
Fault tolerant network design inspired by Physarum polycephalum

Maarten Houbraken • Sofie Demeyer •

Dimitri Staessens • Pieter Audenaert •

Didier Colle • Mario Pickavet

Published online: 28 August 2012

� Springer Science+Business Media B.V. 2012

Abstract Physarum polycephalum, a true slime mould, is

a primitive, unicellular organism that creates networks to

transport nutrients while foraging. The design of these

natural networks proved to be advanced, e.g. the slime

mould was able to find the shortest path through a maze.

The underlying principles of this design have been math-

ematically modelled in literature. As in real life the slime

mould can design fault tolerant networks, its principles can

be applied to the design of man-made networks. In this

paper, an existing model and algorithm are adapted and

extended with stimulation and migration mechanisms

which encourage formation of alternative paths, optimize

edge positioning and allow for automated design. The

extended model can then be used to better design fault

tolerant networks. The extended algorithm is applied to

several national and international network configurations.

Results show that the extensions allow the model to capture

the fault tolerance requirements more accurately. The

resulting extended algorithm overcomes weaknesses in

geometric graph design and can be used to design fault

tolerant networks such as telecommunication networks

with varying fault tolerance requirements.

Keywords Bio-inspired algorithm � Fault tolerant

network design � Mathematical modelling � Network

optimization � Physarum polycephalum

1 Introduction

Transport networks are used to minimize the total effort

that has to be invested for carrying information or goods

from one point to another. Some well-known examples of

man-made transport networks are road, computer and

telephone networks. Not all transport networks are man-

made however: many (more subtle) networks exist in nat-

ure. In fact, the human organism itself relies on several

natural networks, like it‘s vascular and nervous system, for

everyday operation. Even more examples can be found in

nature: trees transporting water from the roots to the leaves.

Physarum polycephalum, a true slime mould, also creates

networks while foraging. By studying all these natural

networks and their design, we can improve our man-made

networks. In this paper, we will look at how P. polyceph-

alum designs networks and how we can extend these

principles to design fault tolerant, robust networks.

Physarum polycephalum, shown in Fig. 1, is a unicel-

lular organism whose body consists of thousands of cell

nuclei. It is a slime mould in which nutrients are trans-

ported through protoplasmic streaming. This protoplasmic

streaming is well studied (Kamiya 1959; Gotoh and Kuroda

1982; Tero et al. 2005; Kobayashi et al. 2006) and is based

on tube morphogenesis. Inside the body of Physarum, a

network of tubes exists and is used during foraging. When

presented with food sources (FS), Physarum concentrates

around these sources to extract nutrients. These nutrients

are dissolved in protoplasm and transported through the

tubes to the rest of the body. The tubes grow bigger when

transporting a lot of protoplasm. By growing bigger, the

tubes are better suited for future transport as bigger tubes

offer less resistance to the protoplasmic flow. Tubes that do

not transport enough protoplasm shrink and eventually

disappear due to a lack of flow. This mechanism is

M. Houbraken (&) � S. Demeyer � D. Staessens �
P. Audenaert � D. Colle � M. Pickavet

Department of Information Technology, Ghent University,

Gaston Crommenlaan 8 (Bus 201), 9050 Ghent, Belgium

e-mail: maarten.houbraken@intec.ugent.be

123

Nat Comput (2013) 12:277–289

DOI 10.1007/s11047-012-9344-7

essentially a feedback loop that reinforces active paths and

eliminates unused ones.

All research on Physarum and the ease by which it can

be cultured has led to various applications. Tsuda et al.

(2004) and Jones and Adamatzky (2010) show how

Physarum can implement logic functions while Adamatzky

(2009, 2010) show that Physarum can be used as an

unconventional computer and Miranda et al. (2011)

explores the ability of Physarum to generate sound.

A more graph-related application of Physarum can be

found in Nakagaki et al. (2000, 2001) which show that

Physarum is capable of finding the shortest path through a

maze. Aside from navigating a maze, Physarum was also

shown to be able to anticipate periodic environmental

changes in Saigusa et al. (2008). This behaviour is

remarkable, considering the fact that Physarum has no

central coordinating consciousness, and indicates an

advanced underlying foraging strategy. More evidence of

the capabilities of the slime mould is presented in Latty and

Beekman (2009) and Dussutour et al. (2010) where the

organism is shown to optimize its foraging activity to

obtain an optimal nutritional diet.

The networking capabilities were further studied in

Nakagaki et al. (2004a, b) by letting the slime mould connect

multiple FS. A lot of attention has also gone to redesigning

existing road networks. Adamatzky and Alonso-Sanz (2011)

and Adamatzky (2011) model the cities in the Iberian Pen-

insula and Mexico respectively as food sources and let the

slime mould connect them. The resulting networks are

compared to the road networks present in those areas. Road

networks however are subject to historical evolution and

geographical constraints, both having an influence on the

resulting networks which cannot be neglected.

To capture the fundamentals of the slime mould, Tero et al.

(2007, 2008) formulate a mathematical model of the inner

workings of the slime mould. In Tero et al. (2010), it is used to

redesign the rail network in the Tokyo area. The result of

Physarum was very close to the existing network, proving its

applicability to the network design problem. Another model of

the fundamentals of the slime mould is presented in Jones

(2009) using a multi-agent approach. This model was applied in

Becker (2011) showing that it is close to the natural mechanism

of Physarum, but it fails to find the shortest path through a maze.

In this paper, the mathematical model and algorithm

from Tero et al. (2007) are adapted to design fault tolerant

networks as needed in for instance telecommunication.

