
Faster synchronization in P systems

Michael J. Dinneen · Yun-Bum Kim ·
Radu Nicolescu

Published online: 17 August 2011

© Springer Science+Business Media B.V. 2011

Abstract In the field of molecular computing, in particular

P systems, synchronization is an important requirement for

composing or sequentially linking together congenial P

system activities. We provide a deterministic algorithm to

the Firing Squad Synchronization Problem, for digraph-

based P systems, which runs in 3e+ 11 steps, where e is the
eccentricity of the general. Our algorithm uses a convenient

framework, called simple P modules, which embraces the

essential features of several popular types of P systems.

Keywords Cellular automata · P systems ·

Simple P modules · Firing squad synchronization

1 Introduction

The Firing Squad Synchronization Problem (FSSP) (Goto

1962; Moore 1964) is one of the best studied problems for

cellular automata. The initial problem, involves finding a

cellular automaton, such that, some time after a command

is given, all the cells in a line enter a designated firing state

simultaneously and for the first time. Several variants of

FSSP have been proposed and studied, for variety of

structures (Nishitani and Honda 1981; Szwerinski 1982;

Grefenstette 1983; Schmid and Worsch 2004). Studies of

these variations mainly focus on finding a solution with as

few states as possible and possibly running in optimum

time (Waksman 1966; Balzer 1967; Mazoyer 1987; Imai

et al. 2002; Kobayashi and Goldstein 2005; Umeo et al.

2005).

There are several applications that require synchroni-

zation. We list just a few here. At the biological level, cell

synchronization is a process by which cells at different

stages of the cell cycle (division, duplication, replication)

in a culture are brought to the same phase. There are

several biological methods used to synchronize cells at

specific cell phases (Humphrey 2005). Once synchronized,

monitoring the progression from one phase to another

allows us to calculate the timing of specific cells’ phases.

Another example relates to computer networks (Freeman

2005), where we often want to synchronize computers to

the same time, i.e. primary reference clocks should be used

to avoid clock offsets.

The synchronization problem has recently been studied

in the framework of P systems. Using tree-based P systems,

Bernardini et al. (2008) provided a non-deterministic

solution with time complexity 3h and a deterministic

solution with time complexity 4n + 2h, where h is the

height of the tree structure underlying the P system and n is

the number of membranes of the P system. The deter-

ministic solution requires membrane polarization
techniques and uses a depth-first-search.

More recently, Alhazov et al. (2008) described an

improved deterministic algorithm for tree-based P systems,

that runs in 3h + 3 steps. This solution requires conditional

rules (promoters and inhibitors) and combines a breadth-
first-search, a broadcast and a convergecast.

We continue our study of FSSP for digraph-based P

systems (Dinneen et al. 2009, 2010c), where we proposed

uniform deterministic solutions to a variant of FSSP

(Szwerinski 1982), in which there is a single general, at an

arbitrary position, and we synchronize a subset of cells (or

M. J. Dinneen (&) · Y.-B. Kim · R. Nicolescu

Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand

e-mail: mjd@cs.auckland.ac.nz

Y.-B. Kim

e-mail: yun@cs.auckland.ac.nz

R. Nicolescu

e-mail: radu@cs.auckland.ac.nz

123

Nat Comput (2012) 11:107–115

DOI 10.1007/s11047-011-9271-z

membranes) of the considered P system. In contrast to the

previous FSSP solutions, our solutions require states and

priority rules, instead of membrane polarizations or con-

ditional rules. We have earlier presented (Dinneen et al.

2010c) two FSSP algorithms with the running times of

4e + 13 and 3e + 13, where e is the eccentricity of the

initiator; the former does not use cell IDs and latter uses

cell IDs. All cells of our solutions start with the same state

and rules, and have no priori knowledge of the network

topology.

In this paper, we present an improved deterministic

FSSP algorithm, for P systems with digraph membrane

structure, which runs in 3e + 11 steps, without the support

of cell IDs. The rest of the paper is organized as follows. In

Sect. 2, we define a virtual communication structure for a

given P system structure, based on the recursive con-

struction of the transitive closure of the neighboring

relation. We also establish a convenient P system frame-

work, called simple P modules (Dinneen et al. 2010a). In

Sect. 3, we provide an overview and the P module speci-

fication for our FSSP algorithm. Finally, in Sect. 4, we

summarize our results and conclude with some open

problems.

2 Preliminaries

We assume that the reader is familiar with the basic ter-

minology and notations, such as relations, graphs, nodes

(vertices), arcs, edges, directed graphs (digraphs), directed

acyclic graphs (dags), alphabets, strings and multisets.

