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Abstract Cellular automata (CA) are able to produce a

global behavior from local interactions between their units.

They have been applied to the task scheduling problem in

multiprocessor systems in a very distinguished way. As this

problem is NP-Complete, heuristics and meta-heuristics are

usually employed. However, these techniques must always

start the scheduling process from scratch for each new par-

allel application given as input. On the other hand, the main

advantage to use CA for scheduling is the discovery of rules

while solving one application and their subsequent reuse in

other instances. Recently studies related to CA-based

scheduling have shown relevant approaches as the use of

synchronous updating in CA evolution and good results in

multiprocessor systems with two processors. However, some

aspects, such as the low performance of CA-based schedul-

ers in architectures with more than two processors and during

the reuse of the discovered rules, need to be investigated.

This paper presents two new models to improve CA-based

scheduling to deal with such aspects. The first proposal refers

to the employment of a construction heuristic to initialize CA

evolution and the second one is a new neighborhood model

able to capture the dependence and relations strength among

the tasks in a very simple way. It was named pseudo-linear

neighborhood. An extensive experimental evaluation was

performed using graphs of parallel programs found in the

literature and new ones randomly generated. Experimental

analysis showed the combined application of both tech-

niques makes the search for CA transition rules during

learning stage more robust and leads to a significant gain

when considering the reuse of them on real-world conditions.

Keywords Cellular automata � Multiprocessor task

scheduling � Evolutionary search � Synchronous updating �
Knowledge extraction � Pseudo-linear neighborhood

1 Introduction

Cellular automata (CA) are dynamical systems in which

time, space and variables are discrete, turning them ade-

quate to be applied as models in different computational

challenges (Dennunzio 2012). Wolfram’s works about CA

dynamics (Wolfram 1983, 1984, 1994, 2002) revealed that

even the simplest CA models can represent interesting

patterns and exhibit emergent behaviors. Therefore, they

have been studied in a growing range of problems and

applied to tasks related to pattern recognition (Sarkar

2000), criptography (Wolfran 1986), scheduling (Carneiro

and Oliveira 2011, 2012a, b; Oliveira and Vidica 2012;

Seredynski and Zomaya 2002; Swiecicka et al.2006);

complex systems and artificial life simulation (Farina and

Dennunzio 2008; Sarkar 2000; Wolfram 1988).

A cellular automaton is composed of a d-dimensional

arrangement of simple local units—or cells—and a state

transition function also called transition rule. CA are able to

produce a global behavior from local interactions between

their units and exploit highly parallel architectures such as

FPGA (Field-Programmable Gate Arrays) (Weinert et al.

2007). Based on these features, this paper investigates an
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interesting CA-based approach related to its application to

task scheduling (Carneiro and Oliveira 2011), which plays a

central role in multiprocessor architectures. A promising

skill of such an approach is the CA ability to extract

knowledge from the process when scheduling an instance of

parallel program and reuse it to schedule other instances. On

the other hand, traditional heuristics and meta-heuristic

approaches to this problem require high computational effort

to solve each new instance of the problem. Therefore, the key

motivation to study CA-based scheduling is the possibility to

discover transition rules presenting generalization ability, so

that they can be used to schedule different instances without

the need of a new scheduling process from scratch.

Starting from a previous model (Seredynski and Zomaya

2002) successively refined in (Carneiro and Oliveira 2011;

Carneiro and Oliveira 2012a, b; Swiecicka et al. 2006; Vi-

dica and Oliveira 2006), new investigations are discussed

here to improve the CA-based scheduling performance.

Previous CA-based scheduler models have a learning phase

in which a genetic algorithm (GA) is applied to search for CA

transition rules able to schedule a specific program graph.

The major goal is to find CA rules adequate not only to

schedule the program graph used as target but also to be

applied to other unseen program graphs.

The first investigation here refers to the employment of a

construction heuristic to initialize the CA evolution. A pre-

liminary analysis was presented in (Carneiro and Oliveira

2012b), where results for architectures with two processors

were discussed. Scheduling results were highly improved in

comparison to those of previous approaches (Swiecicka et al.

2006). This model was named SCAS-H: Synchronous Cel-

lular Automata-based Scheduler initialized by Heuristic.

However, later results, specially considering multiprocessor

systems with more than two processors, have shown that

although the usage of construction heuristics indeed improves

makespan in the learning phase of the CA-based scheduler, the

improvement was not so emphatic in the reuse phase, when the

learned rules are applied to new instances of program graphs.

Subsequent analysis led us to conclude that this limitation to

manipulate more than two processors is partially related to the

simple linear neighborhood model employed in previous

models, whose neighbor relations are defined based only on the

order number of tasks. This observation motivated the second

investigation reported here: a new model able to capture the

spatial relations of the computational tasks in a very simple

way. It was named here pseudo-linear neighborhood, since it

preserves the simple structure of linear neighborhoods, but the

neighbors relations are defined by the proximity and relative

importance of the tasks within the program graph. Finally,

experiments showed the combined application of both tech-

niques—initialization by construction heuristics and pseudo-

linear neighborhood—makes the search for CA transition rules

during learning more robust, leading to a significant gain when

considering the reuse of them on real-world conditions. We

called the resultant scheduler model SCAS-HP: Synchronous

Cellular Automata-based Scheduler initialized by Heuristic

and modeled by a Pseudo-linear neighborhood.

The remainder of the paper is organized as follows:

Sect. 2 defines the general concepts and related works

about CA for scheduling; Sect. 3 presents the proposed

CA-based scheduler models related to initialization heu-

ristic and pseudo-linear neighborhood; Sect. 4 provides

computer simulation results to analyze SCAS-H and

SCAS-HP models. Moreover, this section shows the new

techniques can really improve the CA-based scheduling on

real world conditions; Finally, Sect. 5 concludes the paper.

