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Abstract In reaction systems introduced by Ehrenfeucht

and Rozenberg the number of resources is, by definition, at

least 2. If it is exactly 2, the system is referred to as min-

imal. We compare minimal reaction systems with almost

minimal ones, where the number of resources equals 3. The

difference turns out to be huge. While many central

problems for minimal systems are of low polynomial

complexity, the same problems in the almost minimal case

are NP- or co-NP-complete. The situation resembles the

difference between 2-SAT and 3-SAT, also from the point

of view of techniques used. We also compare maximal

sequence lengths obtainable in the two cases. We are

concerned only with the most simple variant of reaction

systems.

Keywords Reaction system � Reactant � Inhibitor �
Inverse function � Sequence length � NP-completeness �
1-in-3 3SAT problem

1 Introduction

A formal model of reaction systems was introduced by

Ehrenfeucht and Rozenberg (2007). Everything is defined

within a fixed finite background set S. The sets of reac-

tants, inhibitors and products, R, I and P, are nonempty

subsets of S, the sets R and I being disjoint. A reaction

system A consists of finitely many such triples (R, I, P),

called reactions.

The original purpose was to model interactions between

biochemical reactions. Ehrenfeucht and Rozenberg (2007)

contains some of the original motivation and initial setup.

Each reaction is characterized by its set of reactants, each

of which has to be present for the reaction to take place, by

its set of inhibitors, none of which is allowed to be present,

and by its set of products, each of which will be present

after a successful reaction. Thus, a single reaction is based

on facilitation and inhibition.

Reaction systems provide a new kind of mechanism for

generating functions and sequences over a finite set. The

application of A to a subset Y of S (to be explained in detail

below) produces another subset Y0 of S and, thus, we have a

function from subsets of S to subsets of S. Iterating the

function we get a sequence of subsets of S, also referred to

as states of the sequence.

The model of reaction systems turns out to be suitable in

different setups. Then also many variants of reaction sys-

tems and extensions to them were introduced. Brijder et al.

(2011) constitutes a recent survey. However, in this paper

we are concerned with the basic variant only.

The elements of the sets R and I are also referred to as

resources of the reaction. Since R and I are nonempty and

disjoint, the smallest possible cardinality of the resource set

equals 2. In this paper we compare such minimal reaction

systems with almost minimal ones, where the cardinality of

the resource set equals 3. Some comparisons concern

algorithmic complexity. We also investigate functional

constructions and possibilities of obtaining long state

sequences in case of minimal and almost minimal reaction

systems.

The class of functions (from the set of subsets of S into

itself) generated by minimal reaction systems was charac-

terized in Ehrenfeucht et al. (2012b). General consider-

ations concerning functions and sequences are contained in
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Ehrenfeucht et al. (2011), Rozenberg (2011), Salomaa

(2012a, b).

The exposition in this paper is largely self-contained. In

particular, the basic setup concerning reaction systems is

given in Sect. 2 The presentation is focused on the needs of

the next sections and, therefore, also some earlier results

are quoted. Section 3 presents our main results concerning

NP-completeness and co-NP-completeness of basic prob-

lems about almost minimal reaction systems. Thereby the

basic reduction tool is the 1-in-3 3SAT problem, (Schaefer

1978). Intuitively, the difference between minimal and

almost minimal reaction systems amounts to the difference

between satisfiability problems 2-SAT and 3-SAT.

In the transition from minimal to almost minimal reac-

tion systems, functional constructions become essentially

richer. We construct in Sect. 4 sequences for almost min-

imal reaction systems that are exponentially longer than the

longest known sequences for minimal reaction systems.

Also certain functions not obtainable by minimal reaction

systems can be obtained using almost minimal ones.

However, a characterization of functions, resembling the

one given in the minimal case in Ehrenfeucht et al.

(2012b), seems hard to obtain in the almost minimal case.

In the final section we discuss further complexity issues

and present some open problems.

2 Preliminaries and earlier results

All constructions dealing with a reaction system take place

within a fixed finite set S, referred to as the background set.

