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Abstract This paper introduces the problematics deriving

from the adoption of asynchronous update schemes in CA

models. Several cellular automata update schemes and a

tentative classification of such schemes are introduced and

discussed. In order to analyze the effects of the different

update schemes, a class of simple CA—called One

neighbor binary cellular automata (1nCA)—is then intro-

duced. An overview of the general features of 1nCA is

described, then the effects of six different updates schemes

on all the class of 1nCA are described.

Keywords Cellular automata � Asynchronous CA �
Asynchronous CA update schemes

1 Introduction

A fundamental feature of Cellular Automata models is the fact

that time is considered as discrete and state updates occur

synchronously and in parallel. Nevertheless, this assumption

can be quite restrictive on the class of phenomena that can be

modeled and several authors have argued that asynchronous

models are viable alternatives to synchronous ones and sug-

gest that asynchronous models should be preferred where

there is no evidence of a global clock in the modeled reality

(Paolo et al. 2000). Moreover, as argued in Schönfisch and de

Roos (1999), sometimes the modeling activity is aimed at

achieving a form of ‘‘model stability’’ for which the qualita-

tive results of the model depend only on the basic assumptions

derived from the modeled system, and they are not to be

ascribed to the actual details of the employed model, such as

the update scheme of a CA.

In general, when cells updating does not take place

simultaneously we talk about an asynchronous CA; this

term thus does not state any precise property of this kind of

model, it essentially expresses the fact that a property

(i.e., synchronicity in cells updates) is not valid. One of the

main aims of this paper is to clarify that there are sub-

stantially different ways in which a CA can be asynchro-

nous and to present an investigation of the these different

ways and their implications on the overall system dynam-

ics, by defining and adopting a specific sample CA model

for this purpose.

One of the first works proposing an asynchronous

updating scheme is described in Kanada (1994): the model

is characterized by different cell updating schemes, basi-

cally sequential ones, in which a single cell is updated at

each time step. The order of the updating sequence is

defined as one of the following three methods: Random

order, Fixed Random Order, and Interlaced order.

In Page (1997), issues and implications of asynchronous

update schemes is analyzed from the point of view of

modeling economical systems: in this approach, cells that

benefit most (according to some utility function) update

their state first. This incentive based update approach,

however, is clearly more suited to characterize agent–based
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models, since the extrapolation of a ‘‘utility from updating’’

function is much more natural in models comprising self-

interested entities as first class abstractions rather than

simple cells.

In Cornforth et al. (2005) the adopted notion of agent is

instead much more similar to CA cells; three classes of

update scheme are identified in this work: Synchronous

Update, Random Asynchronous (RAS), and Ordered

Asynchronous (OAS). The first scheme is the traditional CA

updating scheme; according to the RAS scheme, at any

given time individuals to be updated are selected at random

according to some probability distribution. In the OAS

update process, the updating of individual states follows a

systematic pattern. The authors consider a total of six

update patterns, including two RAS schemes and three OAS

scheme: Synchronous Scheme, Random Independent (RAS)

, Random Order (RAS), Cyclic (OAS), Clocked (OAS), and

Self-Sync. The author chose to implement local synchro-

nicity by using a coupled oscillator approach. The period of

each timer is adjusted after an update so as to more closely

match the period of other cells in its neighborhood.

Another relevant study about the effects of asynchro-

nicity in a CA model is described in Fatès et al. (2005): in

particular, the authors focus on the robustness of one

dimensional asynchronous CAs characterized by a RAS

scheme.

In addition to CA models, a relevant area in which

issues and implications of updating schemes have been

analyzed is related to random boolean networks Darabos

et al. (2007), a model in which not only timing but also

spatial constraints are relaxed when compared to traditional

CA.

Finally, in addition to the above mentioned works taking

an agent-based modeling approach, it is worth mentioning

the fact that agent activation issues have been considered

both from a general situated agents perspective (Bandini

et al. 2005), in application situations considering both the

specification and implementation of simulation systems

(Bandini and Vizzari 2006) and the definition of protocols

for distributed systems (Fang et al. 2005).