For a digraph (X, δ), recall that NeighborðxÞ ¼
dðxÞ [d�1ðxÞ: The relation Neighbor is always symmetric

and defines a graph structure, which will be here called the

virtual communication graph defined by δ.
A special node g of X is designated as the (fixed) gen-

eral. For a given general g, we define the depth of a node

x; depthgðxÞ 2 N; as the length of any shortest path

between the c and x, over the Neighbor relation. Recall

that the eccentricity of a node x 2 X; ex; as the maximum

length of a shortest path between x and any other node. We

note eg ¼ maxfdepthgðxÞ j x 2 Xg:
Given nodes x, y, if y 2 NeighborðxÞ and depthgðyÞ ¼

depthgðxÞ þ 1; then (x, y) is a depth-increasing arc, x is a

predecessor of y and y is a successor of x. Similarly, a node

z is a peer of x, if z 2 NeighborðxÞ and depthgðzÞ ¼
depthgðxÞ: Note that, for node x, the set of peers and the set
of successors are disjoint. A node without a successor will
be referred to as a terminal. For node x; PredgðxÞ ¼
fy j y is a predecessor of xg;PeergðxÞ¼fy jy is a peer of xg;
SuccgðxÞ ¼ fy j y is a successor of xg:
The depth-increasing arcs form a virtual shortest-paths

dag, where each path from general c to a node y is a

shortest path, over the Neighbor relation. We further define

heightgðyÞ as the height of y in the shortest-paths dag and

pathsgðyÞ as the number of shortest paths from g to y.
If, as we further assume, the original digraph, δ, is

weakly connected, then the shortest paths dag has a single

source, general c.
Figure 1a illustrates a digraph with the general g = 1.

Figure 1b illustrates its communication graph, where the

nodes at even distance from g are shaded and the depth-

increasing arcs of the shortest-paths dag are marked by

additional arrows. For each node x, Fig. 1c indicates

NeighborðxÞ; PredgðxÞ; PeergðxÞ; SuccgðxÞ ; depthgðxÞ;
heightgðxÞ and pathsgðxÞ:
Definition 1 (simple P module, Dinneen et al. 2010a). A

simple P module with duplex channels is a system

P ¼ ðO;K; dÞ; where:
1. O is a finite non-empty alphabet of objects;
2. K is a finite set of cells;
3. δ is an irreflexive binary relation on K, which repre-

sents a set of structural arcs between cells, with duplex
communication capabilities.

Each cell, ri 2 K; has the initial configuration

σi = (Qi, si0, wi0, Ri), and the current configuration

σi = (Qi, si, wi, Ri), where:

● Qi is a finite set of states;
● si0 2 Qi is the initial state; si 2 Qi is the current state;
● wi0 2 O� is the initial content; wi 2 O� is the current

content; note that, jwijo; o 2 O; denotes the multiplicity
of object o in the multiset wi;

● Ri is a finite ordered set of multiset rewriting rules of
the form: sx !a s

0x0ðuÞbc ; where s; s0 2 Q; x; x0 2 O�;
u 2 O�; a 2 fmin; maxg; b 2 f"; #; lg; c 2 fone;
spread; replg [K: If u = λ, i.e. the empty multiset of

objects, this rule can be abbreviated as sx !a s
0x0:

Cells evolve by applying rules. An evolving cell applies

one or more rules, which can change its content and

state and send objects to its neighbors. For a cell

σi = (Qi, si, wi, Ri), a rule sx !a s
0x0ðuÞbc 2 Ri is applicable

if s = si and x � wi: The application of a rule takes two

sub-steps, after which the cell’s current state s is replaced
by target state s´, the current content x is replaced by x´ and
multiset u is sent as specified by the transfer operator βγ
(as further described below).

The rules are applied in the weak priority order (Păun

2006), i.e. (1) higher priority applicable rules are applied

before lower priority applicable rules, and (2) a lower

priority applicable rule is applied only if it indicates the

same target state as the previously applied rules. We use

the notation s ⇒ s′ to indicate a state transition from current

state s to target state s′.

108 M. J. Dinneen et al.

123

In this paper, we use the rewriting operator a ¼ max

and the transfer operator lrepl: The rewriting operator

a ¼ max indicates that an applicable rewriting rule of Ri is

applied as many times as possible. If the right-hand side of

the rule contains ðuÞlrepl ; then, for each application of this

rule, a copy of multiset u is sent to each of the neighboring

cells (i.e. cells in δ(i) ∪ δ−1(i)). Other rewriting and transfer

operators, not used in this paper, are described in Dinneen

et al. (2010b). The following example illustrates the

behavior of operators that are used in this paper.

Example 2 Consider a simple P module P ¼ ðfa; b;
c; d; e; f ; gg; fr1; r2; r3g; fðr1; r2Þ; ðr2; r3ÞgÞ; where each

cell ri 2 K has the initial form (Q, si0, wi0, R), where:

● Q = {s0, s1}.
● si0 = s0.

● wi0 ¼ aabbc if ri ¼ r2;
k if ri 6¼ r2:

�

● R is the following sequence of rules:

1. s0 a !max s0 dðdÞlrepl
2. s0 b !max s0 e

3. s0 c !max s1 f

4. s0 c !max s0 g

In this scenario, all rules are applicable for cell σ2. First,
rule 1 is applied twice and sets the target state to s0. Next,
rule 2 is applied twice, then rule 3 is not applied (because it

indicates a different target state, s1) and, finally, rule 4 is

applied once. In the final configuration of the system, after

one step, cell σ1 contains dd, cell σ2 contains ddeeg and cell
σ3 contains dd.