Thus, mathematically, we are working on functions and

sequences over a finite set. This concerns the basic variant

of reaction systems discussed in this paper. The reader may

consult (Brijder et al. 2011) for more complicated variants.

We begin with the basic definition of a reaction and a

reaction system.

Definition 1 A reaction over the finite background set S

is a triple

q ¼ ðR; I;PÞ;

where R, I and P are nonempty subsets of S such that R and

I do not intersect. The three sets are referred as reactants,

inhibitors and products, respectively. A reaction system AS

over the background set S is a finite nonempty set

AS ¼ fqjj1� j� kg;

of reactions over S.

In this paper S will always denote the background set.

Observe that no assumptions are made concerning the

relation of the set P to the sets R and I. Thus, P may be

included in one of the latter two sets or contain elements

from both of them, as well as other elements of S. We will

omit the index S from AS whenever S is understood.

We now come to the definitions dealing with functions

and sequences. The cardinality of a finite set X is denoted

by ]X. The empty set is denoted by ;.

Definition 2 Consider a reaction q = (R, I, P) over S and

a subset Y of S. The reaction q is enabled with respect to

Y (or for Y), in symbols enq(Y), if R � Y and I \ Y = ;. If

q is (resp. is not) enabled, then we define the result by

resqðYÞ ¼ Pðresp: ¼ ;Þ:

For a reaction system A ¼ fqjj1� j� kg; we define the

result by

resAðYÞ ¼
[k

j¼1

resqj
ðYÞ:

As an example, let A1 be the reaction system over the

background set {1, 2, 3}, consisting of the three reactions

q1 ¼ ðf1; 2g; f3g; f1; 3gÞ; q2 ¼ ðf2g; f3g; f2gÞ;
q3 ¼ ðf1g; f2g; f1; 3gÞ:

Consider Y = {1,2}. Then enq1
ðYÞ and enq2

ðYÞ, whereas

enq3
ðYÞ does not hold. Consequently,

resq1
ðYÞ ¼ f1; 3g; resq2

ðYÞ ¼ f2g; resq3
ðYÞ

¼ ;; resA1
ðYÞ ¼ f1; 2; 3g:

The following consequence of Definition 2 should be

observed. Whenever an element is in a set Y, it is

considered to be there always when needed. Thus, the

element 2 of Y is not ‘‘consumed’’ in the application of the

reaction q1 but is also available for q2 when resA1
ðYÞ is

computed. In this sense there is no ‘‘conflict’’ between q1

and q2.

Elements in the set R [ I are also referred to as

resources. Reaction systems are classified according to the

maximal cardinalities of the sets of reactants and inhibitors,

and also according to the cardinality of the set of resources.

Definition 3 A reaction system A is a (k, l) reaction

system if the conditions ]R� k and ]I� l are satisfied for

every reaction (R, I, P) in A. A reaction system is minimal

(resp. almost minimal) if the cardinality of the set of

resources equals 2 (resp. is at most 3).

Thus, minimal reaction systems are always (1, 1) reac-

tion systems, whereas almost minimal reaction systems

may contain, in addition, both (2, 1) and (1, 2) reactions.

Functions and sequences associated with reaction sys-

tems constitute a very interesting and natural way of han-

dling operations over subsets of a finite set. Functions

defined by reaction systems can be viewed as another

description of the mapping res.
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Definition 4 Consider a reaction system A over

S. Denote by S1 (resp. S2) the set of all nonempty (resp.

proper nonempty) subsets of S. (Thus, the cardinalities of

S1 and S2 are 2]S � 1 and 2]S � 2, respectively.) Consider

the function FA defined as follows, for Y � S: If

resAðYÞ ¼ Y 0 6¼ ;; then FAðYÞ ¼ Y 0. If resAðYÞ ¼ ;; then

FAðYÞ is undefined. The function FA is termed total if it is

defined for all elements of S2.

The range and domain of the function FA are subsets of

S1 and S2, respectively. The set S itself cannot belong to the

domain because every reaction has to have at least one

inhibitor.

