
Self-assembly of decidable sets

Matthew J. Patitz • Scott M. Summers

Published online: 14 September 2010
� Springer Science+Business Media B.V. 2010

Abstract The theme of this paper is computation in Winfree’s Abstract Tile Assembly

Model (TAM). We first review a simple, well-known tile assembly system (the ‘‘wedge

construction’’) that is capable of universal computation. We then extend the wedge con-

struction to prove the following result: if a set of natural numbers is decidable, then it and

its complement’s canonical two-dimensional representation self-assemble. This leads to a

novel characterization of decidable sets of natural numbers in terms of self-assembly.

Finally, we show that our characterization is robust with respect to various (restrictive)

geometrical constraints.

Keywords Computability � Tile assembly � Self-assembly � DNA computing �
Decidability � Universality � Space complexity

1 Introduction

In his 1998 PhD thesis, Winfree (1998) introduced the (abstract) Tile Assembly Model

(TAM)—a mathematical model of laboratory-based nanoscale self-assembly. The TAM is

also an extension of Wang tiling (1961, 1963). In the TAM, molecules are represented by

un-rotatable, but translatable two-dimensional square ‘‘tiles,’’ each side of which has a

particular glue ‘‘color’’ and ‘‘strength’’ associated with it. Two tiles that are placed next to

each other interact if the glue colors on their abutting sides match, and they bind if the

strength on their abutting sides matches, and is at least a certain ‘‘temperature.’’ Extensive

refinements of the TAM were given by Rothemund and Winfree (2000; Rothemund 2001),

M. J. Patitz (&)
Department of Computer Science, University of Texas–Pan American,
Edinburg, TX 78539, USA
e-mail: mpatitz@cs.panam.edu

S. M. Summers
Department of Computer Science and Software Engineering,
University of Wisconsin–Platteville, Platteville, WI 53818, USA
e-mail: summerss@uwplatt.edu

123

Nat Comput (2011) 10:853–877
DOI 10.1007/s11047-010-9218-9

and Lathrop et al. (2009) gave a treatment of the model that does not discriminate against

the self-assembly of infinite structures.

Despite its deliberate over-simplification, the TAM is a computationally expressive

model. For instance, Winfree (1998) proved that in two or more spatial dimensions, the

TAM is capable of Turing-universal computation at temperature 2. On the other hand,

Adleman, Kari, Kari, Reishus, and Sosı́k (Adleman et al. 2009) established that the TAM

is universal (in two spatial dimensions) with respect to non-deterministic temperature 1 tile

assembly systems. Doty et al. (to appear) then conjectured that any temperature 1 tile

assembly system that produces a unique 2-dimensional terminal assembly must necessarily

produce a ‘‘computationally very simple’’ shape, i.e., that the TAM is not Turing universal

at temperature 1 with respect to deterministic self-assembly in two spatial dimensions. In a

recent result, Fu and Schweller (2009) proved that the TAM is in fact Turing universal at

temperature 1 in three spatial dimensions with respect to deterministic self-assembly

systems.

Note that the universality of the TAM implies that it is possible to construct, for any

Turing machine M and any input string w, a finite assembly system (i.e., finite set of tile

types) that tiles the first quadrant and encodes the set of all configurations that M goes

through when processing the input string w. In other words, the process of self-assembly

can be, in some sense, directed algorithmically. But how is the computational expres-

siveness of a tile assembly system to be measured? In other words, what is the output of a

tile system and how might we interpret it? There are two widely accepted notions that

capture what it means to compute with a tile assembly system.

One interpretation of computation in the TAM is the self-assembly of a computationally

interesting set (or pattern) on top of a much larger, possibly ‘‘less interesting’’, set that is

used for auxiliary computations (so-called weak self-assembly). We say that a set of points

X weakly self-assembles if there is a finite tile assembly system that places ‘‘black’’ tiles

on, and only on, the points that are in X. Intuitively, one can view weak self-assembly as

the process of a tile system ‘‘painting’’ a picture of the set X onto a much larger canvas of

tiles. This interpretation was used by Papadakis and coauthors (2004) in which they

exhibited both theoretical and molecular self-assemblies of the well-known fractal the

discrete Sierpinski triangle.