The aim of this paper is to provide a comprehensive

analysis of different asynchronous update schemes and to

evaluate the effect of their adoption in a simplified CA

model; the paper is organized as follows: the following

section formally introduces a comprehensive set of relevant

updating schemes, while Sect. 3 introduces One neighbor

binary cellular automata (1nCA), the simple model in

which the different update schemes will be exhaustively

tested. Section 4 presents a classification of all the possible

update rules that can be adopted in the 1nCA model.

Section 5 describes the effects of the adoption of the dif-

ferent update schemes for this model, while conclusions

and future developments end the paper.

2 A classification of update schemes

In order to classify the update schemes, we define the

following parameters:

– pi
(t) determines the period between two successive

updates of the cell i at the time step t, i.e. how many

time steps the cell i will wait in order to be updated.

The value of p can change during the time, e.g., in the

Self-Sync update scheme.

– li
(t) determines the length of the updating (in terms of

time steps) of the cell i at the time step t, i.e., after how

many time steps the neighbor cells taking into account

the new state during their update.

– di, determines the delay (in terms of time step) before

the first update.

– U(t) is the set of cells beginning the update process at

the at the time step t simultaneously.

– u(t) = |U(t)| is the number of cells starting the update

process at the time step t.

Given the above parameter, whose meaning is exem-

plified in Fig. 1, a set of relevant update schemes will now

be presented and discussed. For each update scheme, we

give a formal definition that are successively employed for

the classification of the update schemes.

2.1 Relevant update schemes

2.1.1 Synchronous scheme

All individuals are updated in parallel at each time step; the

updating of a cell takes 1 time step. Formally, this update

scheme can be characterized as follows:

8 t 2 Z; t [ 0; 8 i 2 Z; � i\N:

p
ðtÞ
i ¼1; l

ðtÞ
i ¼ 1; di ¼ 0; uðtÞ ¼ N

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

 l(t)i 

 p(t)
i 

5 11 30

8 19 81

5 13 32

19 49 98

2

3

1

4

initial state
of the cell

6

 di 

2

3

1

4

cell 0

cell 1

cell 2

cell 3

new state of the cell

initial delay period

updating length

Fig. 1 A schematic representation of the parameters adopted to

describe the update schemes: left a sample one dimensional CA

composed of four cells is shown, right a sample update diagram is

used to clarify the meaning of the parameters adopted to describe the

update schemes
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2.1.2 Random independent

At each time step, one and only one cell, chosen at random,

is updated; the updating of a cell takes 1 time step. A formal

characterization of this update scheme is the following:

8 t 2 Z; t [ 0; 8 i 2 Z; 0� i\N:

l
ðtÞ
i ¼1; uðtÞ ¼ 1; 9 t; i : p

ðtÞ
i [ 1

An example of Random Independent update scheme,

related to a 1D CA composed of four cells, is shown in

Fig. 2.

2.1.3 Random order

All nodes are updated in random order. After the updating

of all the nodes, the order is changed. The updating of each

cell takes 1 time step. The maximum length of the update

period is less than 2 N. This update scheme can be formally

described as follows:

8 t 2 Z; t [ 0; 8 i 2 Z; 0� i\N:

p
ðtÞ
i \2N; l

ðtÞ
i ¼ 1; di\N; uðtÞ ¼ 1

An update interval [a, x] so that 8z 2 Z; z [ 0; a ¼
1þ zN; x ¼ ðzþ 1ÞN can be defined. In every update

interval, each cell is update exactly once:

8 i 2 Z; 0� i\N;

8 tn 2 Z; a� tn�x; 8 tm 2 Z; a� tm�x;

ci 2 UðtnÞ; ci 2 UðtmÞ () tn ¼ tm

An example of Random Order update scheme, related to

a 1D CA composed of four cells, is shown in Fig. 3.

2.1.4 Cyclic

At each time step a node is chosen according to a fixed

update order. The update scheme can be formally described

as follows:

8 t 2 Z; t [ 0; 8 i 2 Z; 0� i\N:

p
ðtÞ
i ¼ N; l

ðtÞ
i ¼ 1; di\N; uðtÞ ¼ 1

We can identify three subtypes of this update scheme:

– Random cyclic: the update order is decided at random

during initialisation of the automaton. This update

scheme correspond to the Kannada’s Fixed Random

(Kanada 1994) and Cornforth’s Cyclic OAS (Cornforth

et al. 2005).