3 Deterministic FSSP solution

In FSSP, all cells start in a quiescent state, i.e. in a state

where no rules are applicable if the cell is empty. Also, all

cells are empty, except the general cell. In principle, the

general sends a “firing order” to all cells, which will

prompt them to synchronize, by entering a designated firing
state (different from the initial quiescent state), simulta-

neously and for the first time. However, in general, the

general does not have direct communication channels to all

cells, thus, the firing order has to be relayed through

intermediate cells. Relaying the order through intermediate

cells results in some cells receiving the order before other

cells. To ensure that all cells enter the firing state simul-

taneously, each cell needs to wait until all other cells

receive the order.

Our FSSP algorithm works in four phases. In Phases I

and II, prior to sending the firing order, the general deter-

mines its eccentricity, using all shortest paths available. In

Phase III, the general sends the firing order, paired with a

hop-count, initially set to its eccentricity. The order is

further broadcasted to all cells, again via shortest paths.

Each cell decrements the hop-count by one, before for-

warding the order. In Phase IV, each cell keeps

decrementing the hop-count by one, until the hop-count

becomes zero, and then enters the firing state; this ensures

that cells enter the firing state simultaneously.

Our FSSP algorithm is implemented using the simple P

module P ¼ ðO;K; dÞ; where
1. O = {a, b, c, d, e, h, o, r, v, x}.
2. K ¼ fr1; r2; . . .; rng:
3. δ is a weakly connected digraph.

The general is an arbitrary cell rg 2 K: All cells have

the same set of states, the same set of rules and start at the

same initial quiescent state; however, they have different

initial contents. Thus, each cell ri 2 K has the initial form

σi = (Q, s0, wi0, R), where:

● Q = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9}, where s0 is the
initial quiescent state and s9 is the firing state.

● wi0 ¼ fag if ri ¼ rg;
; if ri 6¼ rg:

�

● R is defined by the following rulesets, grouped by the

conceptual four phases.

◯ Rules used in Phase I:

0. Rules for state s0:
(1) s0 a !max s1 abbbdeðoÞlrepl
(2) s0 o !max s1 aðxÞlrepl
(3) s0 x !max s1 aeðoÞlrepl

(a) (b) (c)

Fig. 1 a A sample digraph with

the general]] g = 1. b Its virtual

communication graph and

shortest-paths dag. c A table

with node attributes introduced

in this section

Faster synchronization in P systems 109

123

1. Rules for state s1:
(1) s1 a !max s2 a
(2) s1 o !max s2 r
(3) s1 x !max s2 r

2. Rules for state s2:
(1) s2 e !max s3
(2) s2 a !max s4 a
(3) s2 x !max s3 v
(4) s2 o !max s4 v

◯ Rules used in Phase II:

3. Rules for state s3:
(1) s3 h !max s5 r
(2) s3 xv !max s3
(3) s3 av !max s3 av
(4) s3 a !max s3 ah ðoÞlrepl
(5) s3 bd !max s3 bbd

4. Rules for state s4:
(1) s4 h !max s5 r
(2) s4 ov !max s4
(3) s4 av !max s4 av
(4) s4 a !max s4 ah ðxÞlrepl

5. Rules for state s5:
(1) s5 dr !max s6
(2) s5 bb !max s6 b
(3) s5 rx !max s5
(4) s5 ro !max s5
(5) s5 r !max s5 r
(6) s5 a !max s6 a

◯ Rules used in Phase III:

6. Rules for state s6:
(1) s6 ab !max s7 ah
(2) s6 b !max s7 c ðbÞlrepl

7. Rules for state s7:
(1) s7 h !max s7
(2) s7 a !max s8 a
(3) s7 b !max s8

◯ Rules used in Phase IV:

8. Rules for state s8:
(1) s8 ac !max s8 a
(2) s8 a !max s9

To simplify our arguments, for each cell ri 2 K; we

define pathsgðiÞ ¼ pathsrgðriÞ; depthgðiÞ ¼ depthrgðriÞ;
heightgðiÞ¼heightrgðriÞ;PredgðiÞ¼PredrgðriÞ;SuccgðiÞ
¼ SuccrgðriÞ;PeergðiÞ ¼ PeerrgðriÞ: Additionally, we

define the following “variable” objects, which depend on

the depth of the cell ri : li ¼ x; li ¼ o; if depthgðiÞ is even
and li ¼ o; li ¼ x; if depthgðiÞ is odd. In Phases I and II,

this alternation between μi and li enables cell σi to dis-

tinguish between “useful” objects, μi, received from

predecessors and successors, and “noise” objects, li;

received from peers; cell σi will itself send out li objects,
to all its neighbors.

3.1 FSSP Phase I

Phase I is a broadcast initiated by the general, relayed from

predecessors to successors, using li; li as broadcast
objects. Intuitively, cell σi expects to receive “useful”

objects μi, first from its predecessors, then from its suc-

cessors, “noise” objects li; from its peers, and sends li
objects, to all its neighbors. Additionally, the general starts

a counter, which is incremented by one in each step.

Phase I (First broadcast from the general)
Precondition: Phase I starts with P module P in its

initial configuration.