The notion of weak self-assembly can be married to elementary computability theory in

the following way: if X weakly self-assembles, then X is necessarily computably enu-

merable. Although the previously stated fact might not be surprising since the process of

self-assembly can be simulated by a Turing machine, Lathrop et al. (to appear) discovered

(perhaps surprisingly) that the converse holds in the following sense. If the set X is

computably enumerable, then a ‘‘simple’’ two-dimensional representation of X, as points

along the x-axis, weakly self-assembles. This result is interesting because its proof requires

the simulation of a particular Turing machine M on infinitely many inputs (i.e., for all

x 2 N) in the two-dimensional discrete Euclidean plane Z
2.

In contrast to weak self-assembly, one can interpret self-assembly as computation that

takes as input an initial configuration of tiles (usually taken to be taken a single tile) and

produces output in the form of some particular connected shape, and nothing else (i.e.,

strict self-assembly (Lathrop et al. 2009)). The strict self-assembly of general shapes, and

their associated Kolmogorov (shape) complexity in the TAM, was studied beautifully and

extensively by Soloveichik and Winfree (2007), where they proved the counter-intuitive

fact that sometimes fewer tile types are required to self-assemble a ‘‘scaled-up’’ version of

a particular shape than the actual un-scaled shape.

854 M. J. Patitz, S. M. Summers

123

Of course, a major hurdle in studying the computational expressiveness of self-assembly

is that of providing input to tile assembly systems (e.g., the size of a square, the description

of a shape, etc.). In real-world laboratory implementations, as well as theoretical con-

structions, input to a tile system in the TAM is provided via a (possibly large) collection of

‘‘hard-coded’’ seed tile types (Rothemund and Winfree 2000; Soloveichik and Winfree

2007; Adleman et al. 2001; Barish et al. 2009). Unfortunately, in current implementations,

having larger tile sets leads to increased error rates. This suggests that it might be

advantageous to be able to provide input to a tile system without having to resort to hard-

coding the input into a large number of its own tiles. As a result, several natural gener-

alizations of the TAM have been developed in an attempt to model various types of

alternative input delivery mechanisms.

One such model is the staged self-assembly model (Reif 1999; Demaine et al. 2008), in

which several intermediate structures are allowed to assemble in different test tubes before

they are all mixed together in a ‘‘2-handed’’ fashion in order to obtain the target structure.

Demaine et al. (2008) proved that arbitrary shapes self-assemble with O(1) tile types but

with a corresponding increase in the number of stages and even (in some cases) an increase

in the scale of the target shape.

Another means of providing input to a tile system is through the programming of the

relative concentrations of its tile types. Becker et al. (2006) proved that by appropriately

setting the relative concentrations of tiles, squares, rectangles and diamonds can self-

assemble in an expected sense with O(1) tile types, but with a large (and undesirable)

variance. Kao and Schweller (2008) improved the aforementioned result by showing that it

is possible to program the relative concentrations of O(1) tile types such that they will

assemble into arbitrarily close approximations of N 9 N squares with high probability.

Furthermore, Doty (2009) recently showed that N 9 N squares self-assemble exactly with

high probability with O(1) tile types.

Input can also be delivered to a tile system through the deliberate variation of its

temperature. The multiple temperature model (Kao and Schweller 2007; Cheng et al.

2005) is a natural generalization of the TAM, where the temperature of a tile system is

dynamically adjusted by the experimenter as self-assembly proceeds. Aggarwal and

coworkers (2005) proved that the number of tile types required to assemble ‘‘thin’’

k 9 N rectangles can be reduced from O N1=k

k

� �
(in the TAM) to O log N

log log N

� �
if the tem-

perature is allowed to change but once. Subsequently, Kao and Schweller (2007) dis-

covered a clever ‘‘bit-flipping’’ scheme capable of assembling any N 9 N square using

O(1) tile types and H(log N) temperature changes.