– Fixed cyclic-sequential ordered: The update order is

fixed in the automaton definition. The cells are updated

one-by-one according to their natural order:

di ¼ 1þ i; qt ¼ ðt � 1Þmod N; uðtÞ ¼ fcqtg:

– Fixed cyclic-interlaced cyclic: also called Interlaced

Order in Kanada (1994). The set of cell u(t) to be update

at time step t is calculated as qt ¼ Cðt � 1Þ mod N;

uðtÞ ¼ fcqtg, where C is a parameter prime to N.

An example of Fixed Cyclic-Sequential Ordered update

scheme, related to a 1D CA composed of four cells, is

shown in Fig. 4.

2.1.5 Generic cyclic

It is a generalization of the cyclic update scheme, obtained

relaxing the constraint on the updating length. In this

update scheme, the updating length is limited only by the

period. Formally, this update scheme can be described as

follows:

8 t 2 Z; t [ 0; 8 i 2 Z; 0� i\N:

p
ðtÞ
i ¼ N; l

ðtÞ
i � pðtÞ; di\N; uðtÞ ¼ 1

2.1.6 Clocked

A timer is assigned to each cell, so that updating is

autonomous and proceeds at different rates for different

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5 2911

5 29

18

2

3

1

4

initial value

6

24

9571

0

53

72

25

95

Fig. 2 An example of Random Independent update scheme, related

to a 1D CA composed of four cells

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5

5

2

3

1

4

initial value

6

12

0

92

17

91

16

23

28

40

45

91

85

Fig. 3 An example of Random Order update scheme, related to a 1D

CA composed of four cells
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cells. The update frequency of each cells is fixed. The

scheme can be formally described as follows:

8 t 2 Z; t [ 0; 8 i 2 Z; 0� i\N:

p
ðtÞ
i ¼ p

ð0Þ
i ; l

ðtÞ
i � p

ð0Þ
i ; di� p

ð0Þ
i

As subtype of the Clocked update scheme is the Equal

Frequency Clocked. According to this update scheme,

every cells has the same update frequency:

8 t 2 Z; t [ 0; 8 i 2 Z; 0� i\N : p
ðtÞ
i ¼ p

ð0Þ
0

2.1.7 Generic clocked

It is a generalization of the cyclic update scheme, obtained

relaxing the constraint on the fixed update frequency. The

two subtypes of this update scheme are the Clocked and

Variable Clocked. According to the Variable Clocked

scheme, a timer is assigned to each cell, so that updating is

autonomous and proceeds at different rates for different

cells. The updating frequency is not fixed: 9t; i : p
ðtÞ
i 6¼ p

ð0Þ
i .

The Self-Sync update scheme is an example of Variable

Clocked scheme. An example of Variable Clocked update

scheme, related to a 1D CA composed of four cells is

shown in Fig. 5.

2.2 Cellular automata update schemes ontology

In this section we present a tentative classification of the

previously presented update schemes. In order to manage

the complexity deriving from the classification of the

schemes according to different features (e.g. the number of

cells updated at each time step, the maximum length of the

update period) we defined a CA Update Scheme Ontology,

a formal conceptualization expressed using the OWL 2

DL1 language, a W3C endorsed format that can be adopted

to define ontologies in terms of classes, properties,

instances. This language allows defining relatively rich

semantics for the above entities and it is able to represent

and manage features like equality and inequality of

instances, restrictions (not only related to domain and

range, but also to cardinality) and other characteristics of

properties, enumerated classes and other formal properties.

We defined specific datatype properties to characterize

each update scheme (e.g. hasClock, hasUpdateOrder,

hasFixedPeriod, updatedCellsPerTimeStep); each scheme

is characterized by a specific configuration of values for

these properties.

We computed the class hierarchy using the Pellet2

semantic reasoner, an open source Java reasoner for OWL

2 DL. A reasoner is a software able to infer logical con-

sequences from a set of asserted axioms. An example of

inference for an OWL DL reasoner is the computation of

the class hierarchy. In other words, starting from the update

schemes defined as OWL classes, the reasoner is able to

inter how update scheme are related by subclass relation-

ships. The result of this automatic classification activity is

shown in Fig. 6; in particular, the diagram shows that

several update schemes are subclasses of different other

classes.