Telecommunication networks require high fault tolerance

as they have to operate continuously and are prone to link

and node failure (power outage, cable break, …). Networks

have to be designed to handle these problems (Vasseur

et al. 2004; Pickavet et al. 2006) but at the same time an

operator wants to avoid over-dimensioning and unneces-

sary costs. As an important part of the installation cost is

trenching and digging (Casier et al. 2008), low total

lengths of the networks are desired. To better achieve these

goals, 2 extensions are made to the model to allow more

automated and unambiguous design. The extended model

is less representative of the biological slime mould but

better equipped to generate fault tolerant networks.

2 Mathematical model

The basis for the mathematical model further used in this

article is developed in Tero et al. (2007). In this model, the

FS are represented by nodes which are interconnected

through a network of tubes, modelled by edges in a graph.

During execution of the algorithm, the properties of the

edges constantly change until a state of equilibrium is

reached. A typical simulation is given in Fig. 2.

The space in which the network will be built initially

only contains nodes representing food sources (see

Fig. 2a). To interconnect the FS, a fine mesh of nodes is

added to the space along with edges connecting these nodes

as shown in Fig. 2b. This models a network of fine tubes

which transports the nutrients from one FS to the rest of the

organism. All edges are assumed to be bidirectional.

The flow through an edge is a result of the pressure dif-

ferential between the edge’s endpoints. This type of flow is

Poiseuille (Kamiya 1959; Batchelor 2000) and can be

expressed as

Qij ¼
pa4

ij

8j
� pi � pj

Lij
ð1Þ

where aij is the radius of the tube, j the kinematic viscosity

of the fluid, Lij the length of the edge, pi the induced

Fig. 1 Physarum polycephalum on agar surface. The slime mould is

presented with a food source (centre of image) and uses a network of

fine tubes during foraging to transport nutrients. The principles of

network formation can be used to design fault tolerant networks.

Image courtesy of Dr. Tanya Latty, University of Sydney

278 M. Houbraken et al.

123

pressure in the node Ni and Qij the flow through the edge

between Ni and Nj. The first term in the right hand side of

the equation can be contracted to a single variable,

simplifying the equation to

Qij ¼
Dij

Lij
� ðpi � pjÞ ð2Þ

where Dij, the conductivity of an edge, indicates the suit-

ability for transport. A high Dij value indicates that the

edge offers low resistance for transport (per unit length)

while an edge with a low Dij value offers more resistance

and is less suited for transport.

Based on Eq. (2), an iterative algorithm can be devel-

oped that modifies the initial network and its edges to

create a network connecting the FS. In each iteration, a pair

of FS is randomly selected between which a flow is set up.

When a flow is imposed between a source and a sink node,

it will spread throughout the network according to the

following set of equations

X

j

Dij

Lij
� ðpi � pjÞ ¼

I Ni is source

�I Ni is sink

0 else

8
<

: ð3Þ

where I denotes the size of the imposed flow. These equations

express the conservation of flux inside the network: for each

node Ni which is not a source or a sink in the network, the

total amount of flow entering the node must equal the total

amount of flow exiting the node. Only in the source and sink

node can the transported fluid leave the network.

The flow through each edge of the network Qij can be cal-

culated by combining Eq. (2) with the solution of Eq. (3).

Using these flows, the conductivities of all edges can be

adjusted, simulating the growth of the tubes in the slime mould.

This adaptation can be done by using the following equation

Dnþ1
ij � Dn

ij

Dt
¼ f ðjQn

ijjÞ � Dn
ij ð4Þ

where f(|Qij
n|) denotes the growth function of the tube which

is chosen to mimic the behaviour of the real slime mould.

For low flow values, the edge should decay while for

higher flow values, the edge should thicken. There is

however a limit on the size of the tube. These constraints

translate to a monotonically increasing function saturating

for high values. The function used further in this paper is

f ðjQjÞ ¼ ð1þ aÞjQlj
1þ ajQlj ð5Þ

with 1 B l B 2, a [0 resulting in a sigmoid curvature for

f(|Q|).

After the adaptation, the algorithm chooses another pair of

(source, sink) nodes and repeats the calculations. The

(source, sink) pairs are randomly selected with each node

having a predetermined probability of being selected. A node

can be made more important by increasing the probability of

being selected. A higher chance to be selected results in more

flow passing through the tubes surrounding the node, pos-

sibly resulting in more edges surviving.

Another optimization consists of calculating and averaging

several flows in one iteration before the conductivities are

adapted and is presented in Watanabe et al. (2011). This can

be used to limit fluctuation of Qij and Dij. Ideally, all (source,

sink) combinations should be calculated in one iteration. This

would require solving a lot of linear systems as there are
n�ðn�1Þ

2

such combinations. Only a few combinations are used in the

same iteration as a trade-off between combinatorial com-

pleteness and execution time. Fluctuation on the values was

sufficiently reduced by this (limited) averaging.

3 Extensions

To improve the fault tolerance of the created networks and

automate the design process, we propose two extensions to

the algorithm of Tero et al. (2007). These extensions consist

of the migration mechanism (Sect. 3.1) and the stimulation

mechanism (Sect. 3.2). As these extensions are intended to

improve fault tolerance, the end results of the extended

algorithm will differ from the networks created by the

(a) (b) (c) (d)

Fig. 2 Typical simulation: a the food sources at the start of the

algorithm. A fine square mesh of nodes and edges is then added to the

food sources in (b). Only the edges connecting the nodes are shown as

lines, nodes are situated on all line intersections. c, d The network

changing during the simulation. The conductivities of the edges are

denoted by the thickness of the edges with thick edges representing

edges with a high conductivity

Fault tolerant network design inspired by Physarum polycephalum 279

123

biological slime mould and the original algorithm. The

general outline of the algorithm is given in Algorithm 1. As

explained in Sect. 2, the core of the algorithm consist of

iteratively selecting a (source, sink) pair, determining the

flow through the network and updating the model instance.