Regardless of how the input of a tile system is delivered, a tile system must be able to

ultimately transform the input into the desired output—whether that be into an exact shape

or a pattern that is painted on top of a larger ‘‘canvas of tiles.’’ How might we algorith-

mically direct this process? In other words, if the process of self-assembly is to be regarded

as computation, how do we ‘‘program’’ it? There are several useful self-assembly algo-

rithms that can be used to control the progress of self-assembly. For instance, in the TAM,

‘‘binary counter’’ tile systems (Adleman et al. 2001; Rothemund and Winfree 2000, Cheng

et al. 2004, 2005) have been extensively utilized to precisely control the dimension of a

particular exact regular shape such as a rectangle or a square. Another well-studied

technique for directing the self-assembly of more intricate shapes and patterns is the

simulation of Turing machines (Soloveichik and Winfree 2007; Rothemund and Winfree

2000; Lathrop et al. to appear).

Self-assembly of decidable sets 855

123

1.1 Motivation and statement of contributions

This paper is broadly motivated by the fact that while the computational-complexity-

theoretic properties of the strict self-assembly of various classes of shapes have been

extensively studied in the TAM (as well as generalized models of self-assembly), little is

known about how to direct the more relaxed process of weak self-assembly. After all, weak

self-assembly bestows upon a tile system a vast wealth of space in which to perform

auxiliary computation. How do we most effectively utilize this space? In this paper, we

continue our previous work from (Lathrop et al. to appear) in that we are particularly

interested in studying various techniques that allow one to precisely direct the placement of

specific ‘‘black’’ tiles (i.e., weak self-assembly) based on the outcome of simulating total

Turing machines.

We first reproduce Winfree’s proof of the universality of the TAM (Winfree 1998) in

the form of a simple construction called the ‘‘wedge construction.’’ The wedge con-

struction self-assembles the computation history of an arbitrary TM M on input w in the

space to the right of the y-axis, above the x-axis, and above the line y = x - |w| - 2. We

then prove our first main result, which follows from an extension of the wedge construction

and gives a new characterization of decidable languages of natural numbers in terms of

(weak) self-assembly. That is, we prove that a set A � N is decidable if and only if

{0} 9 -A and {0} 9 (-A)c weakly self-assemble. Technically speaking, our character-

ization is essentially the first main theorem from Lathrop et al. (to appear) with ‘‘com-

putably enumerable’’ replaced by ‘‘decidable,’’ and f(n) = n. Finally, we discuss how our

construction is robust with respect to certain types of geometrical constraints, i.e., our

characterization can be carried out in the set of integer lattice points lying above the x-axis

yet below the line y ¼ 1
a � x, for any a 2 N. It is worthy of note that all of our constructions

are singly-seeded, i.e., self-assembly proceeds by starting from a single seed tile type that

never appears elsewhere in the final output of the system.

2 The tile assembly model

We now give a brief intuitive sketch of the abstract TAM. See Winfree (1998), Rothemund

and Winfree (2000), Rothemund (2001), Lathrop et al. (2009) for other developments of

the model. We work in the 2-dimensional discrete Euclidean space. We write U2 =

{(0, 1), (1, 0), (0, -1), (-1, 0)}.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a

well-defined ‘‘side u~’’ for each u~2 U2. Each side u~ of t has a ‘‘glue’’ of ‘‘color’’ coltðu~Þ—a

string over some fixed alphabet R—and ‘‘strength’’ strtðu~Þ—a natural number—specified

by its type t. Two tiles t and t0 that are placed at the points a~ and a~þ u~ respectively, bind
with strength strt u~ð Þ if and only if colt u~ð Þ; strt u~ð Þð Þ ¼ colt0 �u~ð Þ; strt0 �u~ð Þð Þ.

