and systems of triangular tiles are not able to simulate each

other. Beyond comparing the abilities of the variously

shaped tiles to simulate each other, they also provided

some constructions showing what triangular and hexagonal

tiles are capable of (for instance, triangular tiles can be

used to tile the Sierpinski triangle).

In a further departure from the standard square, and

rigid, tile type utilized in the aTAM, Jonoska et al. (1999)

introduced flexible tiles, which (unlike the rigid tiles of the

aTAM) have their glues on the ends of bendable arms. This

allows for much more complex patterns of binding across

tiles by removing the standard geometric restrictions

imposed by planarity in the aTAM, allowing each glue of

one tile to bend into different positions to bind with the
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glues of neighboring tiles in a variety of locations. Using

flexible tiles, Jonoska and McColm (2006) were able to

show that computations performed by rigid tiles can (within

certain polynomial restrictions) be simulated by systems of

flexible tiles. Furthermore, in Jonoska and McColm (2009)

they proved the power of various flexible tile systems in

terms of corresponding nondeterministic complexity classes

(while restricting them to bounded numbers of tiles).

6.4.1 Tile which are not square and are rotatable

Most tile-based models stipulate that tiles do not rotate, and

for standard square tiles the additional freedom of rotation

offers no increase in power. However, the question of whe-

ther or not additional power comes from allowing non-

square tiles to rotate was first addressed by Demaine et al.

(2012). In Demaine et al. (2012) they showed how to create a

single rotatable tile type which can simulate any aTAM

system T as long as a seed encoding information aboutT and

consisting of copies of that single tile type is provided. Part of

this construction relies on the intrinsic universality result of

Doty et al. (2012), and their rotatable tile type is nearly cir-

cular with a number of sides proportional to the number of

tiles in the tile set of Doty et al. (2012), with each side having

a small set of geometric bumps and dents. Alternatively, they

showed how to take any aTAM system T 0 and create a single

rotatable tile type so that a system consisting of no seed

structure and only copies of the rotatable tile type will sim-

ulate T 0:They were able to extend their construction to apply

to Wang tile systems so that any Wang tile system can be

simulated by a single rotatable tile type as long as they are

placed on a hexagonal grid and small gaps between tiles are

allowed. These results provide the first single-tile systems

which are capable of universal computation and aperiodic

tilings, while using only local binding rules. As a tool to

achieve their constructions, they also proved that any aTAM

system of square tiles can be converted into a system of

hexagonal tiles which simulate it but without containing any

s-strength glues (and requiring a seed of size 3).

In contrast to their positive results, Demaine et al.

(2012) proved that any system composed of a single tile

type which can only translate but not rotate, and with no

seed structure, must either form infinite structures or not

grow at all. However, if given a seed structure such a

system is capable of simulating 1D cellular automata for a

limited number of steps.

6.5 Dynamic models

The previously discussed models, despite having many

differences, have a fundamental similarity. They are all

‘‘static’’ in terms of the behaviors of tiles once they attach

to an assembly, meaning that all bonds, once formed,

remain permanently, and no properties of the tiles (other

than potential un-bound edges becoming bound later) ever

change. The next several models provide mechanisms

where either bonds can be broken, allowing assemblies to

break apart, or some properties of tiles themselves can

change. This additional power opens the door to several

new construction techniques and for many of the limita-

tions of static models to be overcome.

6.5.1 Temperature programming

The multiple temperature model, or temperature pro-

gramming, introduced by Cheng et al. (2005), is a variant

of the seeded aTAM which allows for the temperature of

the system to be changed (raised or lowered) during the

assembly process and at specified points. More specifically,

a series of temperature transitions, along with the tile set,

seed, and initial temperature, are specified to define a

temperature programming system. Assembly progresses

from the seed until the assembly is terminal. At that point,

the first temperature transition is made and assembly con-

tinues until it is terminal. If another temperature transition

has been specified it is made and assembly once again

continues, and so on until assembly is terminal and no

additional temperature transitions have been specified.