2 Models based on CA for task scheduling

This section offers a general background of the use of CA-

based models for task scheduling. It is organized as follows:

– Cellular automata, which plays the key role in CA-

based scheduling is described in Sect. 2.1.

– Task scheduling, which is a NP-Complete problem and

a formulation about its can be seen in Sect. 2.2.

– The most important elements in CA-based scheduling

and the state of the art related to previous approaches

are presented in Sect. 2.3.

2.1 Cellular automata

Basically, a cellular automaton consists of the cellular

space and the transition rule. Cellular space is a regular

lattice of g cells, each one with an identical pattern of local

connections to other cells, and subjected to some boundary

conditions. These cells are arranged in a d-dimensional

space and the most studied are the one-dimensional and the

two-dimensional arrangements. Each cell assumes a state

from a finite set of j possible states in each time step. The

transition rule establishes how the states will change

through time based on the current state of each cell and its

immediate neighbors. For one-dimensional CA, the

neighborhood size l is usually written as l = 2R ? 1,

where R is the radius. The state ai of the ith cell of the

lattice at time s ? 1 is denoted by:

asþ1
i ¼ D½as

i�R; . . .; as
i ; . . .; as

iþR� ð1Þ

where D is a transition rule. Note that the state of ai
s?1

depends only on the states of itself and its neighbors at time s.

In a binary CA (i.e., two-state), the transition rule D is

given by a rule table, which lists each possible neighbor-

hood with its output bit, i.e. the updating value of the center

cell of the neighborhood. Cells updating usually happens in

the following ways: (i) parallel or synchronous, in which
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all cells of the lattice update their states synchronously at

each time step; (ii) sequential or asynchronous (Dennunzio

et al. 2012a, b; 2013), in which only one cell updates its

state and this new state is considered in the update of other

cells being that the order in which each cell is updated is

from the left to the right. Note that when synchronous

updating is used, the new states of cells ai and ai?1 can be

calculated at the same time step, whereas when asynchro-

nous updating is used, ai must be calculated in a time step

and its new state is employed to update ai?1 in the next

time step.

2.2 Task scheduling

Scheduling is an essential task for industries and organiza-

tions and also an important subject of many research areas in

engineering and computing. In a broad sense, scheduling is a

decision-making process that involves resources and tasks to

optimize an objective, typically the resultant runtime or

makespan (Pinedo 2008). Some applications for scheduling

comprehend production scheduling, employees scheduling

and computational tasks scheduling.

Considering the multiprocessors scheduling context, the

objective is to allocate a set of computational tasks that

compose a parallel application into architecture nodes. In

the problem investigated here, all information about the

tasks is known a priori and is named Static Task Sched-

uling (Kwok and Ahmad 1999). An optimal solution to an

instance of the problem is such that the precedence con-

straints among tasks are satisfied and the makespan is

minimized. According to Garey and Johnson (1979), task

scheduling is a NP-Complete problem, even limited to the

simplest case: a parallel system with only two processors.

The key concepts adopted here for the representation of

the task scheduling problem are described below:

– A parallel application is represented by a directed

acyclic graph (DAG) called program graph. Figure 1

shows an example of a program graph called gauss18,

which represents a set of 18 tasks.

– Computational tasks are represented by nodes (V).

– Precedence constraints between tasks are denoted by

edges (E).

– For each node vi, a cost wi relative to its runtime is

associated.

– For each edge ei,j, a communication cost ci,j relative to

the cost of data transfer from task i to j when running

on different processors is associated.

– A task can not be executed unless all its predecessors

have completed their executions and all relevant data

are available.

– Tasks without predecessors are called starting tasks and

tasks without successors are called exit tasks.

– A scheduling policy defines the running order of tasks

in each processor. Note that while the scheduler

distributes tasks among processors, the scheduling

policy orders these tasks within each processor.

Here, the scheduling policy used for all tests was the

task with the highest dynamic blevel first. The blevel

(bottom level) of a task in a program graph is the highest

cost between this task and an exit task of graph, thus the

blevel of a task i can be calculated by:

bli ¼
wi; if i is an exit task;
maxj2successorsðiÞðblj þ ci;jÞ þ wi; otherwise:

�
ð2Þ

where blj denotes the blevel of each successor of i. Blevel

of tasks without successors is equal to their respective

computational cost (w). For another tasks, blevel is

obtained recursively from exit tasks.

The blevel of a task is dynamic when it is calculated

considering the allocation of the tasks in processors, and

the communication cost is considered only when tasks are

distributed in different processors (Carneiro and Oliveira

2011).

2.3 CA-based scheduler: concepts and related works

Previous CA-based scheduler models assume that each cell

of the lattice is associated with a computational task of the

target program graph (Seredynski and Zomaya 2002).

Therefore, if a set of tasks has cardinality x, CA lattice has

g = x cells. Furthermore, given an architecture consisting

of p processors, CA will have j = p possible states.

Assuming a system with two processors (P0 and P1), each

cell can take value 0, indicating that the corresponding task

Fig. 1 Example of a program graph with 18 tasks (gauss18)

CA-based scheduler modeled by a pseudo-linear neighborhood 341

123



is allocated on processor P0, or value 1 (the task is allo-

cated on P1). Figure 2 shows an example of a problem

modeling using the CA approach proposed in (Seredynski

and Zomaya 2002) and used in subsequent works (Carneiro

and Oliveira 2011, 2012a, b; Swiecicka et al. 2006; Vidica

and Oliveira 2006). First, we have a program graph (with

four tasks) and a multiprocessor system (with two pro-

cessors). Based on this information, g = 4 and j = 2. The

algorithm makes an initial allocation and represents it as

the initial configuration of CA lattice. Starting from this

initial lattice, a transition rule D is applied by s time steps.

The final lattice is then associated with the final allocation

of the tasks in the processors. Finally, a scheduling policy

is applied to the final allocation and the makespan is

obtained.