Postcondition: At the end of Phase I, the configuration

of cell ri 2 K is (Q, si, wi, R), where

● si ¼ s3 if depthgðiÞ is even;
s4 if depthgðiÞ is odds:

�

● jwija ¼ pathsgðiÞ; is the number of shortest paths

from σg to σi.
● |wi|b = 3 and |wi|d = 1, if σi = σg, is used to

implement the general’s counter.

● jwijr ¼
P

rj2PeergðiÞ pathsgðjÞ; used in Phase II, as

the expected number of convergecast objects from

peers.

● jwijv ¼
P

rk2SuccgðiÞ pathsgðkÞ; used in Phase II, as

the expected number of convergecast objects from

successors.

Description: In Phase I, each cell σi makes three state

transitions: if depthgðiÞ is even (which includes the

general), then s0 ⇒ s1 ⇒ s2 ⇒ s3; otherwise s0 ⇒ s1 ⇒ s2 ⇒
s4. The general σg, identified by its initial content

a, sends the first broadcast object, one copy of lg ¼ o; to

each of its neighbors. Each other cell σi ≠ σg receives its
first broadcast objects μi from its predecessors, in state

s0. Rules applied in transition s0 ⇒ s1 rewrite

received μi’s into a’s and send li’s to all σi’s neighbors.
Additionally, for general σg, these rules produce three

copies of b and one copy of d. Rules applied in transition

s1 ⇒ s2 rewrite li’s received from peers into r’s. Rules
applied in transitions s2 ⇒ s3 or s2 ⇒ s4 rewrite μi’s
received from successors into v’s.

Propositions 3, 4 and 5, indicate the number of broadcast

objects respectively received from predecessors, peers and

successors. Cells complete this phase in the number of

steps indicated by Proposition 6. Proposition 7 character-

izes the terminals.

Proposition 3 Cell σi ≠ σg receives k copies of μi from its
predecessors, in step idepthgðiÞ and sends k copies of li to

110 M. J. Dinneen et al.

123

each of its successors, in step depthgðiÞ þ 1; where
k ¼ pathsgðiÞ:
Proof Proof by induction, on m ¼ depthgðiÞ� 1: In step

1, the general sends o to all its neighbors. Hence, in step 1,

each cell σi in depth 1 receives o = μi. Then, in step 2, by

state transition s0 ⇒ s1, σi sends x ¼ li to each of its

successors.

Assume that the induction hypothesis holds for each cell

σj at depth m. Consider cell σi at depthgðiÞ ¼ mþ 1 ¼
depthgðjÞ þ 1: By induction hypothesis, in step depthgðjÞ
þ1; each rj 2 PredgðiÞ sends pathsgðjÞ copies of lj to all

its neighbors. Thus, in step depthgðjÞ þ 1 ¼ depthgðiÞ; ri
receives

P
rj2PredgðiÞ pathsgðjÞ ¼ pathsgðiÞ copies of

lj ¼ li: In step depthgðiÞ þ 1; by state transition s0 ⇒ s1,
σi sends pathsgðiÞ copies of li to all its neighbors. □

Proposition 4 Cell σ receives i k copies of li from its
peers, in step depthgðiÞ þ 1; where k ¼ P

rj2PeergðiÞ
pathsgðjÞ:
Proof From Proposition 3, each cell rj 2 PeergðiÞ sends
pathsgðjÞ copies of lj to all its neighbors in step

depthgðjÞ þ 1: Hence, σi receives pathsgðiÞ copies of

lj ¼ li from σj in step depthgðjÞ þ 1 ¼ depthgðiÞ þ 1:

Thus, in step depthgðiÞ þ 1; ri receives lki ; where

k ¼ P
rj2PeergðiÞ pathsgðjÞ: □

Proposition 5 Cell σi receives k copies of μi from its
successors, in step depthgðiÞ þ 2; where k ¼ P

rj2SuccgðiÞ
pathsgðjÞ:
Proof From Proposition 3, each cell rj 2 SuccgðiÞ sends
pathsgðjÞ copies of lj to all its neighbors in step depthgðjÞ
þ1: Hence, σi receives pathsgðiÞ copies of lj ¼ li from σj
in step depthgðjÞ þ 1 ¼ depthgðiÞ þ 2: Thus, in step

depthgðiÞ þ 2; ri receives μi
k, where k ¼ P

rj2SuccgðiÞ
pathsgðjÞ: □

Proposition 6 Cell σi takes depthgðiÞ þ 3 steps in
Phase I.

Proof From Proposition 3, cell σi receives pathsgðiÞ
copies of μi from its predecessors in step depthgðiÞ: Cell σi
takes three state transitions, where each state transition

takes one step. Hence, σi takes depthgðiÞ þ 3 steps. □

Proposition 7 A cell σi, which does not receive any
broadcast objects in step depthgðiÞ þ 2 is terminal.

Proof Follows from Proposition 5. □

3.2 FSSP Phase II

Phase II is a convergecast initiated by the terminals,

relayed from successors to predecessors. using li; li as

convergecast objects (identical to the broadcast objects

sent in Phase I). Intuitively, cell σi expects to receive

“useful” objects μi, first from its successors, then from its

predecessors, “noise” objects li; from its peers, and sends

li objects, to all its neighbors. At the end of this phase, the

general stops its counter (used to compute its eccentricity).