Somewhat akin to tile concentration programming, tem-

perature programming provides a way to supply information

globally to the system. The addition of a series of tempera-

ture transitions as input turns out to be a powerful tool, and, in

Cheng et al. (2005) they used it to demonstrate how to build

n 9 n squares, for any given n, using a constant tile set and

O(log n) temperature changes. Summers (2012) extended

those results to show that there exist systems using one of two

constant tile sets that can self-assemble scaled-up versions of

arbitrary shapes. One system uses a larger scaling factor

dependent upon the shape but a ‘‘Kolmogorov-optimum’’

temperature sequence, while the other uses a small, constant

scaling factor but a temperature sequence proportional to the

number of points in the shape. Summers also proved that

there exists no single tile set which can self-assemble an

arbitrary shape in this model without scaling.

Using the power of the model to split assemblies apart,

in Cheng et al. (2005) they showed that with one temper-

ature change it is possible to self-assemble thin rectangles

(i.e. n 9 k where k\ log n
log log n�log log log n

) using only Oð log n
log log n

Þ
tile types, which beats the lower bound of Xðn1=k

k
Þ for the

aTAM.
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6.5.2 Repulsive glues

In the aTAM, all pairs of glues interact with either a

positive (i.e. attractive) force when the glues match, or no

force at all when the glues do not match. However, in

natural systems there is also another option: a negative (i.e.

repulsive) force. For instance, two objects with the same

electric charge (or two magnets whose same poles are

brought together) will repel each other. Several variations

of models allowing so-called negative glues have been

defined, along with a series of related results.

Calling it the self-destructive graph assembly model,

Reif et al. (2006) studied systems with repulsive glues and

the problem of the sequential construction of a target

assembly’s binding graph. They showed that the com-

plexity of this problem is PSPACE-complete. Doty et al.

(2013) studied a slightly different version of a model

allowing repulsive glues [and a nice description of a set of

variations can be found in the appendix of Doty et al.

(2013)], and were able to show that repulsive glues do not

allow for unlimited reuse of tiles and the growth of an

assembly must necessarily ‘‘lock in’’ a number of tiles

proportional to the number of tile addition steps. They also

showed how to simulate a s-space bounded and t-time

bounded Turing machine while keeping the size of all

assemblies bounded by O(s) rather than the O(st) bound

required by aTAM constructions. Patitz et al. (2011),

defined a model (that they called the restricted glue Tile

Assembly Model, or rgTAM) in which 1. only diagonal

glue functions are allowed, 2. the absolute value of every

glue strength is 1, and 3. only one single glue type with a

repulsive force is allowed in any tile set. They then pro-

vided a construction which efficiently self-assembles an

n 9 n square using O(log n) tile types [improved in Patitz

et al. (2012)] to Oð log n
log log n

Þ; and one which simulates an

arbitrary Turing machine, showing that the model is

computationally universal. Most recently, Schweller and

Sherman (2013) presented a construction using a diagonal

glue function which can simulate an arbitrary Turing

machine in a fuel-efficient manner (see Sect. 6.5.4 for a

description of fuel-efficient Turing machines).

6.5.3 Staged assembly with RNase

As an extension to staged self-assembly as discussed in

Sect. 6.2, Abel et al. (2010) defined a model in which tile

types are created out of two different materials (e.g. DNA

and RNA), and then it is possible to dissolve one type (e.g.

RNA tiles) at specified points during the assembly (e.g. by

the addition of an RNase enzyme).

Using the additional power of this model, they were able

to develop systems in which the input was not only a set of

tiles, but also assemblies of unspecified hole-free shapes.

Their systems then replicate the shapes of the input

assemblies, so that the outputs of their systems are

assemblies whose shapes are the same as the shapes of the

input assemblies. They were able to develop constructions

which are capable of producing an exact number of copies

of the input shape, as well as constructions which produce

infinitely many copies of the shapes. They also showed

how to vary the constructions to use either a constant

number of tile types and log (n) stages (where n is the

number of copies to make in the finite case, or the number

of boundary corners of the shape in the case of infinite

replication), or log n) tile types and a constant number of

stages.

In later work, Demaine et al. (2011) showed how to self-

assemble arbitrary shapes using an asymptotically optimal

number of tile types (proportional to the Kolmogorov

complexity of the shapes), a scaling factor related to the log

of the shape’s size, and a constant number of stages.

