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Abstract Molecular spiders are nanoscale walkers made

with DNA enzyme legs attached to a common body. They

move over a surface of DNA substrates, cleaving them and

leaving behind product DNA strands, which they are able

to revisit. Simple one-dimensional models of spider motion

show significant superdiffusive motion when the leg-sub-

strate bindings are longer-lived than the leg-product

bindings. This gives the spiders potential as a faster-than-

diffusion transport mechanism. However, analysis shows

that single-spider motion eventually decays into an ordin-

ary diffusive motion, owing to the ever increasing size of

the region of cleaved products. Inspired by cooperative

behavior of natural molecular walkers, we propose a

symmetric exclusion process model for multiple walkers

interacting as they move over a one-dimensional lattice.

We show that when walkers are sequentially released from

the origin, the collective effect is to prevent the leading

walkers from moving too far backwards. Hence, there is an

effective outward pressure on the leading walkers that

keeps them moving superdiffusively for longer times,

despite the growth of the product region. Multi-spider

systems move faster and farther than single spiders or

systems with multiple simple random walkers.
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1 Introduction

Molecular walkers (or, molecular motors) are natural or

synthetic molecules that move over surfaces or along tracks

or fibers. Their motion is propelled by the energy released

by a succession of chemical reactions that take place as the

walkers bind and release their legs; the energy is supplied

by other molecules, either from the walking surface itself

or from the surrounding solution. Molecular walkers pro-

vide a means to transport material by non-diffusive direc-

ted motion. Molecular walkers are ubiquitous as a transport

mechanism in biological systems (Schliwa and Woehlke

2003), and many of the complex regulatory cellular pro-

cesses are controlled by the action of molecular walkers

such as kinesin and dynein (Hirokawa and Takemura

2005). It has been demonstrated experimentally that these

natural cellular molecular walkers work in teams, wherein

their collective action leads to behaviors not possible for a

single walker (Badoual et al. 2002). In addition, theoretical

models predict that collective cooperative or competitive

behavior of walkers is fundamentally different from the

behavior of individual walkers (Campas et al. 2006; Frey

et al. 2004; Jülicher et al. 1997).

Inspired by the potential for walker cooperation, we

propose a model describing the collective behavior of

teams of molecular walkers.1 Our model is based on syn-

thetic walkers called molecular spiders (Pei et al. 2006)

(Sect. 2). Figure 1 shows a molecular spider walking over a

surface displaying substrate molecules. A molecular spider

has two or more enzymatic legs attached to a common
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body. The legs are deoxyribozymes—catalytic sequences

of single-stranded DNA that can cleave complementary

single-stranded DNA substrates. A spider moves over the

surface, attaching to, cleaving, and detaching from the

substrate sites. It leaves behind product DNA strands,

which are the surface-bound portions of the cleaved sub-

strates. Experiments have shown that this mechanism

allows spiders to move directionally over nanoscale tracks

of regularly spaced DNA substrates (Lund et al. 2010).

Antal and Krapivsky proposed a simple abstract model

that describes molecular spider motion in one dimension

(1D) as a continuous-time Markov process (Antal and

Krapivsky 2007; Antal et al. 2007). In previous work, we

showed via computer simulation and analytical arguments

that walkers in the Antal–Krapivsky (AK) model move

superdiffusively over significant times and distances

(Semenov et al. 2011), and hence are useful as a faster-

than-diffusion molecular transport mechanism. However,

in the asymptotic limit of long times, the AK walkers slow

down and move as an ordinary diffusive process (Antal and

Krapivsky 2007). This can be explained by understanding

that superdiffusion is only possible while there is an energy

source available to bias the motion of a spider. In the AK

model, the energy is provided by the irreversible trans-

formation of substrates into products. This is manifested as

a difference in residence times between substrate and

product attachments. When a spider is attached to products,

there is no energy available to it, and its motion is unbiased

and diffusive. When a spider is attached to a substrate, the

slower rate of catalysis creates a bias that makes it more

likely for the spider to move to new, unvisited substrate

sites. However, as a spider moves, it cleaves out an

increasingly large region of products called the product

sea. As the product sea grows, the spider spends increas-

ingly more time diffusing through it, and less time cleaving

new substrate sites. Hence, the spider’s motion asymptot-

ically decays to ordinary diffusion.

In this work, we started with the hypothesis that the col-

lective action of many spider walkers could lead to cooperative

behavior that would enhance the superdiffusive motion of the

spiders close to the boundary. The simplicity of the AK model

and the known results for single walker motion make it a

particularly useful model for extension to the study of collec-

tive spider motion. The AK model contains only those features

and properties necessary to explain superdiffusive motion of

(single) spiders, abstracting away the extraneous details of the

specific spider chemistry and focusing on the kinetics of

nearest-neighbor walking gaits for multipedal enzymatic

walkers. We extend these nearest-neighbor walking gaits to

collective motion of spiders in 1D. An immediate consequence

is that AK spiders cannot move past one another, as their legs

are too short to hop over adjacent walkers. As a result even if

the product sea becomes very large, a spider near the boundary

of the sea cannot move further back than the next spider behind

it. Hence by adding spiders at the origin the effective size of the

product sea as seen by the leading spiders is reduced. In

essence, the presence of other spiders can act as an exclu-

sionary pressure that enhances transport of cargo carried by the

leading spiders. Ideally the leading spider would perceive a

constant-size sea of products behind it, and its diffusive

excursions into that sea would be of constant duration, which

would lead to asymptotically superdiffusive motion.

In Sect. 3 we present a model for cooperative multi-

spider transport over an infinite 1D lattice. The model

relies on an unlimited supply of identical new spiders

injected at the origin whenever the sites at the origin are

unoccupied. Conceptually this spider injection approxi-

mates the release of spiders from a large reservoir near the

origin. Using Kinetic Monte Carlo (KMC) methods, we

show that multi-spider systems exhibit significantly super

diffusive motion within the time bounds studied (Sect. 4),

with both the duration of the superdiffusive period and the

peak superdiffusivity coefficient greater than for single

walkers (Sect. 4.2). This shows potential for multi-spider

systems with injection to be used to perform useful tasks in

nanoscale computational and communication systems by

providing a faster-than-diffusion mechanism of ‘‘first-to-

target’’ transport.

However, even with an unbounded reservoir of new

spiders, the asymptotic behavior of the leading spider is

still ordinary-diffusive, not superdiffusive! Sects. 5, 6, 7

explain this result by investigating the effective size of the

product sea, the number of injected spiders, and the spatial

distribution of spiders. Importantly, we find that even

though the multi-spider model is not asymptotically super

diffusive, it still has superior transport properties. Indeed,

the multipedal nature of spiders has quantifiable advanta-

ges over systems of interacting simple random walkers

(i.e., spiders with just one leg). In analogy to the bipedal

walkers, ubiquitous in natural systems, multipedal walkers

Fig. 1 A molecular spider is a streptavidin-bodied molecular walker

that moves over a surface of single-stranded DNA substrates. It has

several flexible deoxyribozyme legs that attach to, cleave, and detach

from the DNA substrates. Cleavage leaves behind shorter product

DNA strands that can still be re-bound by legs, but less strongly (Not

to scale.)
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present distinct advantages for molecular transport, whe-

ther acting alone or as part of a collective.