For instance, the traditional Synchronous update

scheme is both an instance of the MultiCellUpdate

scheme class and also an instance of the class of schemes

characterized by the fact that cell update takes exactly

one time step (UpdatingLength1). Analogously, Ran-

domIndependent and RandomOrder are instances of the

RandomUpdateScheme class, being characterized by a

random component, but they are also instances of the

Sequential update class because they update only one cell

per time step.

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5 11

11

15 69

28

2

3

1

4

initial value

6

54

2521

39

13

44

60

82

Fig. 4 An example of Fixed Cyclic-Sequential Ordered update

scheme, related to a 1D CA composed of four cells

t

cell 0

cell 1

cell 2

cell 3

0 5 10 15

5 11 30

8 19 81

5 13 32

19 49 98

2

3

1

4

initial value

6

Fig. 5 An example of Variable Clocked update scheme, related to a

1D CA composed of four cells

1 http://www.w3.org/TR/owl2-primer/. 2 http://clarkparsia.com/pellet.
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3 One neighbor binary cellular automata

One neighbor binary cellular automata (1nCA) is a one-

dimensional Cellular Automata, with two possible states

per cell. Each cell has two neighbors, left and right, defined

to be the adjacent cells on either side, but the update rule

consider only one neighbor per step. The neighborhood

includes the cell itself and the left or the right adjacent cell

and alternates between these two situations at even and odd

time steps.

The size of the neighborhood is always 2, so there are

four possible patterns for the neighborhood and only 16

possible rules. The number of possible rules is small

compared to the 256 possible rules of the Elementary

Cellular Automata, so it is easier to exhaustively study the

dynamic behavior of the all rules.

These 16 1nCA rules will be referred using the Wolfram

notation, with the rule numbers followed by the D symbol

to avoid confusion with the Elementary Cellular Automata

rules (e.g. ‘‘Rule 10’’ is an Elementary Cellular Automata

rule, ‘‘Rule 10D’’ is an 1nCA rule).

We call 1nCA the cellular automata (L;S;N ;F ) where

– L ¼ ½c0; c1; . . .; cn� is an array of n cells,

– S ¼ f0; 1g is the set of states (k = 2),

– N c is neighborhood of the cell c and 8c : L jN cj ¼ 2,

– f : S2 ! S is a transition function.

Denoting the cell c at position i as ci, the neighborhood

N ðtÞci
of the cell ci at time t is defined as N ðtÞci

¼ ½ci; n
ðtÞ
ci �

where n
ðtÞ
ci is the neighbor of the cell, given by

nðtÞci
¼ ciþ1 if t is even

ci�1 otherwise

�

The neighborhood of the cell ci at different time steps is

shown in Fig. 7.

Following the Wolfram’s notation, the rules are char-

acterized by a sequence of binary values (bi 2 S) associ-

ated with each of the four possible patterns for the

neighborhood. The transition function is defined as:

f ðci; n
ðtÞ
ci
Þ ¼

b0 if ci ¼ 0; n
ðtÞ
ci ¼ 0

b1 if ci ¼ 0; n
ðtÞ
ci ¼ 1

b2 if ci ¼ 1; n
ðtÞ
ci ¼ 0

b3 if ci ¼ 1; n
ðtÞ
ci ¼ 1

8>>><
>>>:

As shown in Fig. 8, there are 16 possible transition

functions, identified by a rule number R ¼
P3

i¼0 bi2
i.

The configuration of a cellular automata is a mapping

q : L ! S which assigns to each cell of the array L a state

from S. We denoted with qt the configuration of a cellular

automata at time t; in particular qt ¼ ½s0; s1; . . .; sn� 2 Sn

(16) where n is the number of cells of L. Given an ini-

tial configuration q0, the evolution of an automaton

is represented by a sequence of configurations q0 ! q1 !