One iteration consists of lines 3 through 12. The (source,

sink) pair is selected randomly with each node having a

predetermined probability of being selected. When multiple

(source, sink) combinations in the same iteration are wanted

to reduce fluctuation of Qij and Dij, lines 4 through 8 are

executed multiple times and the resulting Qij
k averaged. The

algorithm stops on line 13 when the average fluctuation of the

Dij falls below a predetermined threshold or after a certain

number of iterations.

3.1 Migrating nodes

The model from Tero et al. (2007) as presented in Sect. 2

assumes all nodes and edges to be at a fixed location. While

this is useful to determine the optimal route to be followed

through a maze (Nakagaki et al. 2000; Tero et al. 2007), it

is less convenient in situations where the location of only

some nodes is predetermined. By constraining the position

of the nodes and edges, the result of the original algorithm

is limited to the paths present in the initial mesh. The type

of mesh used then determines the possibilities in the end

result. Optimal paths (e.g. straight edges) not present in the

initial mesh can be unintentionally excluded. Moreover, the

presence of alternative paths can influence the flow distri-

bution at the start of the algorithm by taking their part of

the flow. This alters the reinforcement of the edges and

ultimately the competition between the different edges.

A possible approach to approximating the optimal paths in

the initial mesh could be to use a very fine-grained mesh.

This would however increase the number of edges signifi-

cantly, which in turn would slow down computations

severely as the number of equations in the linear system to be

solved increases. The optimal configuration could then still

not be present in the initial mesh. Another possibility is to use

non-uniform meshes with an increased number of edges in

the areas of interest but this could favour specific

configurations.

To preserve fairness among the edges in the initial mesh

and to limit the complexity of the linear system, we pro-

pose to let the nodes in the mesh move. By using a simple

moving mesh, more mobility is incorporated in the exten-

ded algorithm. This effectively reduces the influence of the

initial mesh on the end result as the edges can be redis-

tributed. It also simplifies post-processing of the networks,

e.g. no more need to manually straighten edges. At the end

of each iteration, the coordinates of the nodes are adjusted

according to the flows at the nodes themselves. This

adjustment is not applied to nodes representing FS, as they

have to remain fixed. For each other node Ni, a set of

‘target’ coordinates Ti is calculated as follows

Ti ¼
P
8j jQijj � CjP
8j jQijj

ð6Þ

These Ti coordinates are weighted sums of the coordinates of

the neighbouring nodes, Ci, with the flows on the edges

between them acting as weights. The coordinates will be two-

dimensional when on a planar map, but they can easily be

extended to support higher dimensional spaces. Figure 3

shows the basic mechanism at work. The thickness of the

edges between the nodes represents the amount of flow

between the nodes. N2 receives flow from N1 and sends the

bulk part of it to N3. A smaller amount of flow is sent to N4.

When T2 is calculated, N3 has a larger impact than N4. T2 is

situated closer to the straight edge between N1 and N3 than C2.

Once the Ti’s are calculated, the nodes will migrate

towards their target location. If in the following iterations

in the extended algorithm a similar flow distribution is

encountered, the path of the dominant flow will be shorter,

requiring less energy for transport. To prevent extensive

migration, node movement is restricted to the area around

the initial position. To this end, the movement vector Mi is

calculated by Mi
�! ¼ Ti � C0

i with Ci
0 denoting the coordi-

nates of Ni at the start of the algorithm.

The movement vectors are then used to calculate (and

limit) the distance of Ti to Ci
0. To limit the migration to a

disc of radius � around the initial coordinates, it suffices to

Fig. 3 Migration mechanism applied on a single node. N2 wants to

migrate towards T2 which is predominantly determined by N1 and N3

because of the size of the flows towards and from N2, respectively

280 M. Houbraken et al.

123

calculate the norm of Mi
�!

and clip those movement vectors

that have a norm [�. To find the final target coordinates

(FCi), the clipped movement vectors can be added to the

original coordinates Ci
0. More elaborate schemes can be

used to prevent the node from going into forbidden areas

e.g. walls in a maze.

Using the current coordinates Ci
n, the new coordinates of

the nodes are then calculated as

Cnþ1
i ¼ Cn

i þ w � FCi

1þ w
ð7Þ

where w is used to smooth migration over several iterations

in the algorithm. As mentioned in Sect. 2, only a few (source,

sink) combinations are used each iteration. As a result, the Ti

can vary across iterations. The smoothing prevents excessive

fluctuation of Ci. In the later iterations, most redundant edges

have disappeared, resulting in fewer contributions to and

fluctuation on Ti. The new coordinates can then be used to

calculate the new lengths of the edges in the next iteration.

3.2 Stimulation of alternative paths

A second extension to the model from Tero et al. (2007)

focuses on improving the fault tolerance of the resulting

networks. The biological slime mould forms its networks

by thickening the tubes that carry a lot of flow. The cul-

tivated Physarum networks consist of many tubes with

varying radii. To extract a useful network from these

experiments, edges have to be selected. In Adamatzky and

Alonso-Sanz (2011), the selection is done based on weights

associated with the edges. The weights are calculated as the

ratio of the experiments where the edge occurred to the

total number of experiments performed. The authors use a

threshold to identify important edges. The threshold greatly

influences fault tolerance, as using a low threshold and

retaining a lot of edges will result in a higher fault toler-

ance than when only the thickest tubes are retained.