2 Molecular spiders

A molecular spider (Fig. 1) has a rigid, chemically inert

body (such as streptavidin) and several flexible legs made

of deoxyribozymes—enzymatic single-stranded DNA that

can bind to and cleave complementary strands of a DNA

substrate at the point of a designed ribonucleic base

impurity. When a spider is placed on a surface on which

the appropriate DNA substrate has been deposited (or

nanoassembled), the legs bind to the substrate and catalyze

its cleavage, creating two product strands. The upper por-

tion floats away in solution and we do not consider it

further. The lower portion remains on the surface, and,

because it is complementary to the lower part of the leg,

there is some residual binding of the leg to the product,

typically much weaker and shorter-lived than the leg-sub-

strate binding. The leg kinetics are described by the five

reactions in Eq. 1 relating legs (L), substrates (S), and

products (P), in which we have folded the catalysis reaction

and subsequent dissociation reactions into a single kcat rate:

Lþ S �
kþ

S

k�
S

LS!kcat
Lþ P ð1Þ

Lþ P �
kþ

P

k�
P

LP ð2Þ

2.1 The Antal–Krapivsky model

The Antal–Krapivsky model (Antal and Krapivsky 2007;

Antal et al. 2007) is a high-level abstraction that represents

a molecular spider as a random walker. Unlike ordinary

random walkers, each AK spider has k legs. The chemical

activity of the multiple legs is independent, but their

motion is constrained by their attachment to a common

body; in the model, any two legs must be within distance

s. The legs walk over sites on a regular 1D lattice, where

each site is either a substrate or a product.

Mathematically, the AK model takes the form of a

continuous-time Markov process. The system states of this

process are given by the combined state of the lattice sites

and the state of the spider legs. All lattice sites are initially

substrates and are only transformed to products when a leg

detaches from the substrate (via catalysis). Thus the state of

the lattice sites is fully described by the set P � Z of

product sites. The state of the spider is completely defined

by the set F of attached feet locations. Thus any state can

be described as the pair (P, F).

2.1.1 Spider gait

We call F a configuration of the legs. The gait of a spider is

defined by what configurations and what transitions between

configurations are allowed in the model. In any state ðP;FÞ 2
X where X is a state space of the Markov process, all k legs

are attached. Together with the restriction that at most one

leg may be attached to a site, this implies that

jFj ¼ k: ð3Þ

Additionally, the legs are constrained by their

attachment to a common body. If the spider has a point

body with flexible, string-like legs of length s/2, then any

two feet can be separated by at most distance s, thus,

maxðFÞ �minðFÞ� s: ð4Þ

The transitions in the spider Markov process correspond

to individual legs unbinding and rebinding. When a spider is

in configuration F, any foot i 2 F can unbind and move to

a nearest-neighbor site j 2 fiþ 1; i� 1g to form a new

configuration F0 ¼ ðF n figÞ [ fjg; provided the new con-

figuration does not violate one of the constraints of Eqs. 3 and 4.

A transition i? j is called feasible if it meets these constraints.

The feasible transitions determine the gait of the spider. The

nearest-neighbor hopping combined with the mutual exclusion

of legs leads to a shuffling gait, wherein legs can slide left or right

if there is a free site, but legs can never move over each other, and

a leg with both neighboring sites occupied cannot move at all. If

the legs of such a spider were distinguishable, they would always

remain in the same left-to-right ordering.

In the case where k = 2, s = 2 the gait of the spider is

particularly simple (Fig. 2), but it still exhibits constraints

on the coordination of the leg motion that are not present

for k = 1 walkers.

Fig. 2 An AK spider with two legs (k = 2) and maximum leg

spacing s = 2 is attached to a product at site 1 and a substrate at site

3. It can detach from the product at rate 1, after which it can only

move to site 2 without violating Eq. 4. Alternatively it can cleave and

detach from site 3 at rate r, after which it must move to site 2
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2.1.2 Transition rates

The rate at which feasible transitions take place depends on

the state of the site i. If i is a product, the transition rate is

1, but if i is a substrate, the transition occurs at a slower

rate r \ 1. This is meant to model the realistically slower

dissociation rates from substrates, corresponding to chem-

ical kinetics where kcat/kP
- = r \ 1. The effect of substrate

cleavage is also captured in the transition rules. If for state

(P, F), where i 2 F n P; the process makes the feasible

transition i? j, then the leg will cleave site i before leav-

ing, and the new state will have P0 = P[{i}.

The relation of the AK model to the chemistry of the

spiders in Eq. 1 can be understood if one assumes the

chemical rates are given as in Eq. 5:

kþS ¼ kþP ¼ 1
k�S ¼ 0

k�P ¼ 1

kcat ¼ r\1

ð5Þ

The infinitely fast on-rates account for all legs always

being attached; when a leg unbinds it instantly rebinds to

some neighboring site. Thus the spider is modeled as

jumping from configuration F to configuration F0.

2.2 Superdiffusive motion of single AK spiders

To characterize the motion of spiders we use the notion of

superdiffusion. Superdiffusive motion can be quantified by

analyzing the mean squared displacement (MSD) of a

spider as a function of time. For diffusion in a one-

dimensional space with diffusion constant D, the mean

squared displacement is given by Eq. 6.

msdðtÞ ¼ x2ðtÞ
� �

¼ 2Dta

a ¼ 0 stationary

0\a\1 subdiffusive

a ¼ 1 diffusive

1\a\2 superdiffusive

a ¼ 2 ballistic or linear

8
>>>><

>>>>:

ð6Þ

We say that the spider is moving instantaneously

superdiffusively (Lacasta et al. 2004) at a given time t if

aðtÞ ¼ dðln ðmsdðtÞÞÞ
dðln ðtÞÞ [ 1: ð7Þ

Using Kinetic Monte Carlo simulations (Bortz et al.

1975) of the Markov process we can estimate the msd(t) for

the spider process for different parameter values by

averaging over many realizations x(t) of the process

X(t), where each x(t) is a function from t 2 ½0; tmax� to the

state space X of the spider process, and x(t)* X(t).

When the rate of substrate cleavage is slower than the

rate of product detachment (r \ 1), each spider process

goes through three different phases of motion defined by

their instantaneous value for the exponent a of msd(t).

Initially spiders are at the origin and must wait for both legs

to cleave a substrate before they start moving at all, so

when t \ 1/r the process is essentially stationary; we call

this largely unimportant phase the initial phase. After the

spiders take several steps, spiders with r \ 1 show a sus-

tained period of superdiffusive motion over many decades

in time. We call this the superdiffusive phase, and define it

as the period during which the instantaneous estimate of

a[ 1.1. The cutoff of a = 1.1 is somewhat arbitrary but

represents a threshold where spiders are moving signifi-

cantly superdiffusively, in contrast to spiders with r = 1,

which never have a[ 1. Finally, Antal and Krapivsky

showed that as time goes to infinity, all spiders will

approach ordinary diffusion with a& 1. This final stage is

called the diffusive phase and is characterized by spiders

mainly moving over regions of previously cleaved prod-

ucts, which makes the values of r irrelevant, since all

spiders move with rate 1 over product sites.