Given a set T of tile types, an assembly is a partial function a : Z2 ! T . An assembly is

s-stable if it cannot be broken up into smaller assemblies without breaking bonds of total

strength at least s, for some s 2 N.

Self-assembly begins with a seed assembly r and proceeds asynchronously and

nondeterministically, with tiles adsorbing one at a time to the existing assembly in any

manner that preserves s-stability at all times. A tile assembly system (TAS) is an ordered

triple T ¼ ðT; r; sÞ, where T is a finite set of tile types, r is a seed assembly with finite

domain, and s 2 N. In this paper we deal exclusively with tile assembly systems in

856 M. J. Patitz, S. M. Summers

123

which s = 2. A generalized tile assembly system (GTAS) is defined similarly, but

without the finiteness requirements. We write A½T � for the set of all assemblies that can

arise (in finitely many steps or in the limit) from T . An assembly a 2 A½T � is terminal,
and we write a 2 Ah½T �, if no tile can be s-stably added to it. It is clear that

A½T � � Ah½T �.
An assembly sequence in a TAS T is a (finite or infinite) sequence a~¼ ða0; a1; . . .Þ of

assemblies in which each ai?1 is obtained from ai by the addition of a single tile. The result
resða~Þ of such an assembly sequence is its unique limiting assembly. (This is the last

assembly in the sequence if the sequence is finite.) The set A½T � is partially ordered by the

relation �! defined by

a �! a0 iff there is an assembly sequence a~¼ ða0; a1; . . .Þ
such that a0 ¼ a and a0 ¼ resða~Þ:

We say that T is directed (a.k.a. deterministic, confluent, produces a unique assembly)

if the relation �! is directed, i.e., if for all a; a0 2 A½T �, there exists a00 2 A½T � such that

a �! a00 and a0 �! a00. It is easy to show that T is directed if and only if there is a unique

terminal assembly a 2 A½T � such that r �! a.

In general, even a directed TAS may have a very large (perhaps uncountably infinite)

number of different assembly sequences leading to its terminal assembly. This seems to

make it very difficult to prove that a TAS is directed. Fortunately, Soloveichik and Winfree

(2007) have recently defined a property, local determinism, of assembly sequences and

proven the remarkable fact that, if a TAS T has any assembly sequence that is locally

deterministic, then T is directed. Intuitively, an assembly sequence a~ is locally deter-

ministic if (1) each tile added in a~ ‘‘just barely’’ binds to the existing assembly; (2) if a tile

of type t0 at a location m~ and its immediate ‘‘output-neighbors’’ are deleted from the result
of a~, then no tile of type t = t0 can attach itself to the thus-obtained configuration at

location m~; and (3) the result of a~ is terminal.

A set X � Z
2 weakly self-assembles if there exists a TAS T ¼ ðT ; r; sÞ and a set B � T

such that a-1(B) = X holds for every terminal assembly a 2 Ah½T �.
Throughout this paper, tiles are depicted as squares whose various sides are dotted lines,

solid lines, or doubled lines, indicating whether the glue strengths on these sides are 0, 1, or

2, respectively. Thus, for example, a tile of the type shown in Fig. 1 has glue of strength 0

on the left and bottom, glue of color ‘a’ and strength 2 on the top, and glue of color ‘b’ and

strength 1 on the right. This tile also has a label ‘L’, which plays no formal role but may aid

our understanding and discussion of the construction.

3 The wedge construction: a review

In this section, we review the ‘‘wedge construction’’—a simple, well-known technique

used to carry out the simulation of an arbitrary Turing machine on some binary string in the

a

bL

Fig. 1 An example tile type

Self-assembly of decidable sets 857

123

first quadrant of the discrete Euclidean plane. We will later extend the wedge construction

to prove a new characterization of decidable languages.

Lemma 3.1 (The wedge construction) For every single-tape Turing machine M and input
w [{0, 1}*, there exists a tile assembly system T MðwÞ; which simulates M on w in the

following way.