Figure 2 shows that the transition rule D plays a key role

in CA-based scheduling. It is necessary to find transition

rules with computational ability for solving task schedul-

ing. A GA was employed in Seredynski and Zomaya

(2002) to discover CA rules. Most subsequent works also

used a simple GA to discover rules able to schedule a

specific target graph. These CA-based models operate in

two stages: learning and reuse.

In the learning phase, a GA or another evolutionary

algorithm is used to search for rules able to evolve the

lattice to optimal (or sub-optimal) allocations of a given

program graph, starting from some initial configurations. In

Seredynski and Zomaya (2002), the GA population (gaP) is

initially formed by CA transition rules randomly generated

(individuals). The fitness function is calculated in each GA

generation by: (i) a set of initial lattices C representing

allocations of tasks in processors is generated; (ii) temporal

evolution of each lattice C by each transition rule D in gaP

for s time steps; (iii) allocations obtained in time s are

ordered in each processor using a scheduling policy

obtaining makespan associated to each pair ðD;CÞ; (iv) rule

fitness is given by the average of makespan calculated

starting from each lattice of C: The best rule shows the

smallest makespan average. After computing the fitness,

genetic operators as selection, crossover and mutation are

applied to the population generating new transition rules.

At the end of each generation, a re-insertion criterion

defines which individuals remain for the next generation.

Subsequent works employed different evolutionary algo-

rithms to the learning phase as simple GAs (Carneiro and

Oliveira 2011, 2012a, b; Swiecicka et al. 2006), coevolu-

tionary GAs (Oliveira and Vidica 2012; Seredynski and

Zomaya 2002) and joint evolution GAs (Vidica and Oli-

veira 2006).

CA rules stored after the learning phase are expected to

be able to make a good scheduling for other program

graphs. This stage is named reuse phase; the rules learned

for a specific program graph are applied to new instances of

program graphs. However, recent works have pointed that

rules obtained in the learning phase do not have the gen-

eralization ability to be applied to other instances as

expected (Carneiro and Oliveira 2012b). These works

focus on obtaining a better capacity to apply rules learned

to other program graphs.

As highlighted in Fig. 2, some variations in the major

steps of CA-based scheduling have been largely investi-

gated in the literature:

1. Lattice initializations: there are different ways to

establish the initial configuration of the lattice, which

corresponds to the initial allocation of the tasks over

the nodes of the multiprocessor architecture. They can

be obtained randomly (Carneiro and Oliveira 2011;

Seredynski and Zomaya 2002; Swiecicka et al. 2006;

Vidica and Oliveira 2006), through fixed and very easy

strategies (Carneiro and Oliveira 2012a) or considering

the scheduling performed by a very simple heuristic

(Carneiro and Oliveira 2012b), as the initialization

strategy investigated here.

2. Updating mode of CA cells: different approaches were

also investigated, being that sequential, sequential-

randomly and parallel have been used. Although in the

first published models (Seredynski and Zomaya 2002;

Swiecicka et al. 2006; Vidica and Oliveira 2006) the

sequential updating returned the best results, parallel

updating is desirable (Seredynski and Zomaya 2002)

since the inherit parallelism of CA implementations

Fig. 2 General scheme of CA-

based scheduling
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can only be exploited in this updating mode. Recent

investigations have focused on synchronous models

(Carneiro and Oliveira 2011, 2012a, b).

3. Neighborhood models: these models are responsible

for capturing the relations between tasks expressed in

the program graph. Previous neighborhood models are

linear and non-linear. The advantage of linear neigh-

borhood is that it is simple and easy to adapt to an

arbitrary number of processors (Swiecicka et al. 2006).

However, it does not capture the actual relations

between tasks because it is based only on the order

number of the tasks (the neighborhood of a cell ai is

chosen by the position in the lattice, not by the

relations between tasks). On the other hand, non-linear

neighborhoods can express very complex relations

between tasks, such as precedence constraints or

dependences of the same task (two tasks that are

preceded by a same task). The nonlinear models

previously investigated in the literature were: selected

and totalistic (Oliveira and Vidica 2012; Seredynski

and Zomaya 2002; Vidica and Oliveira 2006). How-

ever, they are computationally intensive and difficult

to adapt to architectures using more than two proces-

sors. In this paper, we propose a new neighborhood

model, named here pseudo-linear, which keeps the

same simplicity of linear model, but expresses more

information about the dependences in the program

graph.

3 New approaches to CA-based scheduling

There are many important elements in the CA-based

scheduling. In this paper, we explore two innovative

approaches. The first algorithm is called synchronous cel-

lular automata-based scheduler with initialization heuristic

(SCAS-H). It was preliminarily presented in (Carneiro and

Oliveira 2012b). Now, we show a general description of it

and a more extensive experimental analysis. The second

approach is a new neighborhood model called pseudo-lin-

ear, able to capture the proximity and relations strength

among tasks in a program graph.

This section is organized as follows: Sect. 3.1 introduces

an analysis of previous models (CAS and SCAS); Sect. 3.2

describes SCAS-H technique; and Sect. 3.3 presents the

new neighborhood framework.

3.1 CAS and SCAS: analysis of previous models

Seredynski and Zomaya (2002) presents a CA-based

scheduler that operates in two modes: learning and

operation. In the learning mode, a GA is used to search

for rules able to evolve the lattice to optimal (or sub-

optimal) allocations of a given program graph. CA evo-

lution starts from random initial configurations. In the

operation mode is expected that, for any initial allocation

of tasks, the CA rules stored after learning phase are able

to evolve the lattice until a configuration which represents

an optimal allocation, minimizing the makespan. The

rules obtained in the learning phase are also expected to

be used in the scheduling of other graphs (reuse phase).

The neighborhood model employed in Swiecicka et al.