2.2.1 The boundary and diffusive metastates

To explain this behavior we observe that spiders with

s = 2 and k = 2 always cleave all sites they move over

since the AK model does not permit legs to change their

effective ordering on the surface. Hence, the spiders move

with a shuffling gait, consuming all products in the region

they move over. This leads to the formation of a sharp

boundary between a contiguous region of products called

the product sea, and the remainder of the unvisited sites

which are still substrates. The product sea has left and right

boundaries defined as

bR ¼ max ðPÞ þ 1; and, bL ¼ min ðPÞ � 1: ð8Þ

Hence the sites bR and bL are substrates, and moreover,

they are the only substrates a spider with k = 2, s = 2 can

reach.

Given this definition of boundary, we can consider the

spider Markov process as moving between two metastates.

If the state of the system is X = (P, F), then if bR 2 F or

bL 2 F; we say the system is in the boundary metastate

(X 2 B), otherwise the system is in the diffusive metastate

(X 2 D). When the system is in the B metastate, the spider

moves ballistically towards unvisited sites; when it is in the

D state, the spider’s motion is ordinary diffusive. We

define a B-period as an interval of time during which the

spider is in the B state and a D-period as an interval of time

during which the spider is in the D state. A realization of

the spider process alternates between B- and D-periods. We

define the distribution of the durations of B-periods that
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begin at time t as sB(t), and the distribution of durations of

D-periods beginning at t as sD(t)

The transitions from the B state to D state are inde-

pendent of the previous state of the system before it entered

the B state, hence hsBðtÞi is independent of time. However,

the transitions from the D state back to the B state depend

on the size of the product sea that the spider has left behind,

and this size increases with time. Correspondingly, it has

been shown that hsDðtÞi ¼ H
ffiffi
t
p� �

(Semenov et al. 2011).

This explains the transient superdiffusion at short times

when the spider spends more time in the B state, and the

decay to ordinary diffusion at long times, as the spider

spends more and more of its time in the D state.

There are two options to increase the superdiffusive effect

of the spider motion: (1) decrease the effective size of the

product sea, and hence the time needed to escape from it and

return to the boundary (hsDðtÞi); or (2) decrease the rate at

which spiders leave the boundary. Here we focus on option

(1), by means of localized release of spiders at the origin,

which effectively fills the product sea with follower spiders,

preventing the leading spiders from moving as far backwards

away from the boundary. This works because spider legs

cannot occupy the same site at the same time, and spiders walk

with a shuffling gait, sliding left or right one site at a time, so a

spider cannot jump over an adjacent spider. The presence of

multiple spiders will restrict the motion of the spiders around

them, reducing the effective size of the product sea as seen by a

walker at the boundary. By releasing many spiders sequen-

tially at the origin we make the D state of the leading spiders

shorter. Ideally, we might desire to make the duration of each

diffusive excursion of the leading spider independent of

the number of sites that have already been cleaved (i.e.

hsDðtÞi ¼ O 1ð Þ). Such a system would have the potential for

asymptotically superdiffusive motion, but it will turn out that

this is not achieved in the multi-spider injection model.

3 The multi-spider model

Cooperative and interactive behavior of spiders can be

studied by extending the AK model to a multi-spider model

that describes a system of S C 2 spiders moving simulta-

neously. Every spider in the multi-spider model has iden-

tical values for parameters k (the number of legs) and s (the

maximum leg spacing), and they all move over the same

1D surface of substrates. The (otherwise indistinguishable)

spiders are enumerated as 1; . . .; S; which allows the state

of the system to be described as

X ¼ ðP;F1; . . .;FSÞ: ð9Þ

Here, Fi � Z gives the attached leg locations of spider i. In

analogy to Eqs. 3 and 4, we maintain for all i that

jFij ¼ k ð10Þ

and

maxðFiÞ �minðFiÞ� s: ð11Þ

To extend the chemical exclusionary properties of spider

legs to multi-spider systems, we add the restriction that any

site on the surface can be occupied by only one leg of any

spider, so that for all i, j:

Fi \ Fj ¼ ;: ð12Þ

Finally, we define a mechanism to allow the addition of

new spiders into the system, allowing S to grow with time,

while maintaining the Markovian properties of the process.

New spiders can be added at an injection site I = {0,1} for

any state in which the sites 0 and 1 are unoccupied. A new

spider is added as a Poisson process with rate k[ 0, and

the initial state of the new spider is FS?1 = {0,1}. In

the limit when k ¼ 1; a new spider is added as soon as the

injection site is unoccupied. Even in this limiting case, the

presence of other spiders at the injection site and their finite

rate of movement out of this site constrain the multi-spider

system to a finite number of spiders at all times.

3.1 Rebinding gait

With multiple spiders on a lattice, there are situations

where a particular spider is completely blocked from

movement. This happens when its legs are together (i.e., on

adjacent sites) and other spiders occupy the sites to its

immediate left and right. Thus, to simplify the Markov

process description, we introduce a slight change to the gait

of the walker. When a leg detaches from a site i it can

move not only to sites i - 1 and i ? 1 as in the AK model,

but also back to site i. It chooses from any site in {i - 1,

i, i ? 1} with equal probability, provided none of the new

configurations violates the constraints of Eqs. 10, 11, and

12. Thus, even if sites i - 1 and i ? 1 are occupied, the leg

has somewhere to go. We call this new spider gait the

rebinding gait. It ensures that the probability that any par-

ticular leg will move is independent of the state of the rest

of legs in the system, which simplifies the Monte Carlo

simulation of the system.

Furthermore, the rebinding gait is more chemically

realistic, as the enzymatic leg of a real molecular spider can

always rebind to the site it just dissociated from, and its

detachment should be independent of the state of the rest of

the system.

From an analytical perspective, the effect of allowing

rebinding is to slow the movement of walkers because of

the potential for dissociations that do not move a spider leg.

However, simulation results extended to very long times

(Fig. 3) show that this change in effective rates does not
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qualitatively change the motion of a single spider. The

rebinding gait leads to a constant-factor decrease in the

mean squared displacement. In the remainder of the paper

when comparisons of multi-spider systems with rebinding

gait are made with single-spider systems, the single-spider

systems have the normal AK gait, without rebinding. This

gives them a constant factor advantage; however, as will be

seen, even with this handicap the multi-spider systems are

superior as transport devices.