Furthermore, once a thick tube is formed between 2

parts of the network, it tends to carry most flow between

the 2 parts (Fig. 4a). The dominance leaves only little flow

for the alternative paths which then often disappear due to

the lack of reinforcement. This lack of alternative paths is

reflected in a low fault tolerance.

To prevent paths from becoming too dominant, the flows

in the extended algorithm are redistributed when a node has

too much flow passing through it before they can affect the

edge’s conductivity. First, the node K with the maximal

amount of flow going through it, Qmax, is determined by

Qmax ¼ max
n

1

2

X

i

jQinj ð8Þ

K ¼ arg max
n

1

2

X

i

jQinj ð9Þ

If Qmax is larger than some (predetermined) percentage of

the total flow ðs � IÞ, the total flow should be redistributed.

The total flow can be divided in 2 parts: a part Q0ij that

represents an amount of flow passing through K and the

remainder that follows alternative routes. An

approximation of Q0ij can be found by solving

X

j

Dij

Lij
� ðp0i � p0jÞ ¼

�2Qmax Ni ¼ K
Qmax Ni ¼ Nr or Nk

0 else

8
<

: ð10Þ

Q0ij ¼
Dij

Lij
� ðp0i � p0jÞ ð11Þ

where Nr and Nk refer to the original source and sink used in

the current iteration of the iterative algorithm, respectively.

The set of equations are similar to Eq. (3), only now the

original source and sink act as sources, both sending a flow of

Qmax to K. The resulting Q0ij values represent an amount of

flow Qmax going from the original source to the original sink,

passing through K (Fig. 4b). The remainder is then given by

Qij � Q0ij. To increase the flow through alternative paths

(Fig. 4c), it suffices to set the new Qij as follows

Qnew
ij ¼ a � s � I

Q0ij
Qmax

þ b � ð1� sÞ � I
Qij � Q0ij
ðI � QmaxÞ

ð12Þ

where a and b can be set to increase the relative importance of

the terms. The Qij
new values can then be used in Eq. (4) to adapt

the conductivities.

The first term in Eq. (12) contains the Q0ij values repre-

senting a flow of size Qmax from the source to the sink passing

through K. This flow is rescaled to a flow of size ðs � IÞ. As the

redistribution is only done when too much flow passes through

a node, this rescaling lowers the amount of flow passing

through the forming dominant path. The second term repre-

sents flow from source to sink using other paths. This flow

increases in size, resulting in an increased reinforcing of the

alternative paths to improve the fault tolerance of the network.

Because the stimulation mechanism is integrated in the

extended algorithm, the fault tolerance is integrated in the

design process. This results in conductivities that are coupled

with the importance of the edges for fault tolerance. The

selection of edges based on conductivities/radii now more

accurately captures the fault tolerance objectives.

4 Simulations

This section presents the results of the extended algorithm.

First, the general methods used in the simulations are briefly

explained in Sect. 4.1. Then, two more technical aspects of

Fault tolerant network design inspired by Physarum polycephalum 281

123

the algorithm are discussed. The extended algorithm is

shown to find the shortest path through a maze in Sect. 4.2

and the applied thresholding is justified in Sect. 4.3. Sec-

tion 4.4 shows the benefits of the extensions while Sect. 4.5

relates to the work in Adamatzky and Alonso-Sanz (2011).

An application to telecommunication networks is given in

Sect. 4.6.

4.1 Methods and parameters

The starting networks used in the following simulations

were generated by considering the points to be connected

as FS, characterized by their Euclidean coordinates. To

these FS nodes, a square 100 9 100 mesh was added with

each FS connected to its closest neighbours. As the mesh

will be changed by the migration mechanism, the simple

square configuration suffices to get different interconnec-

tion structures. The linear systems of equations were solved

by calculating the minimum norm residual solutions. To

minimize fluctuations on Dij, nrPairs = 2 different

(source, sink) pairs were calculated and averaged. Unless

specified otherwise, the different pairs were randomly

generated with each of the FS having equal probability of

being selected.

The parameters used in the calculation of flows were

ða;DtÞ ¼ ð1; 0:01Þ. The w-parameter used in the migration

was set to 0.3. The clipping of movement vectors was done

using an increasing disc size � ¼ ð0:15 � lÞ � 1:0025i with

l the average initial link length and i the current iteration.

The parameters were chosen to limit the migration in the

first 1000 iterations. The stimulation parameters were set to

(a, b, s, I) = (1, 2, 0.5, 1). The simulations were stopped

after 10000 iterations. This stopping criterion could be

improved as the network evolution stabilized sooner and

final network structure could be extracted after fewer

iterations.

To evaluate the simulation results, several metrics are

calculated for comparison. The total length is the sum of

the lengths of all edges present in the end result with a

conductivity higher than 5 % of the maximal conductivity

present (see Sect. 4.3). All lengths and distances are cal-

culated using the Euclidian distance measure. The single

(resp. double) fault tolerance indicates which percentage of

single (resp. double) link faults can be handled by the rest

of the network. A fault is successfully handled when all

nodes are still connected after the link has failed. The

probability of a link failing is taken to be proportional to its

length. This definition is closely related to the availability

of a (telecommunication) network, which indicates the

percentage of time a network is operational. The calcula-

tion of availability would however require estimating

realistic recovery times and link failure rates. The diameter

of a network is the longest path among all shortest paths in

the graph. The fault diameter is the maximum diameter of

the graph after a fault has occurred (Krishnamoorthy and

Krishnamurthy 1987). The average internodal distance is

calculated by averaging the shortest paths between all pairs

of nodes.