Phase II (Convergecast from terminals)
Precondition: Phase II starts with the postcondition of

Phase I.

Postcondition: Phase II ends when the general σg enters
state s6. At the end of Phase II, the configuration of cell

ri 2 K is (Q, si, wi, R), where
● si = s6.
● jwija ¼ pathsgðiÞ; is the number of shortest paths

from σg to σi.
● jwijb ¼ eg þ 2; if σi = σg.

Description: Immediately after the first broadcast

(Phase I), each terminal cell σi initiates a convergecast, by

sending convergecast objects li; to all its predecessors. A

non-terminal cell σi expects |wi|v copies of μi from its

successors. After receiving this expected number, cell σi
sends |wi|a copies of li; to each of its neighbors.

Additionally, when i = c, the general cell σg stops its

counter (which was started in Phase I). The resulting

general counter is 2eg þ 6; i.e. the round-trip time from σg
to one of its farthest terminal (plus some overheads). Thus,

at the end of Phase II, using this counter, σg can determine

its eccentricity.

Proposition 8 A non-terminal cell σi receives u copies
of μi from its successors and sends k copies of li to each of
its predecessors, where k ¼ pathsgðiÞ and u ¼P

rj2SuccgðiÞ pathsgðjÞ:
Proof Proof by induction, on cell σi’s height,

m ¼ heightgðiÞ:
In the base case, when m = 0, cell σi is a terminal cell.

Clearly, cellσi has zero successors and therefore receives zero
copies μi. By rule 3.4 or 4.4, cell σi sends pathsgðiÞ copies of
li to all its neighbors (one copy of li for each copy of a).

Assume that the induction hypothesis holds for each cell

σk with height heightgðkÞ�m; and consider cell σi at

height heightgðiÞ ¼ mþ 1: In this case case, cell σi is non-
terminal. Each cell rj 2 SuccgðiÞ has height heightgðjÞ
�m; thus it satisfies the induction hypothesis and sends

out, to σi, pathsgðjÞ copies of lj: In total, cell σi receives,
from all its successors, u ¼ P

rj2SuccgðiÞ pathsgðjÞ copies

of μi. Next, by rule 3.2 or 4.2, σi consumes its u copies of μi
and v (one copy of μi for each copy of v). After consuming

all its v’s, by rule 3.4 or 4.4, cell σi sends k ¼ pathsgðiÞ
copies of li to each of its neighbors (one copy of li for
each copy of a). □

Proposition 9 Cell σi takes 2eg � depthgðiÞ þ 3 steps in
Phase II.

Faster synchronization in P systems 111

123

Proof The general σg starts Phase II after completing its

Phase I transitions (s0 ⇒ s1 ⇒ s2 ⇒ s3) i.e. three steps after

sending its Phase I broadcast object o. The broadcast needs
eg steps to reach σt, one of the farthest terminal (with

respect to σg). Cell σt needs three more steps to decide that

it is terminal. Further eg steps are needed for the con-

vergecast to reach back σg. Finally, σg needs three more

overhead steps to reach state s6. Thus, σg needs a total of

2eg þ 3 steps to reach Phase II’s final state. Each cell

σj ≠ σg starts Phase II, with a delay of depthgðjÞ steps, after
σg starts Phase II. Therefore, σi takes 2eg � depthgðiÞ þ 3

steps in Phase II. □

3.3 FSSP Phase III

Phase III is a second broadcast initiated by the general,

relayed from predecessors to successors. Initially, the

general sends eg þ 1 copies of object b to each of its

successors. After receiving a number of b’s (which depends
on its depth and on its number of shortest paths from the

general), each cell σi sends eg þ 1� depthgðiÞ copies of b
to each of its successors.

Phase III (Second broadcast from the general)
Precondition: Phase III starts with the postcondition of

Phase II.

Postcondition: At the end of Phase III, the configuration

of cell ri 2 K is (Q, si, wi, R), where
● si = s8.
● jwija ¼ pathsgðiÞ; is the number of shortest paths

from σg to σi.
● jwijg ¼ ðeg þ 1� depthgðiÞÞpathsgðiÞ; where egþ

1� depthgðiÞ is the countdown counter used in

Phase IV.

Description: In Phase III, each cell σi makes three

transitions, s6 ⇒ s7 ⇒ s7 ⇒ s8, where each transition takes

one step. The general σg initiates a second broadcast by

sending eg þ 1 copies of b to all its successors. hop

count is represented by the multiplicity of the second

broadcast object. A cell σi ≠ σg receives b’s simulta-

neously via all shortest paths from σg to σi. Specifically,
σi receives ðeg þ 2� depthgðiÞÞpathsgðiÞ copies of

b, then transition s6 ⇒ s7 removes pathsgðiÞ copies of

b and sends remaining ðeg þ 1� depthgðiÞÞpathsgðiÞ
copies of b to all its neighbors. During transitions s7 ⇒ s7
⇒ s8, σi accumulates and removes superfluous b’s from
its peers and successors.