4 Simulation results for the multi-spider model

The multi-spider system provides a simple model for

cooperative transport using interacting walkers. In this

application, walkers start at the origin of a 1D surface

covered with energy-supplying substrate. The walkers

move outwards in the plus and minus directions consuming

substrate to bias their motion outwards, leaving an ever

increasing sea of products (P � Z) in between the farthest

sites visited in the plus and minus directions. Because

spiders always cleave substrates when they detach from a

site, and the spiders with s = 2, k = 2 have a shuffling

gait wherein they cannot hop over any substrates, the sea of

products P is always contiguous and includes the origin.

Thus, as explained in Sect. 2.2.1, there is a well defined

concept of a left (bL) and right (bR) boundary between the

product sea and the unvisited substrates.

In the multi-spider model, the spiders fill this product

sea, creating an exclusionary pressure that prevents the

outermost spiders from moving past them. At any given

time there will be one leftmost 1 B Ls B S and one right-

most spider 1 B Rs B S. We are interested in the location

of these leading Ls and Rs spiders as the system evolves.

When the Markov process is in state X as given by Eq. 9,

the ith spider’s position is defined as the mean of Fi. We

use a function l to describe the position of any spider

1 B i B S as

lðiÞ ¼
P

Fi

k
: ð13Þ

Note that when k = 2, s = 2 as in the multi-spider

model, l(i) only takes on half-integer values and the value

of l(i) uniquely determines the value of Fi. This is in

general not the case for larger values of k and s.

It is sometimes possible for the identities of the leftmost

or rightmost spider to change. When l(Ls) [ 2, all the

spiders are to the right of the injection point

I = {0, 1}, and when l(Rs) \ 0.5, all the spiders are to the

left of I. In these cases, when a new spider is injected at I, it

becomes the new Ls or Rs, respectively. This situation

becomes very unlikely as the number of spiders released

increases; however, when reporting the MSD of Ls and

Rs, these identity changes are important and are accounted

for in our analysis.

4.1 Experimental setup

To quantify the transport characteristics of the multi-spider

injection system, we define a multi-spider system that

begins with two spiders on either side of an injection site

near the origin. The two initial spiders start on the

boundary on either side of an initial product sea (Fig. 4).

The precise parameters studied are given in Table 1.

We use the Kinetic Monte Carlo (KMC) method (Bortz

et al. 1975) to numerically sample traces of the multi-spi-

der Markov process. In Table 2 we show the number of

runs of the Markov process sampled for each r value and

the minimum time each sample was run until.

Fig. 3 Estimate of msd(t) for spiders with the AK gait and the

rebinding gait with k = 2, s = 2, and r = 0.1

Fig. 4 The initial configuration used for the multi-spider model

simulations
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The primary parameter of interest is the chemical

kinetics parameter r. When r = 1 there is no effective

chemical difference between substrates and products, and

hence no energy is available in the substrates to bias the

outermost spiders’ motion. When r \ 1 the chemical dif-

ference at the boundary acts to bias the motion of the

leftmost spider (Ls) and the rightmost spider (Rs) away

from the origin when they are at their respective bound-

aries. This creates effective superdiffusion for the leading

spiders as long as they stay near the boundary.

Table 2 shows that we have many fewer simulation

traces for tmax = 108 than for tmax = 107. Indeed, these

simulation counts are far fewer than the 5,000 traces

computed for the single spider model (Semenov et al.

2011). We were not able to compute more traces because

simulation of the multi-spider model requires much more

computational resources for large values of tmax near 108.

Our KMC simulations of the spider systems consist of

iterative computation of consecutive discrete events of the

underlying Markov process. Every individual event takes a

constant amount of computational (wall) time, but the

simulation time intervals between events are exponentially

distributed based on the total rate of all potential transitions

from the current state. There are two possible transitions

from every state of the single spider model: the left leg

moves, or the right leg moves. Thus, the mean simulation

time duration between events remains within 1/2 and

1/(1 ? r) for every simulated step. Since r is a constant that

does not depend on tmax, the execution time of our single

spider KMC algorithm is O(tmax), i.e., it depends linearly

on the simulation time. However, in the multiple spider

model the mean duration between events is not constant.

When new spiders are injected, the number of different

possible events in the system increases, and so the simu-

lation time intervals between those events become smaller.

Thus, to achieve desired maximum simulation time tmax for

the multi-spiders model, we need to simulate more discrete

events than for the single spider model. In Sect. 5.2 we

estimate that the number of released spiders grows as

O
ffiffi
t
p� �

: Hence, the execution time of the multi-spider

KMC simulation algorithm is O tmax
3=2

� �
:

4.1.1 Observed superdiffusion of the leading spiders

As discussed in Sect. 2.2, single spider systems with r \ 1

show transient superdiffusive behavior (Semenov et al.

2011). Single spiders move faster than ordinary diffusion

for a significant time and distance, but eventually slow

down and move as an ordinary diffusion. Hence, the

leading spiders (Ls and Rs) of the multi-spider model also

should move superdiffusively when they are near the

boundary. This can be quantified by estimating the mean

squared displacement of the leading spiders in the multi-

spider model. Because the environment and the walker are

symmetrical, we can, without loss of generality, represent

the mean squared displacement of the outermost walkers

by the position of the rightmost spider,

msdðtÞ ¼ hlðRsÞðtÞi: ð14Þ

Figure 5 shows the KMC simulation estimate of

msd(t) for the multi-spider model on a log–log plot for

each measured r parameter value. In this plot, straight lines

correspond to power laws, that is, to Eq. 6, and the parameter

a is given by the slope. To show the instantaneous value of

a, we use finite difference methods to estimate a(t) as in

Eq. 7. Figure 6 shows the result of using the Savitzky–Golay

smoothing filter (Press et al. 2002) on these estimates of a(t).

These results show the same three-phase behavior as

observed in single spider simulations (Sect. 2.2). The phases

can be observed by noting the estimate of the value of a(t) in

relation to the horizontal line in Fig. 6 representing

a(t) = 1.0. Below this line, the leading spiders are moving

subdiffusively and above this line the leading spiders are

moving superdiffusively. For each value of r, the systems

exhibit the following three sequential phases:

1. The initial phase is defined when t \ 1/r. At these

times, very few steps have been made, and the value of

a(t) is largely dependent on peculiarities of the initial

configuration, and not of relevance to transport

phenomena.

Table 1 Parameters studied for the multi-spider model

Parameter Description

k = 2 Number of legs

s = 2 Maximum leg separation

P = {-2, -1, 0, 1, 2} Initial product sea

S = 2 Iinitial number of spiders

F1 = {1, 3} Initial location of rightmost spider

F2 = {-3, -1} Initial location of leftmost spider

I = {0, 1} Injection site

k ¼ 1 Injection rate

kP
- = 1 Rate of detachment from products

kcat = r B 1 Rate of detachment from substrates

Table 2 Number of KMC runs for each parameter value and mini-

mum simulation time combination

tmax r-value

1.0 0.5 0.1 0.05 0.01 0.005

1.0 9 107 1,800 1,800 1,800 1,800 1,800 1,800

1.0 9 108 200 – 200 – – –
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2. The superdiffusive phase begins when t [ 1/r and

continues while the a(t) C 1.1. During this phase the

spiders move significantly faster than diffusion.