(2006) is linear and both updating modes of cells—

sequential and parallel—were investigated. Moreover, the

results obtained with the sequential updating were much

better than using parallel. We named this model CAS

(CA-based scheduler).

In the first CA-based scheduler models the synchronous

updating mode of cells was discarded because it returned

the worst results (Swiecicka et al. 2006). On the other

hand, the large capacity of parallelism inherent to CA is

lost if the asynchronous updating of cells is adopted

(Carneiro and Oliveira 2011; Seredynski and Zomaya

2002). A CA-based scheduler model using synchronous

updating of cells was introduced in (Carneiro and Oliveira

2011). This model, named synchronous cellular automata-

based scheduler (SCAS), also employs linear neighbor-

hood, but unlike (Swiecicka et al. 2006), the strategy in GA

is not elitist. In addition, the boundary condition used in the

CA lattice is different from the null condition employed in

(Swiecicka et al. 2006): cells to the right of the last cell are

considered in state 1. The results using SCAS showed its

good performance in comparison to CAS: its results

overcame CAS model with synchronous updating and they

are compatible with CAS model using sequential updating

(Carneiro and Oliveira 2011).

SCAS was used as the basis of the new models inves-

tigated in the present work. That is, all of them employ

synchronous updating and non-elitist strategy in the GA

used in the learning phase.

One of the major motivations to build new CA-based

scheduler models is the great difficulty observed in some

related works when the number of processors increases

(Swiecicka et al. 2006), while investigations performed in

other works consider only multiprocessor system with

j = 2 processors (Carneiro and Oliveira 2011, 2012b;

Oliveira and Vidica 2012; Seredynski and Zomaya 2002;

Vidica and Oliveira 2006). An attempt to increase the

number of processors was presented in (Swiecicka et al.

2006), showing CAS model was not able to deal with the

complexity due to the increment in the number of proces-

sors. Another motivation to build new CA-based scheduler

models was the undesirable results provided by the reuse of

the rules found for a given program graph to other unseen

instances.
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We implemented the CAS model with sequential

updating as described in (Swiecicka et al. 2006) and the

previous SCAS model as described in (Carneiro and Oli-

veira 2011) to evaluate the reuse of rules evolved for

gauss18 in the learning phase to solve different program

graphs. We also implemented a scheduling algorithm based

on the meta-heuristics simulated annealing, named here

SA, to evaluate the quality of solutions given by the reuse

of gauss18-learned rules. The results of reusing gauss18

rules (evolved previously using CAS and SCAS models)

are not reasonable when compared with the reference

values given by SA. We also evaluated the previous models

CAS and SCAS when using more than j = 2 processors in

the learning phase and compared their results with those

obtained by SA. Both models (CAS and SCAS) presented

limitations when the number of processors has increased.

Sect. 4 shows and discusses the results of these experi-

ments in detail.

We believe that an important cause to this undesirable

performance is related to the process used to initialize CA

lattices to start scheduling in CAS and SCAS models. The

way how the initial configuration of the CA lattice is

defined reflects the type of transition rule ability the GA is

searching for. In previous studies (Carneiro and Oliveira

2011; Oliveira and Vidica 2012; Seredynski and Zomaya

2002; Swiecicka et al. 2006; Vidica and Oliveira 2006), the

scheduler model focused on the capacity of a transition rule

to evolve any random initial lattice to a configuration that

represents the optimal allocation of tasks. During the

learning phase, each rule is evaluated according to its

performance in scheduling a set of initial lattices C:
Besides, in the operation phase, the quality of any learned

rule is measured using it to schedule a new set of random

lattices.

However, the search for this independence to the initial

lattice makes the rules search complex and computationally

intensive, embarrassing GA convergence. The capacity of a

rule to schedule other instances in the reuse phase is a more

relevant generalization ability than the capacity of a rule to

perform schedule starting from any initial lattice. There-

fore, a new way to start the scheduling from a specific

initial condition generated by a simple heuristic is

investigated here. This modification leads to the first model

evaluated in the present work: SCAS-H.

3.2 SCAS-H: synchronous cellular automata-based

scheduler initialized by heuristic

The major modification of SCAS-H in comparison with

the previous SCAS model refers to the way the CA lattice

is initialized to perform the schedule, which reflects in the

process of evaluation of the GA rule population. The

main steps in the CA evolution used in SCAS-H are

(i) application of a deterministic construction heuristic

chosen a priori to obtain an initial allocation, which

defines the initial configuration of the lattice; (ii) temporal

evolution of the lattice using each rule transition D in gaP

for s time steps; (iii) the final lattice in time s defines the

final allocation of tasks which are ordered in each pro-

cessor using a scheduling policy obtaining makespan

associated to each rule D; (iv) rule fitness is equal to

makespan obtained using it. The best rule in gaP shows

the smallest makespan. In fact, step (i) is performed only

once during GA run, because the allocation performed by

the deterministic construction heuristic is unique and is

used in all evaluations.

Heuristic methods have been common in the literature to

approximately solve task scheduling in a reasonable time

(Kwok and Ahmad 1999). These methods build a single

response to a given input in each step of scheduling and

they are known as construction heuristics. They are char-

acterized by low computational complexity and utilization

of attributes calculated directly from the program graph to

perform the scheduling. Highest Level First with Estimated

Time (HLFET) (Kwok and Ahmad 1999), a widely known

construction heuristic, was slightly modified to generate the

initial configuration of the lattice. We built a deterministic

heuristic called DHLFET, which it is HLFET without its

random choices. Therefore, in case of two tasks with same

sl, the task with the smallest order number is chosen.

Algorithm 1 shows DHLFET steps. The static level attri-

bute (sl) computes the largest path from each task to an exit

task without considering communication costs in the pro-

gram graph.
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SCAS-H works in two stages: learning and reuse.