Proposition 10 Cell σi receives p copies of b from its
predecessors, where p ¼ ðeg þ 2� depthgðiÞÞpathsgðiÞ;
and sends q copies of b to each of its successor, where
q ¼ ðeg þ 1� depthgðiÞÞpathsgðiÞ:

Proof Proof by induction, on m ¼ depthgðiÞ� 1: First,

the general sends by to all its neighbors, where y ¼ eg þ 1:

Thus, each cell σi at depth 1 receives by, where y ¼ egþ
1 ¼ ðeg þ 2� depthgðiÞÞpathsgðiÞ (since pathsgðiÞ ¼ 1).

Also, by state transition s6 ⇒ s7, sends b
z to each of its suc-

cessors, where z ¼ eg ¼ ðeg þ 1� depthgðiÞÞpathsgðiÞ:
Assume that the induction hypothesis holds for each cell

σj at depth m. Consider cell σi at depthgðiÞ ¼ mþ 1

¼ depthgðjÞ þ 1: By induction hypothesis, each rj 2
PredgðiÞ sends ðeg þ 1� depthgðjÞÞpathsgðjÞ copies of

b. In total, σi receives u ¼ P
rj2PredgðiÞðeg þ 1� mÞ

pathsgðjÞ copies of b. Unrolling this expression, we obtain

u ¼ ðeg þ 1� mÞ Prj2PredgðiÞ pathsgðjÞ ¼ ðeg þ 1� mÞ
pathsgðiÞ¼ðeg þ 1� ðdepthgðiÞ � 1ÞÞpathsgðiÞ¼ðegþ 2

�depthgðiÞÞpathsgðiÞ: By state transition s6 ⇒ s7, σi
removes pathsgðiÞ copies of b and sends the remaining

copies of b, i.e. ðeg þ 1� depthgðiÞÞpathsgðiÞ copies, to

all its successors. □

Proposition 11 Cell σi takes depthgðiÞ þ 3 steps in
Phase III.

Proof Phase III starts when the general sends the second

broadcast object(s). Similar to Phase I, each cell σi receives
its first broadcast object(s) depthgðiÞ steps after the general
sends the second broadcast object(s). Cell σi then takes

three state transitions as described above. Thus, σi takes
depthgðiÞ þ 3 steps in Phase III. □

3.4 FSSP Phase IV

Phase IV is the countdown towards firing state. This phase

uses the countdown counters eg þ 1� depthgðiÞ deter-

mined in Phase III.

Phase IV (Countdown towards synchronization)
Precondition: Phase IV starts with the postcondition of

Phase III.

Postcondition: At the end of Phase IV, the configuration

of cell ri 2 K is (Q, si, wi, R), where si = s9 (the firing

state) and wi = λ.
Description: Immediately after receiving the second

broadcast (Phase III), each cell initiates a countdown

(Phase IV). To achieve synchronization, each cell σi
needs to idle for eg � depthgðiÞ þ 1 steps, before

entering the firing state. Specifically, during state

transition s8 ⇒ s8, σi removes pathsgðiÞ copies of c in

each step, such that after eg � depthgðiÞ þ 1 steps, all

c’s disappear. When there are no c’s, by state transition

s8 ⇒ s9, σi enters the firing state s9.

Proposition 12 Cell σi takes eg � depthgðiÞ þ 2 steps in
Phase IV.

112 M. J. Dinneen et al.

123

Proof Each cell σi removes pathsgðiÞ copies of the sec-

ond broadcast objects. Hence, σi takes eg � depthgðiÞ þ 1

steps to remove all the broadcast objects. Cell σi takes one
step to enter the firing state. Thus, σi takes eg � depthgðiÞ
þ2 steps in Phase IV. □

Theorem 13 The running time of our FSSP solution is
3eg þ 11 steps, where eg is the eccentricity of the general
σg.

Proof The result is obtained by summing the individual

running times of the four phases, as given by Propositions

6, 9, 11 and 12: ðdepthgðiÞ þ 3Þ þ ð2eg � depthgðiÞ þ 3Þ
þðdepthgðiÞ þ 3Þ þ ðeg � depthgðiÞ þ 2Þ ¼ 3eg þ 11: □

3.5 FSSP complete example

In Table 1, we present the traces of the FSSP algorithm for

the virtual structure of the simple P module shown in

Fig. 1. Note, for convenience, the phase boundaries are

indicated in bold in Table 1.

3.6 FSSP optimality

Finally, we show that our algorithm is optimal, up to an

additive constant, if we assume that all cells, except the

general, start empty and in a quiescent state s0 (no rules are

applicable until some objects appear).

Theorem 14 Any algorithm that solves the FSSP problem
must use at least 3eg þ 3 steps, on an infinity of systems
defined as simple P modules (where eg is the eccentricity of
the general σg).

Proof The proof is by contradiction. Consider an algo-

rithm U; that solves the FSSP problem and the following

two simple P modules (see Fig. 2):

1. Pk; with an underlying structure of a simple path

r0; r1; . . .; r2k; with the general located at cell σk (i.e.
the middle). Clearly, this general’s eccentricity is

ek = k.
2. P0

k; with an underlying structure of a simple path

r00; r
0
1; . . .; r

0
4kþ2; with the general located at cell r0k

(P0
k can be thought as a clone of Pk; extended on its

right, with 2k + 2 more cells).

First, a straightforward induction shows that cells σ0 and
r00 need at least 3k + 3 steps to reach different states.