Decreasing values of r lead to increasing maximum

values of a(t), and a longer time until the spider returns

to the a(t) = 1.1 threshold.

3. The diffusive phase begins when the instantaneous

value of a(t) = 1.1, and continues indefinitely, as even

the leading spiders eventually spend almost all of their

time diffusing over the products instead of cleaving

new sites at the boundary.

Thus, even though a multi-spider system adds spiders at

the origin as fast as possible to prevent the leading spiders

from moving too far backwards into the product sea, all

multi-spider systems eventually decay to diffusion. This is

the same qualitative behavior exhibited by single spider

systems. However, multi-spider systems move superdiffu-

sively over significantly longer times, and even when

r = 1.0. They also reach a higher peak value of a(t). The

superdiffusive properties of the multi-spider model can be

quantified by examining the following:

• amax ¼ maxt� 0 aðtÞð Þ; the peak instantaneous value of

a(t), which should satisfy 1 B amax B 2;

• tamax
¼ argmaxt� 0 aðtÞð Þ; the time at which the peak of

a(t) is reached;

• and td, the time at which a(t) drops below the threshold

of 1.1, and enters the diffusive phase.

The estimates of these quantities are given in Table 3.

The results show that amax and td generally increase with

decreasing r. Furthermore, the walkers with r = 0.005

have peak a(t) values above 1.9 and remain superdiffusive

over times more than 6 orders of magnitude larger than the

mean leg-product residence time.2 Hence, for finite dis-

tances and times relevant to most transport processes the

multi-spider model can achieve significant superdiffusive

motion, and with small r values becomes nearly ballistic

for significant spans of time and distance.

A further method of characterizing the transport

behavior of multi-spider systems is to look at their effective

instantaneous diffusion rate which (in 1D) is defined as

eDðtÞ ¼ msdðtÞ=2t: ð15Þ

This is arrived at by setting a = 1 in Eq. 6. The value of

eDðtÞ can be thought of as the diffusion rate a simple dif-

fusing particle would need to have the same mean squared

displacement as the spider system at time t. Hence, greater

values of eDðtÞ correspond to faster transport systems.

Figure 7 shows eDðtÞ for the multi-spider systems. While

initially the spiders with lower r have larger eD values,

eventually the spiders with the smallest r values are

superior.

4.2 Comparison with single spiders

The multi-spider systems can be directly compared with

the single spiders to understand exactly how useful the

additional interior spiders are for transport. Figure 8 shows

the results of comparing the msd(t) for a single spider, and

the leading spider of the multi-spider model, both with

r = 0.05. There is a significant transport advantage for the

multi-spider system. Furthermore, Fig. 9 shows the esti-

mate of a(t) for these two systems, and the leading spider

of the multi-spider system maintains a higher value of

2 The value of kP
- is a free parameter in the model. We choose time

units so that rate kP
- is normalized to 1, hence all time units are

measured relative to 1/kP
- = 1.

Fig. 5 Mean squared displacement for Rs. Reference lines are shown

for ordinary diffusion and ballistic motion

Fig. 6 Smoothed finite difference approximation of a(t) for Rs.

Horizontal lines define the threshold for ordinary diffusion at a = 1.0

and our defined threshold for superdiffusion at a = 1.1

266 O. Semenov et al.

123



a(t) at all times, and significantly longer superdiffusive

period. The values of amax and td are summarized in

Table 3, and the multi-spider system is superior in both

measurements. Finally, we compare the first passage times

for the single versus multi-spider models in Fig. 10. The

mean first passage time hfptðdÞi is the average time for

the leading spider to first visit a site at a distance d from the

origin. At large times the multi-spider systems have a large

advantage in this key transport statistic. Overall, the com-

parison with the single AK spider shows that for distances

\3,000 sites from the origin the leading spider of the

multi-spiders model reaches unvisited sites up to 5.25 times

faster than a single AK spider.

5 Asymptotic diffusion in the multi-spider model

In comparison with a single spider, the simulation results in

Sect. 4 show that multi-spider systems exhibit larger values

for eD; amax; and td—all essential measures of transport

efficiency. However, multi-spider systems still eventually

decay to diffusion despite the unlimited supply of spiders

injected at the origin. By analogy with the single spider

model (Sect. 2.2), this implies that the effective size of the

product sea as seen by the leading spiders is not constant.

As the effective product sea grows, the leading spiders

spend progressively less time at the boundary in the B state

Table 3 Properties of the MSD and the superdiffusive regime defined by a(t) [ 1.1 for Rs

Multi-spider r value Single-spider r value k = 1 spider r value

1.0 0.5 0.1 0.05 0.01 0.005 0.05 1.0

amax 1.38 1.37 1.63 1.73 1.87 1.93 1.43 1.41

tamax
9.03 9 101 1.03 9 102 8.60 9 101 1.50 9 102 2.83 9 103 1.02 9 104 2.17 9 102 2.71 9 101

td 2.43 9 105 2.75 9 105 2.10 9 105 1.89 9 105 1.02 9 106 3.31 9 106 2.52 9 104 1.14 9 105

Results are compared for the multi-spider model as well as the single spider model (Sect. 4.2) and the k = 1 spiders which are simple random

walkers (Sect. 6)

Fig. 7 Effective diffusion rate ( eDðtÞ) for Rs
Fig. 8 Mean squared displacement for the leading spider Rs in the

multi-spider model versus a single AK spider

Fig. 9 Finite difference approximation of a(t) for the leading spider

Rs in the multi-spider model versus a single AK spider
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where they move ballistically, and more time in the dif-

fusive D state where they move over the product sea. This

leads to a value of a(t)? 1.0, as t!1; and the leading

walkers are effectively diffusing. The origins of this effect

can be understood in detail by examining the effective size

of the product sea (Sect. 5.1), the number of released spi-

ders (Sect. 5.2), and their spatial distribution (Sect. 5.3).

5.1 Effective size of the product sea

In 1D, spiders cannot move past each other, and thus the

motion of the leading spiders Rs and Ls is constrained by

the presence of their neighboring spiders. In particular

when S C 3 we can define the next-leading spiders, R0s and

L0s as

R0s ¼ max
1� i� S

i6¼Rs

lðFiÞð Þ ð16Þ

and

L0s ¼ min
1� i� S

i6¼Ls

lðFiÞð Þ: ð17Þ

When S C 4, L0s 6¼ R0s, and the remaining S - 4 spiders are

called the interior spiders. The importance of the next-

leading spiders, R0s and L0s, is that they define the effective

size of the product sea as seen by the leading spiders.