Algorithm 2 defines the major steps of SCAS-H in the

learning mode, where gaG is the number of generations

(and the stopping criterion), gaP is the size of population,

gaC is the number of generated individuals in crossover

given by gaPC (crossover rate), gaM is the mutation rate,

selection is given by a simple tournament gaT and ICH is

the initial configuration of the lattice obtained by the

heuristic (DHLFET).

In reuse mode, the CA is equipped with a set of learned

rules and SCAS-H receives a new program graph to

schedule. The same heuristic used in the learning mode is

used in the reuse mode to make the initial allocation

associated to the new graph. Then, CA steps are executed

for each rule D; returning the scheduling with the smallest

makespan.

Results of experiments comparing SCAS-H with the

previous models CAS (Swiecicka et al. 2006) and SCAS

(Carneiro and Oliveira 2011) are provided in Sect. 4.1.

They show the improvement obtained with the intro-

duction of the new strategy to initialize the CA lattice

using a construction heuristic with significant impact on

the learning phase when using more than two processors.

However, subsequent experiments show that this

improvement was not so emphatic in the reuse phase,

where scheduler performance decays when architectures

with j = 3 or j = 4 processors are used.

It was possible to conclude that this limitation to

manipulate more than two processors in the reuse phase is

partially related to the linear neighborhood employed in

previous models and in SCAS-H. Based on this observa-

tion, a new neighborhood model was proposed and is

named here pseudo-linear. It preserves the simple structure

of linear neighborhood, but the neighbors relations are

defined by the proximity and relative importance of the

tasks within the program graph.

3.3 Pseudo-linear neighborhood for CA-based

scheduling

Neighborhood is a crucial element to CA transition rules

because it can express relations among tasks in program

graph. In this context, two approaches have been largely

explored in related works: linear (Carneiro and Oliveira

2011, 2012a, b; Swiecicka et al. 2006) and nonlinear

neighborhoods (Seredynski and Zomaya 2002; Vidica and

Oliveira 2006). Linear neighborhood is very simple to

implement because it uses only the order number of the

tasks and a radius R to define the neighborhood. It can be

easily adapted so that an arbitrary number of processors

can be used. However, it is not adequate to identify the

relationships among tasks in the program graph. On the

other hand, two nonlinear neighborhoods have been

investigated in the literature: selected (Seredynski and

Zomaya 2002; Vidica and Oliveira 2006) and totalistic

(Seredynski and Zomaya 2002). Although they can capture

the relations among tasks from precedence constraints and

attributes of the program graph, they are very complex to

implement and limited to multiprocessor systems with only

two processors.

In this context, a new neighborhood model named

pseudo-linear is proposed here. As the linear neighborhood,

the new model uses radius R, but it is able to capture

relations among computational tasks in the program graph.

Furthermore, it can be adapted to multiprocessor systems

with an arbitrary number of processors. Pseudo-linear is a

simple neighborhood based on two important concepts.

First, it considers only direct relationships between tasks in

the graph: precedence constraint. For example, vi can be a

neighbor of vj if and only if there is a precedence constraint

ei,j or ej,i in the program graph. This means that pseudo-

linear considers only the predecessors or successors of a

given task to define its neighborhood. In addition, for each
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task and edge in the graph is associated a cost, which is

important to detect the strength of the relationship among

one task and its predecessors or successors. In this inves-

tigation, pseudo-linear neighborhood employs two well-

known attributes in task scheduling: bottom level of a task

(or blevel) and top level of a task (or tlevel) (Kwok and

Ahmad 1999). Note that pseudo-linear neighborhood is a

framework and other attributes can be considered.

A more detailed explanation about the pseudo-linear

neighborhood is given as follows. Through a radius R, we

can determine the next state of cell ri according to (3):

rsþ1
i ¼ D½rs

blevelðRÞ; . . .; rs
blevelð1Þ; r

s
i ; r

s
tlevelð1Þ; . . .; rs

tlevelðRÞ�
ð3Þ

where function blevel(.) returns the task associated with

cell ri by a precedence relation (successor or predecessor).

Initially, the set of successors and predecessors of task ri

are identified in a list of related tasks. Thus, the list of tasks

is ordered by blevel attribute in a descending order and

function blevel(x) returns the xth task in this ordered list. A

similar procedure is performed for function tlev-

el(x), which returns the xth related task considering the

tlevel descending order. For each attribute (blevel and

tlevel), using a neighborhood with radius R, only the first

R tasks in each list are used as neighbors. Note that when

two or more tasks have the same value for some attribute,

(i) blevel list orders these tasks according to the highest

order number, whereas (ii) tlevel list orders these tasks

according to the lowest alap [As Late As Possible start

time attribute (Kwok and Ahmad 1999)]. If two or more

tasks have the same alap, tlevel list orders these tasks

according to the lowest order number. Furthermore, there is

only one special case in pseudo-linear neighborhood: when

the number of neighbors is smaller than R. In this case, the

lists come back to head task and continue until they com-

plete R neighbors tasks.

Figure 3 illustrates pseudo-linear neighborhood. Fig-

ure 3a shows the direct neighbors of task 11 in gauss18

program graph (Fig. 1). Figure 3b, c display, respectively,

the resultant neighborhood using linear and pseudo-linear

neighborhood for this task. Note that linear neighborhood

considers only the position of the tasks in the lattice, which

explains why tasks 9, 10, 12 and 13 are considered

neighbors of task 11 (for R = 2). Therefore, for every

program graph, such as rand30, rand40 and rand50, the

neighbors of task 11 are the same, regardless of the rela-

tionship among the tasks. On the other hand, pseudo-linear

considers tasks 8, 6, 15 and 13 neighbors of 11 because it is

able to capture proximity and strength of the relations

among tasks in a program graph.