For example, the function FA1
¼ F1 defined by the

reaction system A1 considered above satisfies

F1f1g ¼ f1; 3g; F1f2g ¼ f2g; F1f1; 2g
¼ f1; 2; 3g; F1f1; 3g ¼ f1; 3g;

whereas the function is undefined for the arguments {3} and

{2,3}. Hence, the function F1 is not total. (We often omit

unnecessary parentheses and write F{a} instead of F({a})).

The function FA is total iff, for every proper nonempty

subset Y of S, we have enq(Y), for at least one reaction q in

A. Thus, a total function FA remains total if the product

sets in some of the reactions in A are changed. This matter

was investigated further in Salomaa (2012), where the

notion of a core of a reaction system was introduced.

Sequences generated by reaction systems can be viewed

as iterations of the functions FA: If FAðYÞ ¼ Y 0; we use

the notation

Y )A Y 0;

or simply Y) Y0 if A is understood. If

FAðXiÞ ¼ Xiþ1; 0� i�m� 1;

we write briefly

X0 ) X1 ) � � � ) Xm

and call X0;X1; . . .;Xm states of a sequence of length

m generated (or defined) by the reaction system A. The

sequence itself is referred to as a state sequence. The

numbering of the states, or steps in a sequence, is as above:

the step number 1 is obtained after one application of the

function FA. To exclude trivial cases, we assume that X0 is

always a proper nonempty subset of S.

Since the number of subsets of S if finite, one of the

following two alternatives always occurs for sequences

X0 ) X1 ) � � � ) Xm�1;

for large enough m.

1. FAðXm�1Þ ¼ Xm1
; for some m1 B m - 1. In this case

we say that the sequence has (or ends with) a cycle of

length m - m1.

2. The function FA is undefined for the argument Xm-1,

whereas it is defined for all arguments Xj, j \ m - 1.

In this case we write Xm = ; and say that the sequence

is a terminating sequence of length m. Thus in this case

enq(Xm-1) holds for no reaction q in A:

As an example, let A2 be a reaction system over the

background set {1, 2, 3}, consisting of the four reactions

q1 ¼ ðf1g; f2g; f1gÞ; q2 ¼ ðf1g; f3g; f2gÞ;
q3 ¼ ðf2g; f3g; f3gÞ; q4 ¼ ðf3g; f1g; f1; 3gÞ

We obtain now a cycle

f1g ) f1; 2g ) f2; 3g ) f1; 3g ) f1g

of length 4, as well as another cycle

f2g ) f3g ) f1; 3g ) f1g ) f1; 2g ) f2; 3g ) f1; 3g;

also of length 4. In the latter case we also have an initial

part of length 2, and the whole sequence contains all proper

nonempty subsets of the background set. Consequently, the

function FA2
is total.

Examples of long sequences and cycles will be pre-

sented in Sect. 4.

In the next section we will consider well-formed for-

mulas, WFF’s, U built from propositional variables

x1; x2; . . .; by the use of connectives *, _, ^ (negation,

disjunction, conjunction). A truth-value assignment for

such a formula U is a mapping of the set of variables

occurring in U into the set {T, F}. For any given truth-

value assignment, the truth-value assumed by U is then

computed in the usual way using the truth-tables of the

connectives. A WFF U is satisfiable if it assumes the value

T for at least one truth-value assignment. The variables xi

and their negations * xi are referred to as literals. A WFF

is in 3-conjunctive normal form if it is a conjunction of

clauses, each of which is a disjunction of three literals.

For instance, Salomaa (in press), the following WFF in

3-conjunctive normal form

ð�x1 _ �x2 _ �x3Þ ^ ðx1 _ x2 _ �x4Þ ^ ð�x1 _ x2 _ x4Þ
^ðx1 _ x2 _ �x5Þ ^ ðx1 _ �x2 _ �x5Þ ^ ðx1 _ x3 _ x4Þ

^ð�x1 _ x3 _ �x5Þ ^ ðx1 _ �x4 _ x5Þ ^ ðx2 _ �x3 _ x4Þ
^ ðx3 _ x4 _ x5Þ ^ ðx3 _ �x4 _ x5Þ

is satisfiable, with three satisfying assignments

FTTFF, TFTTF, TFTTT for the ordered set of variables

{x1, x2, x3, x4, x5}.