To compare the simulation results to more theoretical

graphs, the Gabriel Graph (GG), Relative Neighbourhood

Graph (RNG) and Minimum Spanning Tree (MST) are

used. These graphs are part of the Toussaint hierarchy of

proximity graphs (Jaromczyk and Toussaint 1992): MST �
RNG � GG and can be created based on the coordinates of

all nodes. The GG is created by adding an edge between

node a and node b if no other node is in the closed disc

with line segment |ab| as diameter. The RNG is constructed

by adding a link between two nodes if no other node is

closer to both nodes than they are to each other (Toussaint

1980). The MST is the graph with the lowest weight that

still directly interconnects all nodes. The length of the MST

is a good indication of the minimal length of any network

connecting all nodes (without Steiner points). The

Euclidean Minimal Spanning Tree (=MST with inclusion

of Steiner points) was not used as the difference in length

was very small (*3.5 %) and both have no redundancy.

4.2 Validation

As the original model is extended with two extensions, the

path-finding abilities of the model might not be present in

the extended model. Figure 5 shows the result of the

extended algorithm on a maze. The walls were considered

forbidden territory during migration. The extended algo-

rithm can (still) find the shortest path through the maze.

The extended algorithm cannot attain maximal single fault

tolerance as there are no completely disjoint paths from

source to sink. The result does contain two alternatives

which increase fault tolerance. These alternatives can be

(a) (b)

(c)

Fig. 4 Steps in stimulation process: a too much flow passing through

node K. The flows converging in K are calculated by Eq. (10) and

shown in (b). The flow is redistributed by Eq. (12) as shown in (c)

282 M. Houbraken et al.

123

eliminated by increasing the l-parameter, resulting in a

trade-off.

During the simulations, the two phases from Tero et al.

(2007), dead end cutting and selection of the solution path

from the competitive paths, are also observed. The dead

ends in the maze do not receive flow due to the lack of FS

and die out quickly. The competition between the different

paths is more complex than the dead end cutting and

requires more iterations.

4.3 Effects of extensions on thresholding

During analysis of the end results of the simulations, a

threshold is applied on the conductivities of the edges. This

thresholding discards all edges with a low conductivity as

they offer too much resistance to the flow. The percentage

of edges surviving in a simulation using the extended

algorithm is shown in Fig. 6. Using low thresholds results

in more edges from the initial graph ‘surviving’ the com-

putation. A threshold of 0.001 % (of the maximum con-

ductivity present) results in 4.5 % of the initial edges being

present in the end result. As the initial graph contained a lot

of redundant edges, added along with the fine mesh, it is

natural that only a small percentage is left in the end.

Increasing the threshold results in more edges being con-

sidered unsuitable and cut from the end result. This lowers

the total length but could eliminate alternative paths,

lowering the fault tolerance of the networks. However, as

Fig. 6 shows, there is a clear separation in the conductivity

values. In the experiment of Fig. 6, no edges were present

in the end result with a conductivity value in the range of

0.2–7 %. Varying the threshold in this range would not

influence the end result (no extra edges would be dropped).

As this separation was present in all simulations, a static

threshold could be applied independent of all other

parameters. Based on a limited number of simulations, the

threshold was set at 5 % and used in all further simulations.

4.4 Comparison to original model

To show the effects of the extensions, the original and the

extended algorithms are used on a model of Belgium. A set

of 16 Belgian cities was made based on the number of

inhabitants and/or regional importance: Aalst, Antwerp,

Arlon, Bruges, Brussels, Charleroi, Ghent, Hasselt, Kor-

trijk, La Louvière, Leuven, Liège, Mechelen, Mons, Namur

and Wavre. Figure 7 shows some simulation results of the

extended algorithm together with the MST, RNG and GG.

The importance of Antwerp and Brussels was increased to

incorporate their relative importance. Figure 7a shows how

the extended algorithm connects all cities. By increasing l
in Eq. (5), fewer edges survive as shown in Fig. 7b, c,

similar to results in Tero et al. (2007). The RNG and MST

do not have high fault tolerance as several cities can be

disconnected by a single fault.

Figure 8 compares the results of the original algorithm

to those of the extended. The l-parameter from Eq. (5)

was varied between 1.3 and 1.9 to obtain the simulation

results, all other parameters were as described in Sect. 4.1.

The analysis results varied nicely with l. High l-values

resulted in few edges surviving, corresponding to the

results in the left part of the graph. When l was lowered,

the resulting graphs had more edges resulting in an

Fig. 6 Relationship between edge survival and the applied conduc-

tivity threshold. The graph shows the percentage of edges present in

the end result (compared to the total number of edges in the initial

mesh) when the conductivity threshold is varied. Using a low

threshold results in a lot of edges remaining while higher thresholds

result in more edges being cut. No edges were present in the end

result with a conductivity value in the range of 0.2–7 %, resulting in a

wide gap around 1 %. The threshold of 5 % used in all experiments is

denoted by the dashed line. Threshold values are displayed using a

logarithmic scale

(a) (b) (c)

Fig. 5 Simulation of maze-

solving capabilities. a Start of

the simulation with all edges

having the same conductivity.

b The dead end cutting after a

few iterations and c the final

state of the network. Edges with

a high conductivity are drawn

thicker than edges with a low

conductivity

Fault tolerant network design inspired by Physarum polycephalum 283

123

increased total length and fault tolerance. The range of

l-values was chosen to show the trade-off between cost

and fault tolerance.