The new model implemented using pseudo-linear

neighborhood was named SCAS-HP. It basically uses

similar steps of SCAS-H, except by the neighborhood

model adopted for the transition rules. Thus, the major

modification is related to step 3 of Algorithm 2 because the

pseudo-linear neighborhood is adopted instead of the linear

one during the CA evolution. Furthermore, SCAS-HP

continues working in two stages (learning and reuse) and

Algorithm 2 can be also used to define the major steps of

SCAS-HP in the learning mode.

Fig. 3 Examples of

neighborhoods of task 11 in

gauss18: a precedence

constraints related to task 11; b
linear neighborhood for task 11;

c pseudo-linear neighborhood

for task 11

346 M. G. Carneiro, G. M. B. Oliveira

123



Comparative experiments using SCAS-H and SCAS-HP

are reported in Sect. 4.2 They show that the adoption of the

new neighborhood model increases the generalization

ability of the rules in the reuse phase for architectures with

more than two processors.

4 Experimental results and discussion

This section presents and discusses some results of

computer simulations carried out in order to extensively

evaluate SCAS-H and SCAS-HP models. Specifically,

Sects. 4.1 and 4.2 provide detailed simulations in the

learning phase and supply the performance of the pro-

posed framework in the reuse phase under real-world

conditions, respectively, for SCAS-H and SCAS-HP. A

general explanation about the experiments is given

below.

– Program graphs: In all simulations we used the most

difficult program graph found in the literature, gauss18.

We also adopted a modified version of DAG generation

(2011) to obtain randomly program graphs rand30,

rand40 and rand50 with a high nonlinearity similar to

gauss18. These program graphs have, respectively, 30,

40 and 50 tasks.

– Algorithms and parameters: Other techniques, such as

CAS (Swiecicka et al. 2006), SCAS (Carneiro and

Oliveira 2011) and Simulated Annealing (Russell and

Norvig 2010) were applied to these program graphs and

the results were compared with those of proposed

models.

The parameters of the evolutionary algorithm in all

CA-based schedulers were size of population

gaP = 200, simple tournament gaT = 2, crossover rate

gaPC = 100 %, mutation rate gaM = 3 % and number

of generations gaG = 200. After some empirical tests,

SA parameters were given by:

satemp ¼ 100 � 0:9995satime ð4Þ

where satemp represents the temperature mapping in func-

tion of time satime. Other parameters were � ¼ 1 � 10�9 and

lateral moves samoves = g/6.

– Analysis of results: 20 runs were performed for each

experiment. Statistical analysis was employed to eval-

uate the techniques. When the samples follow a normal

distribution, t-test is used, otherwise we applied Mann-

Whitney test. For the hypothesis test, we adopted a

significance level of 5 %, which corresponds to a

confidence level of 95 %. Analysis involving best

makespan (‘‘Mk’’), averages and standard deviation

were also conducted.

4.1 SCAS-H experimental analysis

This subsection reports on a comparative study about the

performance of SCAS-H, previous models of CA-based

scheduler and SA in multiprocessor systems with a dif-

ferent number of processors. We divided the analysis into

two topics: experimental results in learning phase and reuse

phase.

4.1.1 Learning phase

Table 1 shows the results of the learning phase in CA-

based approaches and SA for j = 2, j = 3 and j = 4

number of processors. Column ‘‘Mk’’ represents the best

makespan value in all executions. Note that in this column,

the results of the reproduction of CAS for sequential

updating of cells (CAS) (Swiecicka et al. 2006) and SCAS

(Carneiro and Oliveira 2011) (which uses synchronous

updating of cells) do not ensure an exact makespan value

because these algorithms use a C set of random initial

configurations to drive the learning and reuse phases. So,

the makespan value of a transition rule D is an average of

the results obtained by D on the C set (Carneiro and Oli-

veira 2012b). On the other hand, SCAS-H does not display

this characteristic because it always starts from the same

initial configuration obtained by the construction heuristic.

Column ‘‘H’’ denotes the results of the statistical tests

when comparing SCAS-H with other algorithms. In other

words, ‘‘\’’ represents that SCAS-H obtain better results

than the considered algorithm, ‘‘[’’ represents the opposite,

Table 1 Comparison among SCAS-H learning phase and CAS,

SCAS and SA techniques in multiprocessor systems with two

(j = 2), three (j = 3) and four processors (j = 4)

Learning phase

PG j SCAS-H CAS SCAS SA

Mk Mk H Mk H Mk H

gauss18 2 44 44 \ 44 \ 44 \
3 44 52 \ 52 \ 44 \
4 44 51.7 \ 50.8 \ 44 \

rand30 2 1222 1239 \ 1225.84 \ 1222 \
3 853 963 \ 1012.86 \ 970 \
4 828 902.72 \ 976.4 \ 853 \

rand40 2 983 1006 \ 996.52 \ 997 \
3 694 806.94 \ 796.6 \ 794 \
4 607 681 \ 725.4 \ 684 \

rand50 2 628 659.04 \ 661.04 \ 664 \
3 532 640.96 \ 655.12 \ 624 \
4 524 620 \ 642.64 \ 600 \

CA parameters: j = 2 (R = 3), j = {3, 4} (R = 1), s = 50
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and ‘‘=’’ states that there is not statistical evidence about

the better algorithm (null hypothesis).

Discussion for j = 2 results: For j = 2, SCAS-H

shows the best results in comparison with previous CA-

based approaches in the learning stage. Statistical tests

prove this. Although average and standard deviation results

are not shown in Table. 1 for clarity, it was possible to

observe that standard deviation in SCAS-H results is much

smaller when compared to other techniques. It shows

learning phase in SCAS-H is very robust in j = 2 multi-

processor systems.

Discussion for j = 3 results: There are significant sta-

tistical evidence that SCAS-H results were better than

those obtained by other techniques. Note that for j = 3,

the difference among SCAS-H results and other algorithms

is greater than considering j = 2. Moreover, for this

number of processors, previous CA-based approaches

showed worse results in gauss18 program graph. Both

approaches and SA also found the worst results on ran-

domly generated program graphs. On the other hand,

SCAS-H was able to extract rules that provides good

scheduling to the program graphs.