It is well known that the satisfiability problem of WFF’s

in 3-conjunctive normal form, briefly 3-SAT, is NP-com-

plete. This fact was used in Salomaa (in press) to establish

the NP-completeness and co-NP-completeness of many

problems concerning reaction systems. Some of the
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reaction systems used were (3,3) systems and thus far from

almost minimal ones. Moreover, the problem monotone

1-in-3 3SAT, Schaefer (1978), is also a suitable reduction

tool for problems concerning reaction systems. One con-

siders WFF’s in 3-conjunctive normal form, where each

variable is unnegated. (Thus the negation * does not

appear at all.) One looks for such truth-value assignments

for the variables, where exactly one variable in each clause

assumes the value T. For instance, in the sense of this

requirement, the WFF

ðx1 _ x2 _ x3Þ ^ ðx1 _ x2 _ x4Þ ^ ðx1 _ x3 _ x4Þ
^ ðx2 _ x3 _ x4Þ

is not satisfiable, whereas the WFF obtained by removing

any of the four clauses is satisfiable.

Also the monotone 1-in-3 3SAT problem is is NP-

complete, (Schaefer 1978). It is a very suitable tool for

reductions involving almost minimal reaction systems.

Then also the dummy letters needed for cases where all or

none of the three letters in a clause will have the truth-

value T, (Ehrenfeucht et al. 2012a; Rozenberg 2011; Sa-

lomaa in press), can be totally avoided.

3 NP- and co-NP-complete problems about almost

minimal reaction systems

We begin with the definition of a ‘‘package’’ of reactions,

useful for many constructions. Modifications of the pack-

age will be used in the sequel.

Definition 5 For the background set S and s 2 S; we

define the set of (1,1) reactions U(S, s) by

UðS; sÞ ¼ fðfrg; fig; fsgÞjr; i 2 S; r 6¼ ig:

The presence of the set U(S, s) as a subset of the set of

reactions guarantees that the element s is always in the

product set, no matter what the initial argument is. Indeed,

the following lemma is obvious by the definitions.

Lemma 1 Assume that the set of reactions of a reaction

system AS contains the set U(S,s) as a subset, for some

s 2 S. Then the function FAS
is total and, moreover, for any

nonempty proper subset X of S,

s 2 FAS
ðXÞ:

We will now investigate NP-completeness and co-NP-

completeness of some decision problems concerning

almost minimal reaction systems. No corresponding

results are known for minimal reaction systems. In fact,

the problems investigated for minimal reaction systems

have been shown to be in P. Our basic tool is the

NP-completeness of the monotone 1-in-3 3SAT problem.

We begin with the following two problems.

Definition 6 Given a reaction system A, an element D of

the background set of A; as well as an integer n C 1, we

have to decide whether D occurs at the nth step in every

sequence of A consisting of at least n steps. This problem

will be referred to as the convergence problem for reaction

systems. The inverse function problem means the follow-

ing. We are given a reaction system A and a subset Y of the

background set of A: We have to decide whether or not the

function FA satisfies the equation

FAðXÞ ¼ Y ;

for some argument X.

The problems mentioned are natural in the general

framework and motivations presented in connection with

reaction systems, (Brijder et al. 2011; Rozenberg 2011).

When dealing with a known set of reactions, it is often

important to know whether a specific (maybe somehow

desirable or undesirable) result is obtainable by the reac-

tions, either directly or after a number of steps. The spec-

ification of n in the definition of the convergence problem

is needed because we consider only sufficiently long

sequences. Of course the step 0 is arbitrary in a sequence.

In view of the finiteness of the background set, it is

obvious that problems such as the ones in Definition 6 are

decidable. It is also clear that they are, depending on the

formulation, in NP or in co-NP. In Salomaa (in press), we

considered problems for arbitrary reaction systems. We

will now prove that the problems in Definition 6 are, in

fact, NP-complete or co-NP-complete for almost minimal

reaction systems.