Specifically, we show the converse, that, after t ≤ 3k + 2

steps, cells σ0 and r00 still have identical states.

● Initially, all Pk and P0
k cells are in their initial

quiescent state, say s0, and all cells are empty, except

the two generals, σk and r0k.
● At step 1, only these two generals evolve. Other

quiescent cells cannot evolve, until they receive objects

from their evolving neighbors.

Table 1 The FSSP trace of the

simple P module shown in

Fig. 1, where σg = σ1

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6

0 s0 a s0 s0 s0 s0 s0
1 s1 ab

3de s0 o s0 o s0 s0 s0
2 s2 ab

3dex2 s1 ax s1 ax s0 x
2 s0 x s0

3 s3 ab
3dv2 s2 ao

2r s2 ao
3r s1 a

2e2o s1 aeo
2 s0 o

4 s3 ab
4dv2 s4 arv

2 s4 arv
3 s2 a

2e2r s2 aer
2x s1 a

5 s3 ab
5dv2 s4 arv

2 s4 arv
3 s3 a

2r s3 ar
2v s2 a

6 s3 ab
6dv2 s4 ao

2rv2 s4 ao
2rv3 s3 a

2h2r s3 ao
2r2v s4 a

7 s3 ab
7dv2x s4 ahr s4 arvx s5 a

2r3x s3 ao
2r2vx s4 ah

8 s3 ab
8dv s5 ar

2 s4 aorvx s5 a
2or2 s3 aho

2r2 s5 aor

9 s3 ab
9dvx s5 ar

2x s4 ahrx s5 a
2rx s5 ao

2r3x s5 a

10 s3 ab
10dh s5 aor s5 aor

2x s5 a
2 s5 a s6 a

11 s5 ab
10dr s5 a s5 a s6 a

2 s6 a s6 a

12 s6 ab
5 s6 a s6 a s6 a

2 s6 a s6 a

13 s7 ac
4h s6 ab

4 s6 ab
4 s6 a

2 s6 a s6 a

14 s7 ab
6c4 s7 ab

3c3h s7 ab
3c3h s6 a

2b6 s6 ab
3 s6 a

15 s8 ac
4 s7 ab

7c3 s7 ab
9c3 s7 a

2b2c4h2 s7 ab
4c2h s6 ab

2

16 s8 ac
3 s8 ac

3 s8 ac
3 s7 a

2b2c4 s7 ab
5c2 s7 ach

17 s8 ac
2 s8 ac

2 s8 ac
2 s8 a

2c4 s8 ac
2 s7 ac

18 s8 ac s8 ac s8 ac s8 a
2c2 s8 ac s8 ac

19 s8 a s8 a s8 a s8 a
2 s8 a s8 a

20 s9 s9 s9 s9 s9 s9

Faster synchronization in P systems 113

123

● Thus, after u steps, where 0 ≤ u ≤ k, cells rk�u; . . .; rkþu

have, respectively, identical contents and states as their

pair cells r0k�u; . . .; r
0
kþu; all remaining Pk and P0

k cells

are still empty and quiescent.

● Then, after a total of k + 1 steps, cells σ0, r1; . . .; r2k
have, respectively, identical contents and states as their

pair cells r00; r
0
1; . . .; r

0
2k; while cells r02kþ2; r

0
2kþ3; . . .;

r04kþ2 are still empty and quiescent. However, at this

stage, cell r02kþ1 can be non-empty and send, in the next

step, objects to cell r02k.
● Next, after a total of v steps, where k + 1 ≤ v ≤ 3k + 1,

cells r0; r1; . . .; r3kþ1�v have, respectively, identical

contents and states as their pair cells r00; r
0
1; . . .;r

0
3kþ1�v:

● Thus, after a total of up to 3k + 1 steps (inclusive), cells

σ0 and r00 still have identical contents and states.

● Finally, after a total of up to 3k + 2 steps (inclusive),

cells σ0 and r00 still have identical states (contents could
now be different, but this is not relevant here).

We now show that algorithm U needs at least 3k + 3

steps on Pk: Assume, by contradiction, that Pk can be

synchronized in t ≤ 3k + 2 steps. In this case, after t steps,
cells σ0 and r00 are in the same state, say st, which is also

the firing state. Therefore, if algorithm U is correct, then

P0
k must also synchronize in t steps, and its rightmost cell

r04kþ2 must also reach the same firing state, st.
However, a similar induction shows that, after t ≤ 3k + 2

steps, P0
k cell r

0
4kþ2 is still in its initial quiescent state, s0,

which is different from the firing state st. This contradiction
completes the proof. □

Remark 15 The lower bound 3eg + 3 indicated by The-

orem 14 is for our current definition of simple P modules.

With respect to its proof, at least two steps are required for

cells σ2k and r02k to differentiate between their right con-

text, i.e. to determine if they are terminal (σ2k) or not (r02k).
Thus, the lower bound can be improved (e.g., to 3eg + 1),

if we enable cells to detect faster (in fewer steps) if they are

terminals or not; this could be achieved if each cell would

be equipped with a predefined counter, indicating the

number of its local structural connections.