Discussion for j = 4 results: As in the experiments

discussed above (j = 2 and j = 3), previous CA-based

approaches showed the worst results to schedule gauss18

and random program graphs. SA found worse results than

SCAS-H in random program graphs. Once again, SCAS-H

presented the best performance according to statistical

tests.

4.2 Reuse phase

Table 2 shows the best makespan after applying the

extracted rules learned for gauss18 program graph for

j = 2 processors on distinct program graphs: rand30,

rand40 and rand50. Comparisons among SCAS-H perfor-

mance and other CA-based algorithms showed the best

results were obtained by SCAS-H (one can clearly see a

great difference). Comparing SCAS-H with SA, the results

are close. However, it is important notice that SA executes

all steps of its search for each instance whereas SCAS-H

uses only the learned rules extracted from another program

graph. As a general conclusion, we could notice that there

was space to extract better performance from learned CA-

rules. So, we started to investigate new models of neigh-

borhood to better represent the relationship between tasks.

4.3 Pseudo-linear neighborhood experimental analysis

Many CA-based approaches have used either linear

neighborhood (Carneiro and Oliveira 2011, 2012a, b;

Swiecicka et al. 2006) or nonlinear neighborhood (Oliveira

and Vidica 2012; Seredynski and Zomaya 2002; Vidica

and Oliveira 2006). However, these two approaches have

their limitations: the former uses only the position in the

lattice to determine the neighborhood of a task whereas the

latter is complex and can be applied only to multiprocessor

systems with two processors. To deal with these draw-

backs, we propose SCAS-HP, a CA-based scheduling that

uses the pseudo-linear neighborhood. This new neighbor-

hood model offers CA a simple structure to capture the

dependence and relationship strength among tasks in the

program graph and can be applied with an arbitrary number

of processors.

This subsection describes experiments performed con-

sidering the environment with the new neighborhood

model. Section 4.2.1 provides results of SCAS-HP in the

learning phase compared with those obtained by the pow-

erful CA-based scheduler showed previously, SCAS-H.

Section 4.2.2 shows the reuse phase analysis for these

algorithms. In addition, SCAS-HP also is compared with

SA in these subsections.

4.3.1 Learning phase

Table 3 provides a detailed analysis of the results of

SCAS-HP, SCAS-H and SA considering multiprocessor

systems with j = 2, j = 3 and j = 4. Note that statistical

tests show a comparison among SCAS-HP and other

approaches. For instance, column ‘‘H’’ in line ‘‘SCAS-H’’

represents the results of the statistical tests between SCAS-

HP and SCAS-H (‘‘\’’ indicates there is significant statis-

tical evidence than SCAS-HP presents better performance;

‘‘[’’indicates SCAS-H has better results; ‘‘=’’ indicates

there is not statistical evidence than a algorithm is better

than other).

Discussion for j = 2 results: These results show the

power of the learning stage in SCAS-H and SCAS-HP.

Only considering rand50 program graph, there is signifi-

cant statistical evidence that SCAS-HP results are better

than those of SCAS-H. Comparison between SCAS-HP

and SA shows a reasonable difference between makespan

values on random program graphs. Furthermore, there is

Table 2 Learned gauss18 transition rules of CAS, SCAS and SCAS-

H applied to the reuse phase considering multiprocessor systems with

j = 2

gauss18 Reuse phase

Algorithm rand30 rand40 rand50

SCAS-H 1233 1000 656

CAS 1336.61 1136.55 730.7

SCAS 1743.25 1268.29 837.22

SA 1222 997 664

Bold values emphasize the best makespan obtained when comparing

the techniques for each program graph
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statistical evidence that SCAS-HP results are better than

SA on all program graphs.

Discussion for j = 3 results: Again, the results of

SCAS-HP are better than those found by SA according to

stastistical tests. However, SCAS-H is better than SCAS-

HP on two program graphs (gauss18 and rand50), whereas

SCAS-HP is better on the other two program graphs

(rand30 and rand40).

Discussion for j = 4 results: An interesting result in

this table is provided by SCAS-HP, which found the

optimal makespan for gauss18 program graph in all twenty

runs. SCAS-H was near this result on gauss18. However, in

other program graphs, there is statistical evidence that

SCAS-HP results are better than those found by SCAS-H.

Furthermore, there are great differences between the

makespan and the averages obtained by these two models.

In addition, the table shows SA presented the worst results.

4.3.2 Reuse phase

Aiming to evaluate CA-based scheduling algorithms under

real conditions, we took the extracted rules in the learning

phase of gauss18 program graph considering j = 2, j = 3

and j = 4 number of processors. These rules are applied to

distinct program graphs considering the same j value and

the makespan is obtained. For example, rules extracted

from gauss18 learning phase considering j = 3 processors

are used to schedule rand30, rand40 and rand50 program

graph on j = 3 processors.

Table. 4 shows the reuse of rules extracted from

gauss18 program graph for SCAS-H and SCAS-HP. Note

that in 8 out of 9 cases, the results of SCAS-HP are better

than those obtained by SCAS-H. When comparing SCAS-

HP with SA, the former yelded the best results in 6 out of 9

cases. Furthermore, remember that SA needs to perform its

search process again for each scheduling whereas CA-

based models only reuse the acquired knowldege.

5 Conclusions

This paper presents two new approaches to CA-based

scheduling: (i) employment of a construction heuristic to

initialize CA lattice evolution, and (ii) a new neighborhood

model—named pseudo-linear—able to capture the depen-

dence and relations strength among the tasks of the pro-

gram graphs in a very simple way. The first approach leads

to the first scheduler model investigated here named

SCAS-H and the second one enables to refine SCAS-H and

to propose the second scheduler model named SCAS-HP.