Consider a WFF U in 3-conjunctive normal form

ðx1 _ y1 _ z1Þ ^ � � � ^ ðxm _ ym _ zmÞ;

where the variables xi, yi, zi, all of them unnegated, come

from a set Uk ¼ fu1; . . .; ukg consisting of k variables. We

say that a truth-value assignment for the variables

u1; . . .; uk satisfies U if, for each i, 1 B i B m, exactly one

of the variables xi, yi, zi assumes the value T. The WFF U
is satisfiable if there exists a truth-value assignment satis-

fying it. Moreover, we say that a subset U of Uk satisfies U
if the truth-value assignment assigning the value T (resp. F)

to the variables in U (resp. Uk - U) satisfies U.

We now define a specific almost minimal reaction sys-

tem associated with the WFF U:

Definition 7 Consider the WFF U as above, with

m clauses and the set of variables Uk. The reaction system

AðUÞ associated with U has the background set SU ¼
Uk [ fA1; . . .;Amg and the 3m reactions
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ðfxig; fyi; zig; fAigÞ; ðfyig; fxi; zig; fAigÞ; ðfzig; fxi; yig;
fAigÞ; 1� i�m:

Intuitively, the appearance of Ai in the product set indicates

the ‘‘acceptance’’ of the ith clause, 1 B i B m. Exactly one

variable in the clause assumes the value T.

Lemma 2 The equation

FAðUÞðXÞ ¼ fA1; . . .;Amg

holds for a subset X of the set Uk exactly in case X satisfies

U: There is a subset Y of SU such that

FAðUÞðYÞ ¼ fA1; . . .;Amg

exactly in case U is satisfiable.

Proof The first sentence follows by the definition of the

reactions. The second sentence is a consequence of the

observation that the presence of some elements Ai in the

argument Z does not affect the function value FAðUÞðZÞ: h

Lemma 2 now implies the following result.

Theorem 1 The inverse function problem is NP-complete

for almost minimal reaction systems.

Observe that the reaction systems used in the proof are,

in fact, (1, 2) reaction systems.

To deal with the convergence problem, we need a

modification of the reaction system AðUÞ; Definition 7. We

use also the construction present in Lemma 1.

We consider still the WFF U with k variables and

m clauses, as above. Also the notations Uk and SU will be

used in the same meaning as above. The set of reactions in

the reaction system AðUÞ is denoted by K.

Definition 8 The second reaction system BðUÞ; associ-

ated with the WFF U; has the background set

SBðUÞ ¼ SU [ fB;Cg:

The set of reactions consists of the reactions in K and

UðSBðUÞ;BÞ; as well as of the additional reactions

qj ¼ ðfBg; fAjg; fCgÞ; 1� j�m:

We will now prove that the element C appears at the

second step in every sequence of BðUÞ exactly in case the

WFF U is not satisfiable. Because the set UðSBðUÞ;BÞ is

included in the set of reactions, the element B appears at

every step in every sequence, after the beginning step 0.

Consequently, every sequence has at least two steps.

(Indeed, every sequence ends with a loop.)

Lemma 3 Consider a sequence Z0; Z1; Z2; . . . of the

reaction system BðUÞ: Let V0 = Z0 \ Uk. Then C 2 Z2

exactly in case V0 does not satisfy U.

Proof Considering the product sets in the reactions of

BðUÞ; we conclude that, for every Z0,

Z1 � fB;A1; . . .;Am;Cg; B 2 Z1:

Apart from the reactions in UðSBðUÞ;BÞ; the only reactions

possibly enabled for Z1 are the reactions qj, 1 B j B m. The

product in the latter reactions is always {C}. There are two

possibilities.

1. At least one reaction qj is enabled for Z1. Then

Z2 = {B,C}.

2. No reaction qj is enabled for Z1. Then Z2 = {B}.

The first possibility occurs exactly in case V0 does not

satisfy U. Consequently, our lemma follows. h

Lemma 3 shows that the only possibility for C not to

occur in Z2 is that

fA1; . . .;Amg � Z1:

But this happens exactly in case V0 satisfies U. Hence, we

obtain the following result.