Without loss of generality we focus only on the rightmost

spiders Rs and R0s and define

hNeffðtÞi ¼ hmax FR0sðtÞ
� �

þ 1� bRðtÞi; ð18Þ

where the system state at time t is given by X(t) from Eq. 9,

and bR(t) is the right boundary for that state as defined in

Eq. 8. Figure 11 illustrates what Neff is for a particular state

X. The choice of name for hNeffðtÞi is meant to correspond

to Antal and Krapivsky’s hNðtÞi (Antal and Krapivsky

2007), which is the mean number of sites cleaved by a

single spider system at time t. It has been shown for single

spiders that hNðtÞi ¼ H
ffiffi
t
p� �

(Antal and Krapivsky 2007),

and that this implies that the time to leave the diffusive

metatstate hsDðtÞi ¼ H
ffiffi
t
p� �

(Semenov et al. 2011). Since

hsDðtÞi grows with time, and hsBðtÞi does not, single spi-

ders eventually spend almost all their time diffusing in the

D state and hence their motion is asymptotically diffusive.

The relation of hNðtÞi with hsDðtÞi is based on the

mathematics of the mean time for a random walker to

escape an interval of size N with two absorbing boundaries.

This gives the time for a walker to leave the product sea

and return to the boundary. In the case of the multi-spider

system, Neff is also meant to represent the size of the region

of products to escape from; however, it has one reflecting

boundary at max FR0s

� �
and one absorbing boundary at bR.

The problem of escape from a region with one reflecting

and one absorbing boundary is equivalent to escape from a

region of twice the size with two absorbing boundaries

(Fig. 12). Hence, we note the relation:

hNeffðtÞi ¼ hNðtÞi=2: ð19Þ
Further analysis of this relationship is deferred to Sect. 7.

However, the importance of Neff can be understood

simply—if hNeffðtÞi increases with time, then because

hsDðtÞi ¼ H hNeffðtÞið Þ; the leading spider Rs must eventu-

ally move diffusively. This is indeed the case for all values

of r, as shown in Fig. 13. In this figure we used the

Levenberg-Marquardt algorithm (Press et al. 2002) to fit

power laws to the estimates of hNeffðtÞi: We see that,

interestingly, the exponents are close to 0.5—exactly as

with single spiders.

Thus, hsDðtÞi for Rs also grows with time and therefore

leads to asymptotic diffusion. However, in the multiple spider

model the effective size of the product sea is much smaller

than the total number of products (hNeffðtÞi � jPðtÞj) because

most of the product sea is filled with other spiders, whereas in

the single spider model hNðtÞi ¼ jPðtÞj: Thus, Rs in the multi-

spider model remains superdiffusive for much higher values

of |P| than a single spider does. Fig. 14 compares the effective

Fig. 10 Comparison of the first passage time of the leading spider Rs

in the multi-spider model versus a single AK spider

Fig. 11 The effective size of the product sea (Neff) as seen by leading

spider Rs is the area between next-leading spider R0s and the right

boundary bR

268 O. Semenov et al.

123



size of the product sea of the multi-spider model with the

number of products of the AK model. While both hNðtÞi and

hNeffðtÞi grow with time, the single spider sees a much larger

product sea, which explains the results of Sect. 4.2.

5.2 Number of released spiders

With injection rate k ¼ 1; spiders in the multi-spider

model are released at I = {0,1} whenever possible, yet the

presence of other spiders in the sites 0 and 1 prevents

release, and so keeps the total number of spiders, S, finite.

Hence, S(t) is a random variable giving the number of

spiders released by time t. Figure 15 shows our estimates

for hSðtÞi; for each studied value of r. Again we used the

Levenberg-Marquardt algorithm to fit power laws, and

observe approximate exponents of 0.5. Interestingly, hSðtÞi
appears to be dependent on r only initially, whereas at later

times the values of hSðtÞi for all r are nearly identical.

Thus, the release of spiders, which occurs at the origin and

away from the substrates at the boundaries, is independent

of r, which limits the total number of released spiders

regardless of how fast the leading spiders move.

5.3 Spatial distribution of spiders

Until now we have focused mainly on the position of the

leading spiders Rs and Ls, but the behavior of the interior

Fig. 12 The problem of escape from an area of size Neff with one

reflecting and one absorbing boundary is equivalent to the problem of

escape of a single spider from a region of size N = 2Neff with two

absorbing boundaries

Fig. 13 The effective size of the product sea hNeffðtÞi grows with

time, and hence leads to asymptotically diffusive motion for the

multi-spider model

Fig. 14 The effective size of the product sea (hNeffðtÞi) as seen by Rs

in the multi-spider model versus the effective size of the product sea

(hNðtÞi) for a single walker in the AK model

Fig. 15 Mean number of released spiders, hSðtÞi; the log-log scale is

necessary to exhibit the differences at early times
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spiders controls the release of spiders at the origin and the

effective product sea size near the boundary. At any time

t, we measure the density of spiders using a histogram with

100 equally spaced bins over the maximum positions

obtained by any spider in any simulation trace at that time.

Each bin with n sites can contain at most n/2 spiders, hence

the maximum density for each bin is 0.5. Figure 16 shows

the density of spiders at tmax = 107 for r = 1 and r = 0.05.

The density of spiders near the origin is approximately the

same in both cases and is nearly equal to the 0.5 maximum

possible density. This explains why hSðtÞi for large t is

nearly the same for all r values. The sites near the origin

are very densely packed for any r value and the passive

addition of spiders is not presented with many opportuni-

ties to add new spiders even when the injection rate is

infinite.

The density of spiders falls off nearly linearly away

from the origin, until approximately distance 4,000 (at

tmax = 107), where densities for both r values gradually

transition to long tails with nearly 0 density. Essentially,

the only difference between the densities for r = 1 and

r \ 1 is at the tails. The tails for r = 0.05 are much longer,

corresponding to the greater msd(tmax) value observed for

this r value. This is to be expected as only the leading

spiders Rs and Ls ever see a substrate, and all other spiders

only move over products. Thus the rate r only affects the

motion of the leading spiders and those spiders near to the

leading spiders that have comparatively more space to

diffuse in. The vast majority of the interior spiders are too

far from the leading spiders to see the effects of the r value.

Hence, the distribution of spiders away from the bound-

aries is nearly identical for r = 1 and r \ 1.

This similarity in densities of interior spiders is present

at all times, as can be seen in Fig. 17, which shows the

evolution of these densities with time. For both r = 1 and

r = 0.05, the densities drop off linearly around the origin,

until a critical point where they transition gradually to the

near-zero density tails. The tails of the r = 0.05 spider

density remain longer as expected based on the MSD

results of Fig. 5, but the evolution of the interior spider

density is nearly independent of r.

5.3.1 Distribution of spider strides

Spiders with k = 2, s = 2 only have two possible foot

patterns: either both of their legs are together, or both are

apart (Sect. 2.1). The together and apart patterns can be

called the two possible strides of a spider. A single spider is

equally likely to be in either of the two strides. However,

the spiders in the multi-spider model show a curious dis-

tribution of leg patterns. Figure 18 shows the distribution

of spiders in each of the two strides at time tmax, and again

the results are remarkably similar for both r = 1 and r \ 1.

The high density of spiders near the origin leads to a very

strong bias towards the together stride.

This can be considered an emergent phenomenon that

arises as a means to increase spider packing close to the

injection source. Spiders in this high density region rarely

get an opportunity to spread their legs into the apart stride

because both neighboring sites are almost always occupied.