1. T MðwÞ simulates the computation of M(w), with the configuration of M(w) after n steps

represented by the line y = n in the terminal assembly of T MðwÞ,

2. if M halts on w after k steps, then the line y = k ? 1 in the terminal assembly of T MðwÞ
contains one and only one ‘‘halting’’ tile that binds via a single strength-2 bond on its
south edge, and

3. T MðwÞ is locally deterministic, and therefore directed.

Proof Our proof is by construction. Let M ¼ ðQ;R;C; d; q0; qaccept; qrejectÞ be a Turing

machine and w [{0, 1}*. Assume, without loss of generality, that M is a Turing machine

having a one-way infinite-to-the-right tape such that the tape head of M never attempts to

move left while reading the left most tape cell. We define the finite set of tile types TM(w) as

follows.

Definition of TM(w):

1. For all x [C, add the seed row tile types:

0

>0

x

>x>

-*

->

2. For all x [C, add the tile types:

x

x

<x<

x

x

>x>

3. Add the following two tile types that grow the tape to the right:

-*

-

-*->

-*

--*

4. For all p, q [Q, and all a, b, c [C satisfying (q, b, R) = d(p, a) and q 62
fqaccept; qrejectg (i.e. for each transition moving the tape head to the right into a non-

accepting state), add the tile types:

pa

b

pab<

c

qc

>qcpa

858 M. J. Patitz, S. M. Summers

123

5. For all p, q [Q, and all a, b, c [C satisfying (q, b, L) = d(p, a) and q 62
fqaccept; qrejectg (i.e. for each transition moving the tape head to the left into a

non-accepting state), add the tile types:

pa

b

>bpa

c

qc

paqc<

6. For all p [Q, a, b [C, and all h 2 freject; acceptg satisfying dðq; bÞ 2 fqaccept; qrejectg
�C� fL;Rg, with h = accept if d(q, b) = qaccept and h = reject otherwise (i.e. for

each transition moving the tape head into a halting state), add the tile types:

b

h

>qbpa

b

h

paqb<

Definition of rw: We now define the finite seed assembly rw of T MðwÞ. Let sleft, sinterior

and sright be the ‘‘Left most,’’ ‘‘Interior,’’ and ‘‘Right most’’ tile types, respectively, defined

above in the first group of ‘‘seed row’’ tile types. Define rw as follows. rw(0, 0) = sleft,

where each occurrence of x in sleft is replaced by w[0] (i.e., the first bit of w); for all

0 \ i \ |w|, rw(i, 0) = sinterior, with each occurrence of x in sinterior replaced by w[i]; let

rw(0, |w|) = sright; finally, let rw be undefined at all other points in Z
2.

Note that T MðwÞ satisfies property (1) of the conclusion of the lemma—this can be easily

verified from the above definition of TM(w) and is intuitively portrayed in Fig. 2. We now

argue that T MðwÞ is locally deterministic. To do so, we first define an assembly sequence a~,

leading to a terminal assembly a ¼ resða~Þ, in which (1) the jth configuration Cj of M is

q0,0

1

1

1

1

q0,1

0

q2,0

-

-

-

-

-

-

-

-

q1,-

1

Fig. 2 Example of the first four rows of a sample wedge construction which is simulating a Turing machine
M on the input string ‘01’

Self-assembly of decidable sets 859

123

encoded in the row Rj ¼ f0; . . .; jwj � 1þ jg � fjgð Þ, and (2) a~ self-assembles Ci in its

entirety before Cj if i \ j. By the way we defined the tile types of TM(w), it is easy to see

that every tile that binds in a~ does so deterministically, and with exactly strength-2 (either

one strength-2 bond or two strength-1 bonds), whence T MðwÞ is locally deterministic. The

lemma follows by the addition of two tile types, each having strength-2 glues on their south

edges, labeled with ‘‘accept’’ and ‘‘reject’’ respectively. h

The above ‘‘wedge’’ construction can be used to prove the following undecidability

result.