Theorem 2 The convergence problem is co-NP-complete

for almost minimal reaction systems.

Observe again that Theorem 2 holds for (1, 2) reaction

systems. In fact, the additional reactions in BðUÞ are all (1,

1) reactions.

We have investigated above two typical problems, where

the satisfiability or non-satisfiability of a WFF can be applied

for complexity issues dealing with almost minimal reaction

systems. Analogous results can be obtained for other similar

problems, such as the ones investigated in Salomaa (in

press). Thereby further modifications of the reaction systems

associated with the WFF U; notably concerning the behavior

of the additional elements of the background set, are needed.

When dealing with minimal reaction systems, the situ-

ation is essentially different. The use of techniques such as

the ones above lead to 2-conjunctive normal forms and,

hence, cannot imply NP-completeness. We hope to return

to decision problems concerning minimal reaction systems

in another contribution. Problems so far considered are in

P. A particularly simple algorithm for the totality problem,

that is, whether or not a given minimal reaction system

defines a total function, was given in Salomaa (2012).

Is a given reaction system equivalent (that is, defines the

same function) to a minimal one? The complexity of this

question is a very interesting open problem.

4 Functions and long sequences in minimal and almost

minimal reaction systems

Although the formal setup in reaction systems is very

simple, still amazingly complex phenomena may emerge.
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Even in the case of minimal reaction systems, no upper

bound polynomial in terms of ]S exists for the length of

terminating sequences, (Ehrenfeucht et al. 2011; Salomaa

2012a, b). The best known lower bound is presented in the

following theorem, (Salomaa 2012).

Theorem 3 For every i C 1, there is a (1,1) reaction

system having 4i elements in the background set and

having a terminating state sequence of length vi, where

v1 ¼ 7; v2 ¼ 26; vi ¼ 3 � 3i

þ 9ð3i�3 � 1Þ=2þ 2; i� 3:

The availability of three resources in reactions (as is the

case in almost minimal reaction systems) essentially

enhances possibilities for constructions. It is easy to obtain

terminating state sequences exponentially longer than the

ones in Theorem 3. Consider first the (2, 1) reaction system

with the background set {a, b, c} and reactions

ðfag; fbg; fbgÞ; ðfbg; fag; fcgÞ; ðfcg; fag; fa; bgÞ;
ðfa; bg; fcg; fa; cgÞ; ðfa; cg; fbg; fb; cgÞ:

We obtain the terminating state sequence

fag ) fbg ) fcg ) fa; bg ) fa; cg ) fb; cg
) fa; b; cg ) ;

of length 7. Indeed, this is a longest possible state sequence

if the background set S has 3 elements: every subset of S is

present. This reaction system A1 constitutes the basis of

our inductive procedure.

We now assume inductively that, for i C 1, we have

constructed a (2,1) reaction system Ai having the back-

ground set S of cardinality 3i, as well as a terminating state

sequence

Z0 ) Z1 ) Z2 ) � � � ) Zvi�1 ) ;

of length vi. We now construct, for i ? 1, a (2, 1) reaction

systemAiþ1 having a background set of cardinality 3(i ? 1)

and a terminating state sequence of length 3vi ? 2.

The background set of Aiþ1 is S [ {d, e, f}, where the

elements d, e, f are not in S. We add f to the product set of

each reaction in Ai: Thus, if (R, I, P) is a reaction in Ai;

then the corresponding reaction in Aiþ1 is (R, I, P [ {f}).

Moreover, the reaction system Aiþ1 contains the following

additional reactions:

ðfd; ig; feg; fdgÞ; ðfdg; ffg; Z0 [ fe; fgÞ;
ðfe; ig; fdg; fegÞ; ðfeg; ffg; Z0Þ;

where i ranges over S. Clearly, Aiþ1 is a (2,1) reaction

system.

It is now easy to verify that the following sequence is a

legitimate terminating state sequence of the reaction sys-

tem Aiþ1.