FixedUpdatingLength

UpdatingLength1

Sequential

Cyclic

InterlacedCyclicSequentialOrdered

FixedCyclic

SingleCellUpdate

Generic Cyclic

MultiCellUpdate
Synchronous

GenericClocked

Clocked VariableClocked

EqualFrequency
Clocked

RandomIndependent RandomOrder

RandomCyclicRandomUpdateScheme

Fig. 6 A schematic representation of the classes of the CA Update

Scheme ontology. The classes UpdateScheme and Asynchronous are
not shown for simplicity

time 0

time 1

time 2

time 3

ci ci+1ci-1

Fig. 7 The neighborhood of the cell ci at different time steps

Fig. 8 Representation of the 16 1nCA transition rules
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q2 ! � � � ! qt. A deterministic finite cellular automaton

eventually falls into a cycle (with period p [ 1) or a fixed

point (p = 1):

qt ! qtþ1 ! qtþ2 ! � � � ! qtþp

qt ¼ qtþp; qtþ1 ¼ qtþpþ1; . . .; qtþp ¼ qtþ2p

We defined two constant configurations 0 and 1 as: 0 ¼
½0; 0; . . .; 0� 2 Sn; 1 ¼ ½1; 1; . . .; 1� 2 Sn.

4 1nCA rules classification

In the following section a classification of the 1nCA Rules

is presented. A central issue in the theory of cellular auto-

mata is the classification, i.e. understanding how cellular

automata can be meaningfully grouped according to their

structure and behavior. There are mainly two approach for

the classification of the cellular automata: the direct way,

called Phenotypic Classification, to classified cellular

automata is to observe their behavior through the spatial-

temporal patterns they generates out of several random

initial conditions, and then to use statistical metrics to

quantify the observed behavior (Li et al. 1990). Another

approach, called Genotypic Classification, is based on the

analysis of the automaton transition rules.

There are several works (e.g., Gutowitz et al. 1987; Li

and Packard 1990; Sutner 1990; Wolfram 1983; Wuensche

1999) focusing on the classification of the one dimensional

cellular automata and in particular on the Elementary Cel-

lular Automata. In this section we present an approach of

genotypic classification applied to the 1nCA. The idea of a

genotypic classification of cellular automata is to divide a

population of automata into groups according to the

intrinsic properties of the rules. The aim is that some fea-

tures of the cellular automata behaviors are predictable on

the basis of a genotypic classification.

4.1 Totalistic rules

A cellular automaton is called totalistic if the value of a cell

depends only on the sum of the values of its neighbors at the

previous time step, and not on their individual values

(Wolfram 1983). Therefore, half of the possible rules for

1nCA are totalistic. The sum n of the neighborhood cells is

computed n ¼ ci þ n
ðtÞ
ci and 0 B n B 2. The following rules

are totalistic:

Rule 0D f(n) = 0

Rule 1D
f ðnÞ ¼

1 if n ¼ 0

0 if n ¼ 1

0 if n ¼ 2

8<
:

Table continued

Rule 6D
f ðnÞ ¼

0 if n ¼ 0

1 if n ¼ 1

0 if n ¼ 2

8<
:

Rule 7D
f ðnÞ ¼

1 if n ¼ 0

1 if n ¼ 1

0 if n ¼ 2

8<
:

Rule 8D
f ðnÞ ¼

0 if n ¼ 0

0 if n ¼ 1

1 if n ¼ 2

8<
:

Rule 9D
f ðnÞ ¼

1 if n ¼ 0

0 if n ¼ 1

1 if n ¼ 2

8<
:

Rule 14D
f ðnÞ ¼

0 if n ¼ 0

1 if n ¼ 1

1 if n ¼ 2

8<
:

Rule 15D f(n) = 1

4.2 Neighbor-independent and self-independent

A rule is Neighbor-Independent if the value of a cell

depends only on its own previous value and not on the

value of the neighbors. Formally, a rule is Neighbor-

Independent if 8s 2 S; f ðs; 0Þ ¼ f ðs; 1Þ so, according to the

definition of the transition function, a rule is Neighbor-

Independent if b0 = b1, b2 = b3

A rule is Self-Independent if the value of a cell depends

only on the value of the neighbors and not on its own

previous value. Formally, a rule is Self-Independent if 8s 2
S; f ð0; sÞ ¼ f ð1; sÞ so, according to the definition of the

transition function, a rule is Self-Independent if b0 = b2,

b1 = b3.