4 Conclusion

We have proposed an improved deterministic FSSP solu-

tion in the framework of P systems, expressed using simple

P modules, with the running time of 3eg þ 11; where eg is

the eccentricity of the general cell. We have also shown

that the multiplier is optimal, up to an additive constant.

We end this paper with two open problems. One prob-

lem asks if there are adaptive FSSP algorithms which can

run faster in many scenarios, by exploiting specific struc-

tural layouts, without otherwise incurring any runtime

penalty. The other problem is related to the type of com-

munication channels: are there FSSP solutions for a P

system with strongly connected underlying membrane

structure and simplex communication capability?

References

Alhazov A, Margenstern M, Verlan S (2008) Fast synchronization in

P systems. In: Corne DW, Frisco P, Păun G, Rozenberg G,

Salomaa A (eds) Workshop on membrane computing, volume

5391 of Lecture notes in computer science. Springer, New York,

pp 118–128

Balzer R (1967) An 8-state minimal time solution to the firing squad

synchronization problem. Inf Control 10(1):22–42

Bernardini F, Gheorghe M, Margenstern M, Verlan S (2008) How to

synchronize the activity of all components of a P system? Int J

Found Comput Sci 19(5):1183–1198

Dinneen MJ, Kim Y-B, Nicolescu R (2009) New solutions to the

firing squad synchronization problems for neural and hyperdag P

systems. Electron Proc Theor Comput Sci 11:107–122

Dinneen MJ, Kim Y-B, Nicolescu R (2010a) Edge- and node-disjoint

paths in P systems. Electron Proc Theor Comput Sci 40:121–141

Dinneen MJ, Kim Y-B, Nicolescu R (2010b) P systems and the

Byzantine agreement. J Log Algebr Program 79(6):334–349

Dinneen MJ, Kim Y-B, Nicolescu R (2010c) Synchronization in P

modules. In: Calude CS, Hagiya M, Morita K, Rozenberg G,

Timmis J (eds) Unconventional computation, volume 6079 of

Lecture notes in computer science. Springer, Berlin, pp 32–44

Freeman RL (2005) Fundamentals of telecommunications, 2nd edn.

Wiley-IEEE Press, New York

Goto E (1962) A minimal time solution of the firing squad problem.

Course notes for applied mathematics, vol 298. Harvard

University, Cambridge, pp 52–59

Grefenstette JJ (1983) Network structure and the firing squad

synchronization problem. J Comput Syst Sci 26(1):139–152

Humphrey TC (2005) Cell cycle control: mechanisms and protocols.

Humana Press, Totowa

Imai K, Morita K, Sako K (2002) Firing squad synchronization

problem in number-conserving cellular automata. Fundam

Inform 52(1–3):133–141

Kobayashi K and Goldstein D (2005) On formulations of firing squad

synchronization problems. In: Calude CS, Dinneen MJ, Păun G,

Pérez-Jiménez MJ, Rozenberg G (eds) Unconventional compu-

tation, 4th international conference, UC 2005, Sevilla, Spain,

October 3–7, 2005, proceedings, volume 3699 of Lecture notes

in computer science. Springer, New York, pp 157–168

Mazoyer J (1987) A six-state minimal time solution to the firing

squad synchronization problem. Theor Comput Sci 50:183–238

Fig. 2 The two P modules used in

Theorem 14

114 M. J. Dinneen et al.

123

Moore EF (1964) The firing squad synchronization problem. In:

Moore EF (ed) Sequential machines, selected papers. Addison-

Wesley, Reading, pp 213–214

Nishitani Y, Honda N (1981) The firing squad synchronization

problem for graphs. Theor Comput Sci 14:39–61

Păun G (2006) Introduction to membrane computing. In: Ciobanu G,

Pérez-Jiménez MJ, Păun G (eds) Applications of membrane

computing. Natural computing series. Springer, New York, pp

1–42

Schmid H, Worsch T (2004) The firing squad synchronization

problem with many generals for one-dimensional CA. In: Lévy

J-J, Mayr EW, Mitchell JC (eds) IFIP TCS. Kluwer, Dordrecht,

pp 111–124

Szwerinski H (1982) Time-optimal solution of the firing-squad-

synchronization-problem for n-dimensional rectangles with the

general at an arbitrary position. Theor Comput Sci 19(3):305–

320

Umeo H, Hisaoka M, Akiguchi S (2005) A twelve-state optimum-

time synchronization algorithm for two-dimensional rectangular

cellular arrays. In: Calude CS, Dinneen MJ, Păun G, Pérez-

Jiménez MJ, Rozenberg G (eds) Unconventional computation,

4th international conference, UC 2005, Sevilla, Spain, October

3–7, 2005, proceedings, volume 3699 of Lecture notes in

computer science. Springer, New York, pp 214–223

Waksman A (1966) An optimum solution to the firing squad

synchronization problem. Inf Control 9(1):66–78

Faster synchronization in P systems 115

123

	Faster synchronization in P systems
	Abstract
	Introduction
	Preliminaries
	Deterministic FSSP solution
	FSSP Phase I
	FSSP Phase II
	FSSP Phase III
	FSSP Phase IV
	FSSP complete example
	FSSP optimality

	Conclusion
	References