The effect of the stimulation mechanism can be best

seen in the top portion of the fault tolerance graphs. The

extended algorithm can attain maximal single fault toler-

ance while the original algorithm cannot. Arlon, the most

southern city on the map, is relatively far away from the

rest of the graph making it very costly to connect to the rest

of the graph with more than one path. While an extra path

greatly increases the fault tolerance, it also increases the

total network length significantly. This results in very few

analysis results (for the extended algorithm) around 1.6

MSTlength. Both situations (extra path and no extra path)

can also be seen in Fig. 7b, c. The influence of the increase

in l is too big for the stimulation mechanism to handle

without increasing the stimulation parameters in Fig. 7c.

The effect of the migration mechanism is best seen in

the left portions of the fault tolerance graphs in Fig. 8. On

top of the (limited) fault tolerance increase of the stimu-

lation mechanism, the length of the networks is shorter due

to the paths being made straight by the migration. This

shows the importance of the initial mesh for the end result.

4.5 Comparison to living slime mould

To compare the extended algorithm to the biological slime

mould, the extended version of the algorithm is applied to

the same input dataset of Adamatzky and Alonso-Sanz

(2011) and the results are compared. The same set of cities

on the Iberian Peninsula is used as input for the network

generation. The biological network and the road network

are recreated by using straight interconnections to obtain

the same logical structures. The MST, RNG and GG are

created based solely on the model of the Iberian Peninsula.

Figure 9 shows some results of the extended algorithm.

More important cities (Madrid, Lisbon) were given a larger

weight in the selection process to incorporate their relative

importance. Table 1 shows an analysis of the different

networks.

The length of the existing road network and the length

of the result of the living slime mould are much higher than

the lengths of the simulation results. In the man-made

network, this is caused by the multiple (redundant) roads

starting in a.o. Madrid (centre of Spain). The length of the

biological network depends on the cut value (Adamatzky

and Alonso-Sanz 2011). By raising the cut value, lower

lengths can be obtained but this would disconnect Madrid

from the rest of the graph. Varying the cut value would

only provide limited gains. The simulation results do not

have this problem as the conductivities are tied to the fault

tolerance. The cut value could be kept constant for all

simulations as the conductivities of the edges sharply fell

around the applied threshold (Sect. 4.3). The best (fault)

diameter is found in the road network together with the

highest total length.

All networks, aside from the MST, RNG and GG, have

maximal single fault tolerance. The MST, RNG and GG

cannot handle all single link faults as a single link failure

can isolate Barcelona from the rest of the network. The

fault diameter of these networks should be 1 (infinite

distance from any node to Barcelona). The values given in

Table 1 for these networks however are calculated by

ignoring faults that cause the graph to become discon-

nected. Fault diameters calculated by ignoring some fail-

ures are denoted with an asterisk (*). The RNG and GG

were expanded by adding the link (Barcelona, San Sebas-

tian) and the link (Malaga-Marbella, Cadiz) (already in

GG). The numerical results of these networks are

denoted by RNG? and GG?. The results of the RNG?

are good, considering their construction time, and similar

to the results of the extended algorithm. The extended

algorithm does have notably smaller fault diameters. The

average internodal distance is slightly lower for the simu-

lation results and the double fault tolerance values of

the simulation results are higher than the values for the

(a) (b) (c)

(d) (e) (f)

Fig. 7 Results for Belgian

network: a–c Some results for

the extended algorithm with

constant stimulation parameters

and l respectively 1.3, 1.4 and

1.6. d, e and f The MST, RNG

and GG connecting the cities

284 M. Houbraken et al.

123

reference networks. The (human) adjustment to the RNG

greatly increases its resilience but this dependency is not

desirable for automated design of more complex networks.

The GG? also has good results but has a high network

cost.

In summary, the results of the extended algorithm on the

Iberian Peninsula show the benefits of the extended algo-

rithm. Thanks to the coupling of the conductivity values to

the fault tolerance, the cut value for retaining edges in the

end result could be kept constant while it had to be

determined manually for the living slime mould. Manual

corrections, needed for the proximity graphs, were not

needed in the results of the extended algorithm. The

algorithm further allows to design networks with various

levels of fault tolerance by varying l.

4.6 Application to telecommunication networks

To show the potential of the extended algorithm to design

telecommunication networks, it is compared to a realistic

telecommunication network. The reference material for

this network is available in Orlowski et al. (2010). Fig-

ure 10 shows some simulation results, the reference tele-

communication network and the proximity graphs. The

numerical results are shown in Table 2.

With the exception of the MST and RNG, all networks

had maximal single fault tolerance. The RNG could handle

45.55 % of all link failures, the MST (by definition) none.

The fault diameter was calculated as in Sect. 4.5. The

results of the extended algorithm greatly resemble the

reference telecommunication network. Figure 10h shows

all edges present in both the reference network of Fig. 10g

and the simulation result in Fig. 10b. Most differences are

found in the centre of the graph. Only one city (Munich)

has no edges that appear in both the reference network and

the simulation result. Table 2 shows that the total length is

lower, the average internodal distance, diameter and fault

diameter are smaller and the double fault tolerance is

higher. As in Sect. 4.5, the network designer can vary l to

design networks with a desired network resilience. Fig-

ure 10c attains a 13 % reduction in total length compared

to the reference telecommunication network in exchange

for a lower network resilience.