Making further use of this model, Patitz and Summers

(2012) defined a new problem and showed how to use tile-

based self-assembly to solve it. They asked: Is it possible to

start with a collection of objects of an unspecified variety

of shapes, and to design TASs which will uniquely identify

exactly those objects of a predetermined shape? They

called this problem the shape identification problem, and

provided a series of results for the 2-dimensional version of

the problem (which requires that shapes be hole-free). In it,

the input objects were defined to have glues of a single type

completely surrounding their perimeters, and the goal was

for terminal systems to have all instances of the target

shape completely surrounded by a one-tile-wide perimeter,

while all input objects not matching that shape have

absolutely no tiles attached. The general technique used

was to design systems in which tiles begin to attach to the

perimeters of all input objects, but then combine infor-

mation about the shape as the assemblies grow (attached to

the input shapes) in a way that prevents complete growth of

the perimeter if the object is not of the correct target shape.

They then rely on the addition of the RNase enzyme to

dissolve away all tiles other than those forming the

immediate perimeters of input objects, and for those whose

shape was not correct, since the perimeter is not complete,

it will not be s-stable and will thus unravel. They showed

matching lower and upper bounds of Oð log n
log log n

Þ for the tile

complexity of identifying n 9 n squares, for given n. They

then gave a constant tile set which is capable of identifying

all squares (of any dimension). They also demonstrated

constructions for identifying a wider class of shapes and

were able to show that those constructions were optimal in

terms of tile complexity, as they were proportional to the

Kolmogorov complexities of the shapes.
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6.5.4 Signal passing tiles

In the previously discussed models (other than those in Sect.

4.3.5), the tiles are static objects which do not change in

structure or function upon binding. To study a more ‘‘active’’

model, Padilla et al. (2012) introduced the Signal passing

Tile Assembly Model (STAM), which was based on previous

work by Padilla et al. (2012). In the STAM, which is based on

the 2HAM, tiles are allowed to have possibly multiple glues

on each side. At any point in time each glue can be in one of

three states: (1) ‘‘latent’ (inactive and has never been

active), (2) ‘‘on’’ (active, available to bind), and (3) ‘‘off’’

(has been deactivated). A tile’s glues can initially begin as

either latent or on. Only glues which are on are able to

bind, and when a glue binds it is possible for it to signal any

subset of glues on the same tile to perform one of the fol-

lowing transitions: (1) latent! on; (2) latent! off; or (3)

on! off: Multiple adjacent tiles in an assembly activating

glues in sequence, with each depending on the one before it,

can be thought of as passing a signal through the assembly,

and this signal can be used to further modify the tiles within

the assembly. Signals are thus able to allow tiles on the

perimeter to activate glues which provide new binding

domains for additional tiles, or to deactivate glues which may

cause portions of an assembly to dissociate. The STAM is

highly asynchronous, so there is no guarantee about when a

signal will be acted upon, only that it will happen at some

point in the future, and no guarantees can be made about the

relative timing of tile attachments and signal propagation.

Furthermore, it is important to note that each tile has a

constant number of glues, and thus a constant number of

signals that it can initiate and react to.

Complexity measures of STAM systems include the

maximum number of glues that appear on the face of any

tile in a given system (called the signal complexity), and in

Padilla et al. (2012), the authors demonstrated construc-

tions which are able to self-assemble 1 9 n lines with: (1)

a constant number of tile types and signal complexity

O(log n) without using glue deactivation and tile detach-

ments, and (2) a constant number of tile types and

Oð log n
log log n

Þ signal complexity by using glue deactivation.

Next they also presented a construction which is able to

simulate a Turing machine without making a new copy of

the entire row representing the tape at each step, but which

instead uses only a constant number of new tiles per

computational step, which they called ‘‘fuel-efficient’’.

Their final construction is the first known of any model

which can strictly self-assemble a discrete self-similar

fractal, namely the Sierpinski triangle (which is provably

impossible in models such as the aTAM and 2HAM).

In a similar direction, Jonoska and Karpenko (2012)

introduced the Active Tile Assembly Model which also

allows tiles to have multiple glues on each edge and to pass

signals, although using a slightly different mechanism.

Furthermore, their model is synchronous in that signals are

activated immediately upon tile bindings and signal prop-

agation is guaranteed to complete as far as allowed by the

tiles in the assembly before any other tile attachments may

occur. They also defined a framework for describing

recursive self-assembly and self-similarity which can be

applied to constructions such as the one they present which

self-assembles the aperiodic tiling known as the L-shape

tiling.