According to this criterion the 1nCA rules can therefore

be characterized as follows:

Neighbor-Independent rules: Rule 0D, Rule 3D, Rule

12D, Rule 15D;

Self-independent rules: Rule 0D, Rule 5D, Rule 10D,

Rule 15D.

Table 1 The 1nCA rules characterized according to the k parameter

k = 0 Rule 0D
k = 0.25 Rule 1D, Rule 2D, Rule 4D, Rule 8D
k = 0.5 Rule 3D, Rule 5D, Rule 6D, Rule 9D, Rule 10D,

Rule 12D
k = 0.75 Rule 7D, Rule 11D, Rule 13D, Rule 14D
k = 1 Rule 15D
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4.3 k-Parameter

An even cruder piece of information about a rule is the

number of non-quiescent outputs in a rule-table. For the

1nCA this parameter is equal to the number of b parame-

ters that are equal to one and it can be calculated as

c ¼
P3

i¼0 bi

Langton (1990) proposed the so called k-parameter as an

order-chaos parameter for CA. This parameter measures

the density of non-quiescent (not zero) outputs in a rule-

table. For the 1nCA the k-parameter can be calculated as:

k ¼ c
kn ¼ 1

4

P3
i¼0 bi where k is the number of states and n is

the neighborhood size. k varies between 0 (order) to 0.5

(chaos) to 1 (order). As k is increased from 0 to 0.5 (or

decreased from 1 to 0.5), the automata move from having

the most homogeneous rule tables to having the most

heterogeneous.

Langton presented evidence that there is some correla-

tion between the k parameter and the behavior of an

‘‘average’’ Cellular Automata on an ‘‘average’’ initial

configuration (Langton 1990): the behavior was charac-

terized in terms of quantities such as single-site entropy,

two-site mutual information, difference-pattern spreading

rate, and average transient length. Generally the correlation

is quite good for very low and very high k values, which

predict fixed-point or short-period behavior. However, for

intermediate k values, there is a large degree of variation in

behavior (Mitchell et al. 1993).

The values of the k parameter for all the 1nCA rules are

shown in Table 1.

4.4 Sensitivity

Binder (1993, 1994) proposed the sensitivity parameter

l, motivated by the observation that the Wolfram classes

are characterized by its sensitivity to changes in the state

of a unique cell of the neighborhood of the transition

rule.

Sensitivity is defined as the number of changes in the

outputs of the transition rule, caused by changing the state

of each cell of the neighborhood, one cell at a time, over all

possible neighborhoods of the rule being considered: l ¼
1

nm

P
n

Pm
j¼1

df
dsj

where m is the number of cells in the

neighborhood and n is the number of possible neighbor-

hoods in the rule table. For 1nCA, m = 2, and n = 2m = 4.

The Boolean derivate for Cellular Automata (Vichniac

1990) df
dsj

is equal to 1 if f ðs1; . . .; sj; . . .Þ 6¼ f ðs1; . . .;

:sj; . . .Þ, otherwise is equal to 0.

Table 2 The values of the sensitivity parameter for the 1nCA rules

Rule l Rule l Rule l Rule l

Rule 0D 0 Rule 1D 0.5 Rule 2D 0.5 Rule 3D 0.5

Rule 4D 0.5 Rule 5D 0.5 Rule 6D 1 Rule 7D 0.5

Rule 8D 0.5 Rule 9D 1 Rule 10D 0.5 Rule 11D 0.5

Rule 12D 0.5 Rule 13D 0.5 Rule 14D 0.5 Rule 15D 0

Table 3 The values of the rule density for all the rules

Rule Rq Rule Rq

Rule 0D 0 Rule 1D 0.375

Rule 2D 0.25 Rule 3D 0.5

Rule 4D 0.25 Rule 5D 0.5

Rule 6D 0.5 Rule 7D 0.625

Rule 8D 0 Rule 9D 0.5

Rule 10D 0.5 Rule 11D 0.75

Rule 12D 0.5 Rule 13D 0.75

Rule 14D 1 Rule 15D 1

Table 4 The rules divided

according to the symmetries

The value of rule density is

reported for each rule. The

classes marked with T are

formed by totalistic rules, N by

Neighbor-Independent rules,

and S by Self-Independent rules

Class 0DTNS: Rule 0D (Rq = 0) Rule 15D (Rq = 1)