The reference RNG has a low single/double fault toler-

ance. The RNG construction process has difficulties con-

necting the cities due to the specific network topology. For

several cities like Athens, Glasgow, Madrid, Stockholm and

Warsaw an extra edge would be desirable to increase fault

tolerance but there’s always another city that causes the city

to have no other edge (e.g. an edge between Athens and

Rome would be desirable but Belgrade is closer to both

Athens and Rome than Athens is to Rome, preventing the

RNG construction process to add an edge). This effect was

also visible in the RNG on the Iberian Peninsula and in the

Belgian experiment. Manually adjusting the result is more

ambiguous now as a lot of adjustments are needed to attain

Fig. 8 Analysis of simulation results. The fault tolerance and

diameter of the results are compared to the total length. The indicated

lengths are calculated by dividing the total length of the networks by

the total length of the MST. The simulation results using the model

without using any extension are represented by crosses. The

simulation results using both extensions are denoted by circles. The

MST has unit length. The RNG and GG of the network are

represented the diamond and the triangle

Fault tolerant network design inspired by Physarum polycephalum 285

123

Table 1 Results for the Iberian Peninsula

Network Total

length (km)

Double fault

tolerance (%)

Average

internodal

distance (km)

Diameter

(km)

Fault

diameter (km)

Simulation

Fig. 9a 5946.18 98.37 618.95 1175.82 1563.10

Fig. 9b 5199.35 96.88 623.85 1175.64 1563.36

Fig. 9c 4957.57 96.15 643.38 1317.38 1565.75

Fig. 9d 4226.58 87.77 670.23 1372.04 2209.85

Reference

Biological 7059.65 98.78 636.60 1284.12 2025.91

Roads 8373.09 96.99 600.31 1154.39 1294.85

GG 6335.71 96.33 595.81 1310.18 1524.65*

GG? 6738.59 99.32 594.36 1310.18 1524.65

RNG 4254.27 82.50 664.34 1337.40 1970.23*

RNG? 4825.37 95.99 649.64 1329.82 1714.45

MST 3121.00 0.00 1026.00 3121.00 3121.00*

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Results for the Iberian Peninsula: a–d the results of the

extended algorithm with varying l values respectively 1.2, 1.3, 1.4

and 1.5. e The results of the living slime mould and f the existing road

network, both taken from Adamatzky and Alonso-Sanz (2011). g–

i The MST, RNG and GG connecting the cities

286 M. Houbraken et al.

123

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 10 Telecommunication

networks: a–c some simulation

results of the extended

algorithm obtained with l resp.

1.25, 1.35 and 1.55. d–f The

MST, RNG and GG connecting

the cities. g The reference

network from Orlowski et al.

(2010) while h is the graph

containing all common edges

between (b) and (g)

Table 2 Results for the European telecommunication network

Network Total

length (km)

Double fault

tolerance (%)

Average internodal

distance (km)

Diameter (km) Fault

diameter (km)

Simulation

Fig. 10a 17587.99 98.25 1298.72 3443.64 4658.34

Fig. 10b 16751.63 97.77 1307.62 3443.02 4657.71

Fig. 10c 15039.37 95.37 1409.65 3391.08 5023.13

Reference

SNDlib 17344.00 96.71 1360.82 3615.40 4763.34

GG 23946.12 99.29 1169.33 3213.70 4316.25

RNG 10612.77 16.65 1472.88 3888.82 4895.38*

MST 9361.08 0.00 1639.53 4381.95 4381.95*

Fault tolerant network design inspired by Physarum polycephalum 287

123

maximal single fault tolerance. This shows that, despite its

simplicity and the good results the RNG(?) produced for the

Iberian Peninsula, its fault tolerance is dependent on the

topology of the graph and can be quite low. For designing

fault tolerant networks, this dependency is undesirable. The

GG achieves maximal fault tolerance but at a 30 % increase

in total length compared to Fig. 10b. The MST again has the

shortest length but no fault tolerance.

5 Conclusion

In this paper, the potential of the true slime mould P.

polycephalum to design fault tolerant networks is analyzed.

The mathematical model from Tero et al. (2007) is

implemented and adapted. While the resulting networks of

the original algorithm can be steered towards fault toler-

ance, the original model has no special provisions focused

on it. The fault tolerance in the networks is very sensitive

to the threshold applied during post-processing edge

selection on the generated networks. To reduce this

dependency, we extend the original model with a stimu-

lation mechanism that redistributes the flow through the

network. This enables alternative paths to survive and

results in higher fault tolerance and smaller fault diameters

in the generated networks. The threshold used for edge

selection could be kept constant as the conductivities were

more tightly coupled to the fault tolerance and sharply fell

around the threshold. Another dependency of the original

model lies in the initial configuration. The initial positions

of the nodes and their interconnections determine the

possibilities in the resulting networks. By extending the

model with a migration mechanism, the possible paths can

change during execution, offering more freedom to the

algorithm without severely increasing computation times.

The extensions were tested on models of Belgium, Europe

and the Iberian Peninsula. Our extended algorithm can

achieve higher fault tolerances than the original algorithm

and can be tuned according to the desired level of fault

tolerance. Comparisons to reference road and telecommu-

nication networks show that the extended algorithm can be

used when fault tolerant networks are desired and total

length is to be minimized. It can also overcome specific

weaknesses in geometric graph designs such as the Mini-

mum Spanning Tree and the Relative Neighbourhood

Graph and find the shortest path through a maze. By

varying the l-parameter, a trade-off between the fault

tolerance of the resulting network and its total length can

be made.