Z0 [ fd; fg ) Z1 [ fd; fg ) � � � ) Zvi�1 [ fd; fg ) fdg
) Z0 [ fe; f g ) Z1 [ fe; fg ) � � �
) Zvi�1 [ fe; fg ) feg ) Z0 ) Z1 [ ffg
) � � � ) Zvi�1 [ ffg ) ;:

Clearly, the length of this sequence is 3vi ? 2.

As an illustration, consider the reaction system A2: We

begin with A1 and conclude that A2 is has the background

set { a, b, c, d, e, f} and reactions

ðfag; fbg; fb; fgÞ; ðfbg; fag; fc; f gÞ; ðfcg; fag; fa; b; fgÞ;
ðfa; bg; fcg; fa; c:fgÞ; ðfa; cg; fbg; fb; c; f gÞ; ðfd; ig; feg; fdgÞ;
ðfdg; ffg; fa; e; f gÞ; ðfe; ig; fdg; fegÞ; ðfeg; ffg; fagÞ;

where i ranges over the set {a, b, c}. We obtain now the

following terminating state sequence of length 23.

fa; d; fg ) fb; d; fg ) fc; d; f g ) fa; b; d; f g ) fa; c; d; f g
) fb; c; d; fg ) fa; b; c; d; fg ) fdg ) fa; e; fg ) fb; e; fg
) fc; e; fg ) fa; b; e; fg ) fa; c; e; fg ) fb; c; e; f g
) fa; b; c; e; fg ) feg ) fag ) fb; f g ) fc; fg
) fa; b; fg ) fa; c; f g ) fb; c; fg ) fa; b; c; fg ) ;:

This means that we have the subsequent recurrence

relation for the numbers vi.

v1 ¼ 7; viþ1 ¼ 3vi þ 2; for all i� 1:

The solution of this recurrence is

vi ¼ ð8=3Þ3i � 1; i� 1:

We have, thus, established the following lower bound

for the length of state sequences of almost minimal reaction

systems.

Theorem 4 For every i C 1, there is an almost minimal

reaction system having 3i elements in the background set

and a terminating state sequence of length (8/3)3i - 1.

The proof above shows that Theorem 4 holds, in fact, for

(2, 1) reaction systems. The bound obtained from Theorem 4

is exponentially better than the one obtained from Theorem

3, the orders of growth in the two cases being x]S with x ¼
ffiffiffi
33
p

and x ¼
ffiffiffi
34
p

respectively. They are still far from the optimal

bound 2]S; obtainable if the number of resources is unlimited.

An essentially better bound would result if the use of the

‘‘almost dummy’’ letter f could be eliminated.

It is natural to estimate lower bounds in terms of the

cardinality of the background set rather than the cardinality

of the set of reactions. Maximally inhibited reaction sys-

tems generate longest possible sequences and have only

one reaction for each set of reactants.

In general, it is easy to obtain long cycles from long

terminating sequences, (Ehrenfeucht et al. 2011; Salomaa

374 A. Salomaa

123



2012a). We do this now for almost minimal reaction sys-

tems, by a modification of the construction above.

Theorem 5 For every i C 1, there is an almost minimal

reaction system having 3i?2 elements in the background

set and having a cycle of length (8/3)3i.

Proof By Theorem 4 there is, for all i C 1, an almost

minimal reaction system Ai with a background set S of

cardinality 3i and with a terminating state sequence

Z0 ) Z1 ) Z2 ) � � � ) Zm�1 ) ;

of length m = (8/3)3i - 1. We now modify Ai to an

almost minimal reaction system Bi as follows.

The background set of Bi is obtained by adding two new

elements x and y to S. The set of reactions in Bi is obtained

by adding the element y to the product set of every reaction

in Ai and, moreover, taking the additional reactions

ðfxg; fyg; Z0 [ fx; ygÞ; ðfx; jg; fkg; fxgÞ; j; k 2 S; k 6¼ j; x:

Thus, x is preserved in a sequence as long as there are

elements of S present, whereas y is present as long as some

reaction is enabled. Consequently, we obtain the cycle

Z0 [ fx; yg ) Z1 [ fx; yg ) � � � ) Zm�1 [ fx; yg
) fxg ) Z0 [ fx; yg

of length m ? 1 = (8/3)3i.