Also of note, at the distances where the linear decrease in

spider density is no longer apparent, the distributions of

strides becomes equal again. This equality of stride dis-

tribution indicates that the spiders are no longer experi-

encing the extreme exclusionary pressure observed near the

injection site. Instead, the spiders on the periphery are able

to act more like single spiders, which have an equal

(a) (b)

Fig. 16 Mean spider density at tmax, for r = 1 (a), and r = 0.05 (b)
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distribution in strides. These effects are again apparent at

all time scales, as seen in Fig. 19.

5.3.2 Density of leading spiders

Unlike the interior spiders, which never see a substrate, the

leading spiders Ls and Rs are strongly affected by the

enzymatic rate r. When spiders are in the boundary met-

astate (Sect. 2.2), they move ballistically away from the

origin, and the smaller the value of r, the less chance they

have of exiting the boundary state and returning to the

diffusive D state. Figures 20 and 21 show the probability

distribution of l(Rs) (the leading spiders location) for both

r = 1 spiders and r = 0.05 spiders. Particularly at the

shorter times in Fig. 21, there is a distinct difference in the

distributions shape, with the r \ 1 distributions having

much longer tails, and distinctly non-Gaussian shape. The

mean of the distributions is the msd(t), reported in Sect.

4.1.1, which grows much faster for the r \ 1 multi-spider

systems than for r = 1. However, the complete distribu-

tions shown in Figs. 20 and 21 reveal more information,

particularly that the tails of the distribution are much

shorter on the left than the right. This arises from the

exclusionary pressures exerted by the next leading spider

R0s. However, the results of Sect. 5.1 show that despite this

exclusionary pressure, the distance between the two lead-

ing spiders hNeffðtÞi continues to increase as
ffiffi
t
p

regardless

of the value of r. Hence, in the distributions at tmax in

Fig. 20, there is less distinction between the r = 1 and

r \ 1 walkers.

Fig. 17 Evolution of mean spider density through time, for r = 1 (a) and for r = 0.05 (b)

(a) (b)

Fig. 18 Mean density of spiders in each of the together (blue circles) and apart (red triangles) strides at t{max = 107, for r = 1 (a) and for

r = 0.05 (b)
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6 Importance of multi-pedal gaits for transport

Many molecular walkers, including the natural motors

kinesin and dynein, are multivalent—they have two (or

more) attachment sites. Interestingly, it has been shown

that in the AK spider model, the superdiffusive effects are

only present when the number of legs k C 2. Without the

constraints imposed by multiple legs the residence time-

bias at the boundary when r \ 1 does not lead to a bias in

motion towards substrates.

The multi-spider model has two potential sources of bias

to cause superdiffusive motion of the leading spiders: the

residence time bias at the boundary when r \ 1, and

the effective bias caused by the exclusionary pressure of the

interior spiders. We know that the multi-spider systems are

transiently superdiffusive even when r = 1 due to the

exclusionary pressure, but what happens to their collective

behavior when they have only a single leg? In fact when

k = 1 and r = 1 an AK spider is equivalent to an ordinary

random walker that moves left and right with rate 1. Thus,

we measured msd(t) for the leading walker of the multi-

spider model with k = 1 and r = 1. The values for

msd(t) are compared with the multi-spiders model with

k = 2 and r 2 f1:0; 0:1g; and shown on a log-log scale in

Fig. 22, and the corresponding values of a(t) are shown in

Fig. 23. The k = 1 walkers do exhibit transient superdiffu-

sive behavior, but their values of amax and td are surpassed

by k = 2 spiders when r \ 0.1, as summarized in Table 3.

Spiders with k = 1 achieve maximum msd(t) when r = 1

(Antal and Krapivsky 2007, Antal et al. 2007), so by using

r = 1 in our comparison we are comparing with the most

efficient single-legged spiders possible.

It is, however, necessary to make an adjustment of scales to

correctly compare the msd(t) values between k = 2 and k = 1

Fig. 19 Average density for spiders with legs together (blue circles) and apart (red triangles) plotted at several instants, for r = 1 (a) and for

r = 0.05 (b)

(a) (b)

Fig. 20 Average density of the leading spider at t{max, for r = 1 (a) and for r = 0.05 (b)
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walkers. Since the position of a spider is defined as the mean of

its attached leg positions, the k = 2 spiders move by only

distance 0.5 with each step, in contrast to the k = 1 spiders

which move by distance 1. Thus, in the analysis of k = 1

spiders shown in Figs. 22 and 23, the k = 1 spiders move over

a lattice with site spacing 0.5. In essence this correction can be

thought of as adjusting the diffusion constant of the k = 1,

r = 1 walkers which have D = 1 to that of the k = 2, r = 1

walkers which have D = 0.5.

7 Analysis of maximum product sea size

Simulation results presented in Sect. 4.1.1 suggest that the

leading spider Rs moves diffusively in the long time limit

with the value of a(tmax)& 1. Section 5.1 showed that this

happens because the mean effective size of the product sea as

seen by Rs; hNeffðtÞi; grows with time approximately as
ffiffi
t
p
:

Hence, the duration of the D states hsDðtÞi also grows with

time, leading to asymptotically diffusive motion. Further-

more the effective product sea size Neff can also be under-

stood as being a function N, the number of sites cleaved.

Figure 24 shows simulation estimates for hNeffðNÞi; which

at times close to tmax is almost linear. Thus, while the leading

spider is cleaving sites at the boundary, the interior spiders

are not following closely enough and the leading spider sees

an increasingly large effective product sea. If a multi-spider

system were to keep the leading spider superdiffusive as

t!1; it would have to ensure that hNeffðNÞi does not grow

Fig. 21 Average spider density of the leading spider plotted at several instants, for r = 1 (a) and for r = 0.05 (b)

Fig. 22 Comparison of msd(t) for the leading spider Rs in multi-

spider simulations versus the k = 1 multi-spider model (with

corrected diffusion constant of D = 0.5.)

Fig. 23 Comparison of finite difference approximation of a(t) for the

leading spider Rs in multi-spider simulations versus the k = 1 multi-

spider model (with corrected diffusion constant of D = 0.5.) Hori-

zontal lines show the threshold for ordinary diffusion at a = 1 and our

defined threshold for superdiffusion at a = 1.1
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too fast. The asymptotic bound that ensures this property can

be found analytically.

The expected exit time for a random walker from an

interval (0,M) with two absorbing boundaries at 0 and M is

hTeðxÞi ¼
xðM � xÞ

2
; ð20Þ

where x is the starting position of the walker. As shown in

Fig. 12 and explained in Sect. 5.1, the expected exit time

from an interval with one absorbing and one reflecting

boundary is the same as exit time from a interval with two

absorbing boundaries of twice the size. Furthermore, when

a spider moves over a region of product sites, its body

position l(F) moves like a simple random walker with a

step size of 1/2.

When at time t the Rs spider moves off the boundary and

into the D state, it enters a product sea of expected size

hNeffðNÞi with one absorbing and one reflecting boundary.