6.6 Active self-assembly with nubots

Taking inspiration from biological processes such as

mitosis and embryonic development, Woods et al. (2013)

introduced the nubot model in which the fundamental

components, called nubot monomers, are able to combine

in ways similar to the tiles of other models, but are also

able to change internal states, move relative to each other,

and detach. This mixture of abilities combines aspects of

passive tile assembly with the behaviors of systems which

include molecular motors, molecular circuits, and reaction-

diffusion systems. Additionally, the rules which allow

relative movement between individual monomers are able

to propagate motion through nubot systems in non-local

ways, moving arbitrarily large sub-assemblies relative to

each other.

The nubot model uses a two-dimensional triangular grid

where at most one monomer can be positioned on each

vertex and each monomer has six neighbors. Each mono-

mer can be in exactly one of a finite set of states. Neigh-

boring monomers can have no bond between them, a

flexible bond (which allows relative motion between the

monomers), or a rigid bond. A configuration of a nubot

system is a description of the entire grid with the locations

of monomer types, their states, and the bonds between

them. Each step of the evolution of a system consists of

either the application of an interaction rule or an agitation.

Interaction rules consist of the following: adjacent mono-

mers change state or bond type, one or both disappear, one

monomer appears in an empty space, or one monomer

moves relative to another by one unit space. Agitation

allows connected components to move.

After defining the nubot model, they showed that,

despite the fact that interaction rules can result in arbi-

trarily large amounts of non-local motion, the model can be

efficiently simulated. (They also developed a simulator

following the algorithms provided.) Then, using this

model of ‘‘active self-assembly’’ they showed that the

self-assembly of shapes and patterns can be done very

efficiently in terms of the number of unique monomer
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states and the time required. Their first constructions consist

of the self-assembly of lines and squares in time logarithmic

in their sizes. They then present constructions for the effi-

cient, in terms of unique monomer states and assembly

time, self-assembly of computable shapes and patterns.

Namely, any computable shape or pattern can self-assemble

in an amount of time equal to the worst-case running time

for a Turing machine to compute a pixel in the shape/pattern

plus an additional factor which is polylogarithmic in its size,

and with a number of monomer states which is equal to the

Kolmogorov complexity of the shape/pattern plus an addi-

tional factor which is logarithmic in its size.

6.6.1 Replication of assemblies and evolution

of complexity

Perhaps one of the most fundamental questions in science is

‘‘how did life originate?’’ We are much more familiar with

the process by which evolution through natural selection

has given rise to the profound complexity of living systems,

but that process must have had a beginning, some original

replicator that was able to produce copies of itself. Fur-

thermore, those copies must have in turn been able to rep-

licate, and potentially with differences in the resulting

copies, giving natural selection a toehold for favoring some

copies over others and thus providing the driving evolu-

tionary pressure that eventually led to the organisms we see

(and are!) today. In order to provide insights into this

question, Schulman and Winfree (2011) built on an initial

proposal by Cairns-Smith (1998, 1996) that clay crystals

may have been the first replicators. Using a slightly

restricted version of the kTAM, they sought to determine if

they could create an environment in which the dynamics of

the growth of DNA crystals (instead of clay crystals) could

give rise to a process of evolution that resulted in crystals of

increasing complexity. The goal was to restrict the avail-

ability of subsets of tile types and see if they could use such

a ‘‘resource restriction’’ to influence the evolution of the

crystals (a.k.a. tile assemblies). Namely, could more com-

plex crystal structure be selected for simply because its

growth required tiles which were more abundant than

crystals of simpler structure? Impressively, using computer

simulations they were able to answer this in the affirmative,

and for systems using only 12 tile types. The systems which

they used grew into assemblies forming long, thin ‘‘rib-

bons’’, and the operation equivalent to replication was the

shearing of a crystal, or cutting a ribbon into two portions,

such that each half represented an offspring and growth

could occur on the newly exposed edges. The measure of

complexity used was the width of the ribbons, so ribbons

which grew wider were considered to be more complex.