Class 1DT: Rule 1D (Rq = 0.375) Rule 7D (Rq = 0.625)

Class 2D: Rule 2D (Rq = 0.25) Rule 11D (Rq = 0.75)

Class 3DN: Rule 3D (Rq = 0.5)

Class 4D: Rule 4D (Rq = 0.25) Rule 13D (Rq = 0.75)

Class 5DS: Rule 5D (Rq = 0.5)

Class 6DT: Rule 6D (Rq = 0.5) Rule 9D (Rq = 0.5)

Class 8DT: Rule 8D (Rq = 0) Rule 14D (Rq = 1)

Class 10DS: Rule 10D (Rq = 0.5)

Class 12DN: Rule 12D (Rq = 0.5)
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The sensitivity parameter takes on three different values:

0, 0.5, and 1. The sensitivity parameter helps to relatively

discriminate null and chaotic behaviors: the null behav-

ior happens in rules with low sensitivity and the chaotic

behavior happens in rules with high sensitivity. Fixed-point

and periodic behaviors are concentrated around 0.5.

The value of the sensitivity parameter for the 1nCA

rules is presented in Table 2.

Fig. 9 60 steps of the time evolution of all the 16 1nCA with the default synchronous update scheme and periodic boundaries conditions starting

from an initial random configuration of 60 cells
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4.5 Rule density

The rule density is another very simple parameter intro-

duced to describe rules behavior. The rule density, Rq, is

computed as Rq ¼ ðk� 1
2
Þ2ðb3�b0Þ þ 1

2
:

Roughly speaking, rule density indicates the average

fraction of sites whose value is one in the rule dynamic

evolution. The rule density value is comprised between

zero and one. A value of zero indicates that a rule con-

verges (for most of the initial configurations) to zero state

in all the cells, a value of one indicates a convergence to

one. The rule density value for the 1nCA rules is shown in

Table 3.

4.6 Rules symmetries

One mean of verification of the consistence of the rule

density parameter (and also the other parameters) is the use

of symmetries: if two rules are conjugate, the rule density

of one rule is equals to 1 - Rq of the other rule.

In Fatès (2003) the author defines the reflected, conju-

gate and reflected conjugate symmetries for the Elementary

Cellular Automata. The only possible symmetry for the

1nCA is when f*, the conjugate rule of f, is defined as

8ðci; nci
Þ 2 S2; f �ðci; nci

Þ ¼ f ð:cl;:nci
Þ

where : denotes the operation of changing the zeros

into ones and ones into zeros. The b* parameters of the

conjugate rule are defined as b�3 ¼ :b0; b�2 ¼ :b1;

b�1 ¼ :b2; b�0 ¼ :b3.

We identified 6 classes of rules, shown in Table 4,

according to the symmetries: we can group in one class all

the rules that are symmetric (reflected, conjugated or

reflected conjugated). The classes are named according to

the lowest member index. Each class is formed by totalistic

or non-totalistic rules.

This kind of classification of the 1nCA is important

because we can restrict the study of the dynamic behavior

to only one member of each class and the behavior of the

other members can be simply inferred according to the

symmetric relations.

5 Effects of asynchronicity in 1nCA

In this section we present the effects of several relevant

update schemes on 1nCA automata dynamic evolutions. In

Fig. 9 the time evolutions of all the 16 rules according with

synchronous update scheme and periodic boundaries con-

ditions, starting from an initial random configuration of 60

cells.

We tested the following update schemes on all the 1nCA

rules; more precisely, we analyzed the behavior of repre-

sentatives of the symmetry classes identified in Sect. 4.6:

– Synchronous

– Random cyclic

– Equal frequency clocked

– Random order

– Random independent

In the following section the outcomes of this analysis

will be shown for rules belonging to rules of class 6DT,

given their particular sensitiveness to the choice of a dif-

ferent update scheme and to the significant difference in the

overall system dynamics. A summary of the results of the

overall analysis will be given in Sect. 5.2.

Fig. 10 Time space diagrams of Rule 6D using different update

schemes starting from a random initial configuration

Fig. 11 Time space diagrams of Rule 6D using different update

schemes starting from a single seed
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5.1 Class 6DT

This section describes an analysis of the dynamic evolution

of 1nCA belonging to the Class 6D. The rules of this

class are Rule 6D (Rq = 0.5, k = 0.5, l = 1) and Rule

9D (Rq = 0.5, k = 0.5, l = 1).