The expected time to exit this interval is the expected duration

of the D-state, sD. This can be found by using Eq. 20 with

M ¼ 4hNeffðNÞi � 5 and x ¼ 4hNeffðNÞi � 8; which gives

hsDðNÞi ¼ hTei ¼
3ð4hNeffðNÞi � 8Þ

2
: ð21Þ

From Antal and Krapivsky (2007), the average time

interval during which the number of visited sites grows

from N ? 3 to N ? 4 is

hsNi ¼
1

r
þ 1þ r

2þ r
hTei; ð22Þ

and the expected time to visit N ? 3 sites is

hTðNÞi ¼
XN�1

i¼0

hsNi: ð23Þ

Thus, we can write hNeffðNÞi to be a function of N, and by

substituting Eq. 21 into the sum in Eq. 23, we obtain

hTðNÞi ¼ N

r
þ 1þ r

2þ r

XN�1

i¼0

3ð4hNeffðiÞi � 8Þ
2

: ð24Þ

Equation 24 shows that if hNeffðNÞi ¼ H Nð Þ; as Fig. 24

suggests, then hTðNÞi ¼ H N2ð Þ; which corresponds to

diffusive motion. Hence, in order for the leading spider

to be superdiffusive as t!1; we require hTðNÞi ¼
oðN2Þ; which implied hNeffðNÞi ¼ oðNÞ: Unfortunately, as

Fig. 12 shows, this is not the case for the multi-spider

model—to maintain superdiffusive motion asymptotically,

we need a mechanism stronger than passive injection at the

origin.

8 Discussion

Collective and cooperative behaviors are essential to the

motion of many natural molecular motors and cellular

transport systems, yet the incredible complexity of natural

motor systems makes it difficult to discern what types of

walker interactions are necessary or sufficient for useful

transport behavior. In this work we begin to address these

fundamental questions of nanoscale cooperation by inves-

tigating a much simpler model of walker motion based on

the kinetic and mechanical properties of DNA-enzyme-

based molecular spiders. The AK model of spider motion,

while lacking in chemical detail, is able to encompass those

features of spider motion that are necessary for superdif-

fusive motion of single spiders in 1D (i.e., irreversibility of

substrate modification, multiplicity of legs, and a kinetic

bias between modified and unmodified sites). These

seemingly simple properties have previously been shown to

lead to useful superdiffusive motion (Semenov et al. 2011).

Following this bottom-up approach to the investigation of

spider motion, we have analyzed the collective behavior of

multiple identical spiders as they cooperate using only

simple exclusionary interactions. Clearly, more complex

interactions are possible, but we have shown that this single

additional feature allows spider systems to move cargo in

1D superdiffusively over significantly longer times and

distances than can be accomplished with a single spider

system (Sect. 4.1.1). Multiple spiders with small values of

r achieve higher values of amax and td than either single AK

spiders (Sect. 4.2) or cooperative single-legged spiders

(Sect. 6). However, in the asymptotic limit as t!1; we

find that a(t)? 1, and the leading spiders of the multi-

spider model move diffusively for all values of r.

Analysis of the AK model shows that this asymptotic

decay to diffusion is also a fundamental property of the

single spiders, and previous work has shown that the

Fig. 24 Size of the effective product sea hNeffðNÞi as a function of

the number of visited sites N
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diffusive behavior results from the switching of single AK

spiders between two metastates that partition the process

into alternating diffusive (D) and boundary (B) periods.

Spiders move diffusively over products in the D metastate,

and ballistically away from the origin while they are

attached to energy-rich substrates in the B state. However,

the duration of the B periods hsBðtÞi is constant in time,

while the duration of D periods hsDðtÞi ¼ H
ffiffi
t
p� �

grows

with time because the sea of products that the spider

cleaves out also grows with time, and it takes increasingly

long for spiders to exit this energy-devoid product sea.

A simple idea motivated the multi-spider model: if the

effective size of the product sea Neff could be sufficiently

limited, then it would prevent the hsDðtÞi from growing

with time and hence let the spider move asymptotically

diffusively. This ends up not being the case, and even with

new spiders injected at the origin as fast as possible,

without violating the exclusionary properties of spiders.

We still found hNeffðtÞi ¼ O
ffiffiffiffi
N
p� �

for all values of r

(Sect. 5.1). The reasons behind this can be understood from

several perspectives presented in this work.

One way to understand this result is to note the number of

spiders released with time was hSðtÞi ¼ O
ffiffi
t
p� �

and largely

independent of r, even with the injection rate k ¼ 1
(Sect. 5.2). Under asymptotically superdiffusive motion of

the leading spiders we would see the number of products

cleaved NðtÞ ¼ xð
ffiffi
t
p
Þ; and to fill this product sea would

require SðtÞ ¼ H NðtÞð Þ ¼ xð
ffiffi
t
p
Þ; which is not achieved by

the multi-spider model. Thus, we cannot seem to release

spiders fast enough to support superdiffusion indefinitely.

This failure can be partly understood by observing that the

only spiders that actually get to attach to and cleave the

energy bearing substrates are the leading Rs and Ls spiders.

The other, interior spiders only ever walk on products. Thus,

while there is some bias exerted on interior spiders by the

exclusionary pressure of injected spiders near the origin, for

the most part the motion of interior spiders is governed by

diffusion. Hence, they do not move fast enough to get clear

of the injection site at the origin to allow enough other

spiders to be injected fast enough. Indeed, the density of

spiders (Sect. 5.3) around the origin is nearly maximal, and

also seemingly independent of r. Thus, it does not really

matter how small the value of r is (and hence how much

biasing energy is contained within substrates), because the

interior spiders see none of that energy and their diffusive

motion is hence independent of r. Yet, the motion of these

interior spiders remains the limiting factor for the injection

rate of the new spiders needed to assist the leading spiders

by reducing the effective size of the product sea. Hence, no

matter how fast the leading spiders are able to move ini-

tially, they will inevitably be hindered by the insufficiently

fast dispersal of the energy-deprived interior spiders.

Additionally, the failure of the multi-spider system to

limit the effective product sea size can be seen with the

analytical approach of Sect. 7. This shows us that a spider

system that can ensure that hNeffðNÞi ¼ oðNÞ will allow

asymptotically faster-than-diffusion transport. Future work

will concentrate on understanding how spider systems can

achieve these bounds on the effective product sea size,

potentially by supplying energy to the system from an

external source. After all, the lack of energy available to

the interior spiders seems to be the limiting factor for the

cooperative transport behaviors of the multi-spider model.

Despite these asymptotic results, it should be remem-

bered that all practical nanoscale transport problems for

which molecular walkers are applicable take place over

finite times and finite distances and both single and multi-

spider systems show potential for faster-than-diffusion

transport for such applications. Other interesting applica-

tions of spiders which we are currently investigating

include cooperative 2D behavior for transport, and other

chemically plausible modes of interaction between spiders

and surfaces that are more complex than the simple

exclusionary processes examined in this work.
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