Schulman et al. (2012) further developed these ideas in

wet-lab experiments to demonstrate how the growth and

shearing, or scission, of ribbon assemblies could be used to

propagate information encoded in the ribbons. They stud-

ied the fidelity of information copying over two genera-

tions by encoding information in DNA origami seeds to

which tiles attached to form ribbons, and then caused the

ribbons to break so that new growth fronts would be

exposed, to which tiles would attach and continue growth

of the ribbons. Using 4-bit sequences in their laboratory

experiments, after two generations 99.98 % of bits were

copied correctly, and 78 % of 4-bit sequences remained

correct. Theoretical extrapolation suggests that 1,000-fold

replication of such sequences could provide 50 % yield.

This provides some evidence that such processes alone,

without the necessity of enzymes or covalent bond for-

mation, could account for the replication of sequence

information in the ribbons as well as for the evolution of

increased complexity.

7 Conclusion

In the preceding sections, we introduced the basic concepts

of tile-based self-assembly, the original and also newer

theoretical models used to describe it, and presented a large

spectrum of results in the area. The work surveyed largely

focused on the algorithmic nature of the models and

demonstrates a rapidly progressing field in which continued

progress is being made in understanding the fundamental

attributes of such self-assembling systems and the powers

that they provide. It is our feeling that while great strides

have been made in understanding these fundamentals, there

are still some key issues to be resolved. Most notably, is

temperature 1, i.e. non-cooperative, self-assembly (in two

dimensions) capable of universal computation or even

basic algorithmic self-assembly? If not, what are its full

limitations? Although a great amount has been learned

about the lower bounds associated with varying other

aspects of self-assembling systems, the difference between

temperature 1 and 2 self-assembly isn’t yet fully under-

stood. If self-assembly is to become a practical and robust

means of creating complex objects, will cooperative

behavior between assembling components be a funda-

mental requirement? What other necessary characteristics

exist, and which aspects of the molecular components can

be traded for others and at what costs (e.g. scale for tile

complexity, speed for robustness, etc.)?

Another important direction for continued research will

be pursuing the development of new, more complex

models whose components have capabilities not yet cap-

tured by any of the current models. These can be inspired

by close interactions between theoreticians and experi-

mentalists, as the tools available to each group become

better understood by the other. These can also be inspired
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by continued observation of natural systems. We feel that

so-called ‘‘active’’ self-assembly systems, in which the

components are able to change properties of themselves or

their relationships with adjacent components during bind-

ing and after incorporation into structures, provide a great

deal of promise toward the realization of truly powerful

artificial self-assembling systems. However, the continued

work to study the more basic and fundamental aspects of

the simpler models is what will provide the solid bedrock

of understanding on which the more complex models can

be effectively and efficiently built. Care must be taken to

fully understand the most basic systems, gaining a com-

prehensive understanding of the effects of each variable,

before the most intelligent choices can be made for the new

variables to be introduced.

It is our hope and expectation that such research will

continue to advance both the theoretical and experimental

understanding of self-assembling systems, and lead to

important results which (1) provide valuable mathematical

tools that contribute to a wide spectrum of related as well

as seemingly unrelated scientific pursuits, and (2) mean-

ingfully contribute to the continued experimental work

aimed at eventually developing robust and scalable artifi-

cial self-assembling systems. Research into algorithmic

self-assembly has the potential to dramatically impact

technological advancement and to also provide deeper

insight into the fundamental workings, and original emer-

gence, of life. It is our hope that this survey helps to

combine the work of so many great scientists into an

accessible and easy to understand roadmap of what has

been done in such a way that it excites and interests more

into joining the effort to pave the way forward.
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Behsaz B, Maňuch J, Ladislav S (2012) Turing universality of step-