The dynamic behaviors of the Rule 6D using different

update schemes are shown in Fig. 10. The rules of this

class are Chaotic: these rules are characterized by the

exponential divergence of its cycle length with the

system size, and for the instability with respect to

perturbations. If the number of cells is finite, for the

Synchronous, Random Cyclic, and Equal Frequency

Clocked schemes, the evolution eventually falls into a

cycle (with period p [ 1) or a fixed point (p = 1). The

configuration 0 is the fixed point of the Rule 6D, the

configuration 1 is the fixed point of the Rule 9D. These

configurations are fixed points also using the Random

update schemes.

Changing update scheme has dramatic effect on the

rule of this class. As shown in Fig. 11, with the Syn-

chronous update scheme, the Rule 6D produces a dynamic

evolution similar to the Sierpinski Triangle fractal. This

typical shape is not present with any of the other update

schemes.

Moreover if the automaton has periodic boundaries

conditions and the number of cells is a power of two,

starting from an initial configuration, the evolution of the

synchronous automata eventually reaches the fixed point.

The automata with the other update schemes does not

present this behavior.

5.2 Summary of effects of asynchronicity in 1nCA

We can classify the 1nCA rules according to the impact

of the choice of a different update schemes on the

dynamic evolution of the model. Comparing the dynamic

behavior of the same automata adopting the synchro-

nous update scheme and a different asynchronous update

scheme, we identified the following four classes of asyn-

chrony influence:

– AS1: not influenced by the update schemes, the

dynamic behavior does not change varying the update

scheme;

– AS2: the Random Independent update scheme perturbs

the dynamic behavior;

– AS3: the Random Independent and Random Order

update schemes perturb the dynamic behavior;

– AS4: any asynchronous update scheme perturbs the

dynamic behavior.

The 1nCA rules can be classified into the above cate-

gories as shown in Table 5: the table also reports the rule

classification according to existing approaches [and more

precisely Wolfram’s and Li and Packard’s (1990) classifi-

cations], as well as to other classifications introduced in

Sect. 4.

6 Conclusions

The paper has presented a discussion on asynchronicity in

CA models, comparing different types of update scheme

Table 5 Summary of 1nCA rules classification according both to the

Rule Bin Wolfram class Li-Packard class Class k Rq l Asynchrony

sensitive

0D 0000 W1 Null 0DTNS 0 0 0 AS1

1D 0001 W2 Two-cycle 1DT 0.25 0.375 0.5 AS3

2D 0010 W2 Two-cycle 2D 0.25 0.25 0.5 AS4

3D 0011 W2 Two-cycle 3DN 0.5 0.5 0.5 AS2

4D 0100 W1 Fixed-point 4D 0.25 0.25 0.5 AS1

5D 0101 W2 Two-cycle 5DS 0.5 0.5 0.5 AS3

6D 0110 W3 Chaotic 6DT 0.5 0.5 1 AS4

7D 0111 W2 Two-cycle 1DT 0.75 0.625 0.5 AS3

8D 1000 W1 Null 8DT 0.25 0 0.5 AS1

9D 1001 W3 Chaotic 6DT 0.5 0.5 1 AS4

10D 1010 W2 Two-cycle 10DS 0.5 0.5 0.5 AS3

11D 1011 W2 Two-cycle 2D 0.75 0.75 0.5 AS4

12D 1100 W2 Fixed-point 12DN 0.5 0.5 0.5 AS1

13D 1101 W2 Fixed-point 4D 0.75 0.75 0.5 AS1

14D 1110 W1 Null 8DT 0.75 1 0.5 AS1

15D 1111 W1 Null 0DTNS 1 1 0 AS1
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and proposing an ontology to classify them. The implica-

tions of the different update schemes have been presented

by introducing a very simple CA based model and testing it

adopting different update schemes. Future developments of

this work, in the vein of Fatès and Morvan (2005), are aimed

at evaluating the possibility to define asynchronous models

in which some global dynamic properties are preserved

even adopting different asynchronous update schemes.
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