As construction heuristic, we proposed DHLFET. It is a

slight modification of the well-known HLFET heuristic

(Kwok and Ahmad 1999), which is a very simple and

computationally efficient heuristic commonly used in

scheduling task. For the pseudo-linear neighborhood, we

employed the bottom level (blevel) and top level (tlevel)

attributes, since these measures can do a good character-

ization of the relations among tasks considering scheduling

context. Several experiments were conducted in the

learning and reuse phases, so that we could better assess the

performance of the proposed techniques. Parallel program

graphs found in the literature and others randomly gener-

ated were used in the experiments. SCAS-H using DHL-

FET in the lattice initialization and SCAS-HP using

DHLFET and the pseudo-linear neighborhood were

extensively evaluated in multiprocessor systems with two,

three and four processors. Their performances were com-

pared with those of previous CA-based schedulers and a

simple scheduler based on Simulated Annealing meta-

heuristic.

Table 4 Learned gauss18 transition rules of SCAS-HP and SCAS-H

applied to the reuse phase considering multiprocessor systems with

different numbers of processors (j = 2, j = 3 and j = 4)

gauss18 Reuse phase

Algorithm rand30 rand40 rand50

2 3 4 2 3 4 2 3 4

SCAS-HP 1232 938 857 990 733 656 644 644 596

SCAS-H 1244 1122 959 1007 848 803 660 628 688

SA 1222 970 853 997 794 684 664 624 600

Bold values emphasize the best makespan obtained when comparing

the techniques for each program graph

Table 3 Comparison among SCAS-HP learning phase and SCAS-H

and SA techniques in multiprocessor systems with two (j = 2), three

(j = 3) and four processors (j = 4)

Learning phase

PG j SCAS-HP SCAS-H SA

Mk Mk H Mk H

gauss18 2 44 44 = 44 \
3 44 44 [ 44 \
4 44 44 = 44 \

rand30 2 1222 1222 = 1222 \
3 836 851 \ 970 \
4 755 822 \ 853 \

rand40 2 983 983 = 997 \
3 684 695 \ 794 \
4 564 613 \ 684 \

rand50 2 624 628 \ 664 \
3 544 528 [ 624 \
4 504 540 \ 600 \

CA parameters: j = 2 (R = 3), j = {3, 4} (R = 1), s = g*3
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First experiments showed SCAS-H overcame previous

CA-based models proposed in (Swiecicka et al. 2006) and

(Carneiro and Oliveira 2011) showing that the employment

of a simple heuristic to initialize the CA lattice evolution can

be more efficient than the usage of a set of random lattices to

guide genetic search in the learning phase. This improve-

ment was highlighted when the number of processors on the

multiprocessor architecture was raised from 2 to 3 and 4

processors. Comparing SCAS-H with a second scheduler

based on simulated annealing (SA) it was possible to notice

SCAS-H were consistently better than SA no matter the

number of processors employed (2, 3 or 4) when considering

the learning phase. That is, when both models SCAS-H and

SA employ a search taking the target graph in account, the

CA-based model returns a better performance. However,

when we tried to reuse SCAS-H rules previously evolved for

a target graph to new program graphs unseen during the

evolutionary search, makespam values were worse than the

results obtained by SA. Although it must taken account that

SA needs to perform the search again for each program

graph, while CA rules are reused without search process, the

main goal of CA-based schedulers is the possibility to have

good results in reuse phase. Therefore, we concluded we

have space to improve SCAS-H reusing results.

The second series of experiments showed that SCAS-HP

is also consistently better than SA scheduler during learn-

ing phase, as observed for SCAS-H. Comparing the per-

formance of both CA-based models investigated here

during learning phase, SCAS-HP returned results at least as

good as SCAS-H, with some significant improvement in

some scenarios showing that the new pseudo-linear

neighborhood is good to express program graph relations.

Considering 4 processors in the architecture, SCAS-HP

improves SCAS-H with a significant difference, as showed

by statistical tests. Besides, in reuse phase, results obtained

employing SCAS-HP rules evolved for gauss18 to other

unseen program graphs showed a significant advantage

over SCAS-H in 8 of 9 evaluated scenarios (3 unseen

graphs, with 2, 3 and 4 processors). Due to SCAS-HP

performance it seems that pseudo-linear neighborhood is

better than the linear model to capture task relations

expressed in the program graph and CA rules evolved

using this new model have a better generalization ability,

which is a desirable characteristic in CA-based schedulers

(Oliveira and Vidica 2012). SA scheduler results are more

close to SCAS-HP reuse results; however, we must high-

light that SA do a new search for each graph and even this,

SCAS-HP was better than SA in 6 of the 9 scenarios.

As a general conclusion, the performances of the pro-

posed approaches are better than those obtained by other

CA-based algorithms as in the learning stage as in the reuse

phase. Finally, experimental analysis also drive us to

conclude that the combined employment of both

techniques make the search for CA transition rules during

learning more robust and leads to a significant gain when

considering the reuse of them on real-world conditions.

As future work, SCAS-HP will be extended by the

investigation of new heuristics to initialize CA lattices.

Other attributes, such as alap (As Late As Possible), asap

(As Soon As Possible) and cp (Critical Path), will also be

tested to define the pseudo-linear neighborhood. The

inspection of the minority of scenarios in which SCAS-HP

did not return a good result revealed that the change per-

formed in the initialization of lattices, where we use only

one configuration to learn the rules instead of a set of

configurations, together with the application of a more

complex neighborhood can provoke some undesirable

unstable behavior, as chaotic dynamics. We are working on

an approach to guide genetic search to avoid such unstable

rules. Initial results are very promising and they must be

divulged next soon.

Acknowledgements This work has been supported by the National

Counsel of Technological and Scientific Development—CNPq (pro-

cess 134278/2010-0)—of the Brazilian Government. Murillo Gui-
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