wise and stage assembly at temperature 1. In: Stefanovic D,

Turberfield A (eds) DNA computing and molecular program-

ming. Lecture notes in computer science, vol 7433, Springer,

Berlin, pp 1–11

Berger R (1965) Undecidability of the domino problem. Memoirs of

the American Mathematical Society, Providence, RI

Brun Y (2008) Solving np-complete problems in the Tile Assembly

Model. Theor Comput Sci 395(1):31–46

Bryans N, Chiniforooshan E, Doty D, Kari L, Seki S (2011) The

power of nondeterminism in self-assembly. In: Proceedings of

the 22nd annual ACM-SIAM symposium on discrete algorithms,

SODA 2011, SIAM, pp 590–602

Cairns-Smith AG (1966) The origin of life and the nature of the

primitive gene. J Theor Biol 10(1):53–88

Cairns-smith AG (1988) The chemistry of materials for artificial

darwinian systems. Int Rev Phys Chem 7(3):209–250

Cannon S, Demaine ED, Demaine ML, Eisenstat S, Patitz MJ,

Schweller R, Summers SM, Winslow A (2012) Two hands are

better than one (up to constant factors). Tech. Report 1201.1650,

Computing Research Repository

Chandesris J, Dennunzio A, Formenti E, Manzoni L (2011) Compu-

tational aspects of asynchronous cellular automata. In: Proceed-

ings of the 15th international conference on developments in

language theory, DLT’11, Springer, Berlin, pp 466–468

Chandran H, Gopalkrishnan N, Reif JH (2009) The tile complexity of

linear assemblies. In: Albers S, Marchetti-Spaccamela A, Matias

Y, Nikoletseas SE, and Thomas W (eds) Automata, languages

and programming, 36th international colloquium, ICALP 2009,

Rhodes, Greece, July 5–12 2009. Proceedings, Part I. Lecture

notes in computer science, vol 5555, Springer, Berlin,

pp 235–253

Chen H-L, Goel A (2004) Error free self-assembly using error prone

tiles. In: Proceedings of the 10th international meeting on DNA

based computers, pp 274–283

An introduction to tile-based self-assembly 221

123



Chen H-L, Kao M-Y (2011) Optimizing tile concentrations to

minimize errors and time for dna tile self-assembly systems. In:

Proceedings of the 16th international conference on DNA

computing and molecular programming, DNA’10, Springer,

Berlin, pp 13–24

Chen H-L, Doty D (2012) Parallelism and time in hierarchical self-

assembly. In: Proceedings of the 23rd annual ACM-SIAM

symposium on discrete algorithms, SODA 2012, SIAM,

pp 1163–1182

Chen H-L, Doty D, Seki S (2011) Program size and temperature in

self-assembly. In: Proceedings of the 22nd international sympo-

sium on algorithms and computation, ISAAC 2011. Lecture notes

in computer science, vol 7074, Springer, Berlin, pp 445–453

Chen H-L, Goel A, Winfree E, Luhrs C (2007a) Self-assembling tile

systems that heal from small fragments. In: Preliminary

Proceedings of DNA Computing, vol 30, pp 30–46

Chen H-L, Schulman R, Goel A, Winfree E (2007b) Reducing facet

nucleation during algorithmic self-assembly. Nano Lett 7(9):

2913–2919

Cheng Z, Xiao J (2012) Algorithmic tile self-assembly model for the

minimum set cover problem. J Bionanosci 6(2):69–77

Cheng Z, Chen Z, Huang Y, Zhang X, Xu J (2010) Implementation of

the timetable problem using self-assembly of DNA tiles. Int J

Comput Commun Control V(4):490–505

Cheng Q, Aggarwal G, Goldwasser MH, Kao M-Y, Schweller RT, de

Espanés PMoisset (2005) Complexities for generalized models

of self-assembly. SIAM J Comput 34:1493–1515

Cook M, Fu Y, Schweller RT (2011) Temperature 1 self-assembly:

Deterministic assembly in 3D and probabilistic assembly in 2D.

In: Proceedings of the 22nd annual ACM-SIAM symposium on

discrete algorithms, SODA 2011, SIAM

Culik K II (1996) An aperiodic set of 13 Wang tiles. Discret

Math160(1–3):245–251

Czeizler E, Popa A (2012) Synthesizing minimal tile sets for complex

patterns in the framework of patterned dna self-assembly. In:

Stefanovic D, Turberfield A (eds) DNA Computing and Molec-

ular Programming. Lecture notes in computer science, vol 7433,

Springer, Berlin, pp 58–72

Demaine ED, Patitz MJ, Schweller RT, Summers SM (2011) Self-

assembly of arbitrary shapes using RNAse enzymes: meeting the

Kolmogorov bound with small scale factor (extended abstract).

Symposium on theoretical aspects of computer science, STACS

2011, pp 201–212

Demaine ED, Eisenstat S, Ishaque M, Winslow A (2012) One-

dimensional staged self-assembly. Nat Comput 12(2):247–258.