The following observation should be made concerning

the basis of induction on i. If we follow the proof of

Theorem 4 with v1 = 7, then the above construction does

not work at the first step. The reason is that then Zm-1 [
{x,y} is the entire background set, whence no continuation

is possible. However, this is no problem because, for i = 1,

we have now a 5-element background set. Then we

immediately get the estimate v1 = 7, without using the

entire background set in the terminating sequence. We can

easily get better estimates for the starting point, for

instance, v1 = 21. Then the recursion

v1 ¼ 21; viþ1 ¼ 3vi þ 3; i� 1

gives the final result

ð15 � 3i � 3Þ=2; i� 0:

Observe that the initial value v1 affects only the coefficients

a and b in a � 3i þ b: h

No exhaustive characterization of functions defined by

almost minimal reaction systems is known. This was

quoted in Ehrenfeucht et al. (2012b) as a challenging open

problem. However, it is easy to construct classes of func-

tions definable by almost minimal reaction systems but not

definable by minimal reaction systems. We now present

two typical examples of such functions. Thereby also the

impossibility of using only one reactant (resp. only one

inhibitor) for certain purposes is illustrated. The examples

are over the background set {a, b, c}.

Consider a function f1 satisfying

f1fag ¼ f1fbg ¼ fag; f1fa; bg ¼ fcg:

(We are interested only in these values, the values of f1 for

other subsets of the background set are irrelevant.) Such a

function f1 is defined by the (2, 1) reaction system with the

three reactions

ðfag; fbg; fagÞ; ðfbg; fag; fagÞ; ðfa; bg; fcg; fcgÞ:

A minimal reaction system cannot define such a function f1.

Since every reaction has only one reactant, the function

value for the argument {a, b} must be contained in the

union of the functions values for the arguments {a} and {b}.

Consider next a function f2 satisfying

f2fa; bg ¼ f2fa; cg ¼ fbg; f2fag ¼ fcg:

Such a function f2 is defined by the (1, 2) reaction system

with the three reactions

ðfag; fbg; fbgÞ; ðfag; fcg; fbgÞ; ðfag; fb; cg; fcgÞ:

The requirements for f2 cannot be met if there is only one

inhibitor in each reaction. The negative conclusions for f1
and f2 follow also by the general result quoted in the next

section.

5 Further considerations and open problems

Maximally inhibited reaction systems, (Salomaa 2012a),

give an easy method of defining an arbitrary function. We

now quote the important result, (Ehrenfeucht et al. 2012b),

characterizing the functions defined by minimal reaction

systems. We need the following definition from (Ehren-

feucht et al. 2012b).

Definition 9 A function f (in the sense of Definition 4) is

• union-subadditive if f ðX [ YÞ � f ðXÞ [ f ðYÞ;
• intersection-subadditive if f ðX \ YÞ � f ðXÞ [ f ðYÞ;
• for all subsets X and Y of S.

A characterization result for functions defined by min-

imal reaction systems was given in (Ehrenfeucht et al.

2012b).

Theorem 6 A function FA defined by a reaction system A
is defined by a (1,1) reaction system exactly in case FA is

both union-subadditive and intersection-subadditive.

The characterization given in Theorem 6 is exhaustive.

However, since the two conditions needed seem compu-

tationally hard to test, it is not clear whether Theorem 6

simplifies the problem mentioned above: Is a given reac-

tion systems equivalent to a minimal one?
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We would like to present the following, somewhat

vaguely stated,

Conjecture Complexity grows more in the transition from

minimal to almost minimal reaction systems, than in the

transition from almost minimal to unrestricted reaction

systems.

Results in Sect. 3 support this conjecture. As regards the

lower bounds for the lengths of terminating sequences and

cycles, it seems likely that the bounds in Sect. 4 can be

improved to justify the following conclusion. The ratio

between the optimal bound 2i and the lower bound xi for

almost minimal reaction systems is smaller than the ratio

between xi and the lower bound for minimal reaction

systems.
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