References

Adamatzky A (2009) From reaction-diffusion to Physarum comput-

ing. Nat Comput 8:431–447

Adamatzky A (2010) Physarum machines. World Scientific Publish-

ing Company, Singapore

Adamatzky A (2011) Approximating mexican highways with slime

mould. Nat Comput 10:1195–1214

Adamatzky A, Alonso-Sanz R (2011) Rebuilding Iberian motorways

with slime mould. BioSystems 105:89–100

Batchelor G (2000) An introduction to fluid dynamics. Cambridge

University Press, Cambridge

Becker M (2011) Design of fault tolerant networks with agent-based

simulation of Physarum polycephalum. In: IEEE congress

evolutionary computation, pp 285–291

Casier K, Verbrugge S, Meersman R, Colle D, Pickavet M,

Demeester P (2008) A clear and balanced view on FTTH

deployment costs. J Inst Telecommun Prof 2:27–30

Dussutour A, Latty T, Beekman M, Simpson SJ (2010) Amoeboid

organism solves complex nutritional challenges. Proc Natl Acad

Sci USA 107(10):4607–4611

Gotoh K, Kuroda K (1982) Motive force of cytoplasmic streaming

during plasmodial mitosis of Physarum polycephalum. Cell

Motil 2:173–181

Jaromczyk JW, Toussaint GT (1992) Relative neighborhood graphs

and their relatives. In: Proceedings of IEEE, pp 1502–1517

Jones J (2009) Approximating the behaviours of Physarum polyceph-
alum for the construction and minimisation of synthetic transport

networks. In: Unconventional computing, proceedings. Lecture

notes in computer science, vol 5715. Springer, pp 191–208

Jones J, Adamatzky A (2010) Towards Physarum binary adders.

BioSystems 101:51–58

Kamiya N (1959) Protoplasmic streaming. Springer-Verlag, Vienna

Kobayashi R, Tero A, Nakagaki T (2006) Mathematical model for

rhythmic protoplasmic movement in the true slime mold. J Math

Biol 53:273–286

Krishnamoorthy M, Krishnamurthy B (1987) Fault diameter of

interconnection networks. Comput Math Appl 13:577–582

Latty T, Beekman M (2009) Food quality affects search strategy in

the acellular slime mould, Physarum polycephalum. Behav Ecol

20(6):1160–1167

Miranda ER, Adamatzky A, Jones J (2011) Sounds synthesis with

slime mould of Physarum polycephalum. J Bionic Eng 8(2):

107–113

Nakagaki T, Yamada H, Tóth A (2000) Maze-solving by an amoeboid

organism. Nature 407:470

Nakagaki T, Yamada H, Tóth H (2001) Path finding by tube

morphogenesis in an amoeboid organism. Biophys Chem 92:

47–52

Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004a) Obtaining

multiple separate food sources: behavioural intelligence in the

Physarum plasmodium. Proc R Soc Lond B 271:2305–2310

Nakagaki T, Yamada H, Hara M (2004b) Smart network solutions in

an amoeboid organism. Biophys Chem 107:1–5

Orlowski S, Wessäly R, Pióro M, Tomaszewski A (2010) SNDlib 1.0

survivable network design library. Networks 55(3):276–286

Pickavet M, Demeester P, Colle D, Staessens D, Puype B, Depré L,

Lievens I (2006) Recovery in multilayer optical networks.

J Lightwave Technol 24(1):122–134

Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae

anticipate periodic events. Phys Rev Lett 100(1):018101

Tero A, Kobayashi R, Nakagaki T (2005) A coupled-oscillator model

with a conservation law for the rhythmic amoeboid movements

of plasmodial slime molds. Phys D 205:125–135

Tero A, Kobayashi R, Nakagaki T (2007) A mathematical model for

adaptive transport network in path finding by true slime mold.

J Theor Biol 244:553–564

Tero A, Yumiki K, Kobayashi R, Saigusa T, Nakagaki T (2008)

Flow-network adaptation in Physarum amoebae. Theory Biosci

127(2):89–94

288 M. Houbraken et al.

123

Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki

K, Kobayashi R, Nakagaki T (2010) Rules for biologically

inspired adaptive network design. Science 327:439–442

Toussaint GT (1980) The relative neighbourhood graph of a finite

planar set. Pattern Recognit 12:261–268

Tsuda S, Aono M, Gunji YP (2004) Robust and emergent Physarum
logical-computing. BioSystems 73:45–55

Vasseur J, Pickavet M, Demeester P (2004) Network recovery:

protection and restoration of optical, SONET-SDH, IP, and

MPLS. Morgan Kaufmann Publishers, Burlington

Watanabe S, Tero A, Takamatsu A, Nakagaki T (2011) Traffic

optimization in railroad networks using an algorithm mimicking

an amoeba-like organism, Physarum plasmodium. BioSystems

105(3):225–232

Fault tolerant network design inspired by Physarum polycephalum 289

123

	Fault tolerant network design inspired by Physarum polycephalum
	Abstract
	Introduction
	Mathematical model
	Extensions
	Migrating nodes
	Stimulation of alternative paths

	Simulations
	Methods and parameters
	Validation
	Effects of extensions on thresholding
	Comparison to original model
	Comparison to living slime mould
	Application to telecommunication networks

	Conclusion
	References