English

Demaine ED, Patitz MJ, Rogers TA, Schweller RT, Summers SM,

Woods D (2013) The two-handed Tile Assembly Model is not

intrinsically universal. In: Proceedings of the fortieth interna-

tional colloquium on automata, languages and programming,

ICALP 2013 (to appear)

Demaine ED, Demaine ML, Fekete SP, Ishaque M, Rafalin E,

Schweller RT, Souvaine DL (2008) Staged self-assembly:

nanomanufacture of arbitrary shapes with O(1) glues. Nat

Comput 7(3): 347–370

Demaine ED, Demaine ML, Fekete SP, Patitz MJ, Schweller RT,

Winslow A, Woods D (2012) One tile to rule them all:

Simulating any turing machine, tile assembly system, or tiling

system with a single puzzle piece, Tech. Report 1212.4756,

Computing Research Repository

Doty D (2010) Randomized self-assembly for exact shapes. SIAM J

Comput 39(8):3521–3552

Doty D (2012) Theory of algorithmic self-assembly. Commun ACM

55(12): 78–88

Doty D, Patitz MJ (2009) A domain specific language for program-

ming in the Tile Assembly Model. In: Proceedings of the

fifteenth international meeting on DNA computing and molec-

ular programming, Fayetteville, Arkansas, USA, June 8–11

2009, pp 25–34

Doty D, Patitz MJ, Summers SM (2011) Limitations of self-assembly

at temperature 1. Theor Comput Sci 412:145–158

Doty D, Kari L, Masson B (2013) Negative interactions in irreversible

self-assembly. Algorithmica 66(1):153–172

Doty D, Lutz JH, Patitz MJ, Summers SM, Woods D (2009) Intrinsic

universality in self-assembly. In: Proceedings of the 27th

international symposium on theoretical aspects of computer

science, pp 275–286

Doty D, Patitz MJ, Reishus D, Schweller RT, Summers SM (2010)

Strong fault-tolerance for self-assembly with fuzzy temperature.

In: Proceedings of the 51st annual IEEE symposium on

foundations of computer science, FOCS 2010, pp 417–426

Doty D, Lutz JH, Patitz MJ, Schweller RT, Summers SM, Woods D

(2012) The Tile Assembly Model is intrinsically universal. In:

Proceedings of the 53rd annual IEEE symposium on foundations

of computer science, FOCS 2012 (to appear)

Fu B, Patitz MJ, Schweller RT, Sheline R (2012) Self-assembly with

geometric tiles. In: Proceedings of the 39th international

colloquium on automata, languages and programming, ICALP

(to appear)

Fujibayashi K, Zhang DY, Winfree E, Murata S (2009) Error

suppression mechanisms for DNA tile self-assembly and their

simulation. Nat Comput 8(3):589–612
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Lempiäinen T, Czeizler E, Orponen P (2011) Synthesizing small and

reliable tile sets for patterned DNA self-assembly. In: Proceed-

ings of the 17th international conference on DNA computing and

molecular programming, DNA’11, Springer, Berlin, pp 145–159

Luhrs C (2008) Polyomino-safe DNA self-assembly via block

replacement. In: DNA computing: DNA14. Lecture notes in

computer science, vol 5347, Springer, Berlin, pp 112–126

Lutz JH, Shutters B (2012) Approximate self-assembly of the

sierpinski triangle. Theory Comput Syst 51(3):372–400

Ma X, Lombardi F (2008) Synthesis of tile sets for DNA self-

assembly. IEEE Trans CAD Integr Circuits Syst 27(5):963–967

Majumder U, Labean TH, Reif JH (2007a) Activatable tiles: compact,

robust programmable assembly and other applications. In:

Garzon M, Yan H (eds) DNA computing: DNA13. Lecture

notes for computer science, Springer, Berlin, pp 15–25

Majumder U, LaBean TH, Reif JH (2007b) Activatable tiles for

compact error-resilient directional assembly. In: 13th interna-

tional meeting on DNA computing (DNA13), Memphis, Ten-

nessee, June 4–8 2007

Mao C, LaBean TH, Relf JH, Seeman NC (2000) Logical compu-

tation using algorithmic self-assembly of DNA triple-crossover

molecules. Nature 407(6803):493–496
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