Corollary 3.2 The language defined as A ¼ T j T is a TAS such that T is locallyf
deterministicg is undecidable.

Proof We will prove a stronger result: A is P0
1-complete (recall that the set P0

1 is the set

of all computably enumerable languages). To see that A 2 P0
1, first note that

A ¼ T for each n 2 N; a~ is an assembly sequence in T of length n;
and a~ satisfies the first two conditions of local determinism

����
� �

:

Checking whether a finite assembly sequence in some tile assembly sequence satisfies the

first two conditions of local determinism is a decidable condition, whence A 2 P0
1.

Next, to show that A is P0
1-hard, we will exhibit a many-one reduction from the

complement of the halting problem Hc to A. Our reduction F takes as input a Turing

machine M and a binary string w 2 f0; 1g�, and outputs the tile assembly system T MðwÞ
modified as follows: each ‘‘final halting tile type’’ is replaced by two distinct tile types

that each have a strength-2 glue on their south edge but share the same glue label (either

‘‘accept’’ or ‘‘reject’’). This clearly breaks the second condition of local determinism!

Note that we could also modify T MðwÞ such that the final halting tiles bind with strength

3 [s = 2, thus breaking the first condition of local determinism. It is clear that F is a

reduction, seeing as how if M never halts on w, then T MðwÞ remains locally deterministic

(because no halting tiles ever attach). However, if M halts on w, the one of the newly

added halting tiles will non-deterministically attach breaking the local determinism of

T MðwÞ. h

4 A new characterization of decidable languages

We now turn our attention to the self-assembly of decidable sets of positive integers. We

will extend the wedge construction from the previous section in order to prove that, for

every decidable set {0} 9 -A, there exists a directed TAS T A ¼ ðTA; r; sÞ in which

{0} 9 -A weakly self-assembles. Our proof relies on the following observation.

Observation 1 If A � N is a decidable set, then there is a TM M, such that for every
w [A, M halts on w.

This means that we can essentially ‘‘stack’’ wedge constructions one on top of the other.

Intuitively, our main construction is the ‘‘self-assembly version’’ of the following enu-

merator.

860 M. J. Patitz, S. M. Summers

123

Just as the above enumerator prints the characteristic sequence of A, our construction will

self-assemble a canonical two-dimensional representation of the characteristic sequence of

A as points along the negative y-axis.

4.1 Main construction: self-assembly of 2-dimensional representations of decidable

languages

In this section we present the full construction of the tile assembly system T A, and in the

next section we provide a higher-level description of the behavior of our tile system. Note

that we used the Tile Set Designer graphical interface to the TAM DSL (Doty and Patitz

2009) to design the tile set for this construction and the ISU TAS simulator (Patitz 2009) to

simulate it. Both software packages are available for download from http://www.cs.iastate.

edu/*lnsa.

Lemma 4.1 Let A � N be a decidable set. There exists a directed, singly-seeded, tile
assembly system T A ¼ TA; r; 2ð Þ in which the set {0} 9 -A weakly self-assembles.

Proof Our proof is by construction. Let M ¼ ðQ;R;C; d; q0; qaccept; qrejectÞ be a Turing

machine with blank symbol ‘-’ [C and L(M) = A. Assume, without loss of generality, that

M is a total Turing machine having a one-way infinite-to-the-right tape such that the tape

head of M never attempts to move left while reading the left most tape cell. We give the

full specification of TA and r below.

Simulation tiles: Throughout our construction of simulation tiles, every tile takes as

input, and ultimately outputs, six pieces of information along its south and north edges,

respectively:

1. The symbol stored in the tape cell represented by this tile,

2. the current state of the Turing machine that is being simulated,

3. the direction of movement of the tape head,

4. the value of the bit that is embedded into this tile,

5. the significance of the aforementioned bit, and

6. a miscellaneous signal.

This situation is illustrated in Fig. 3. Note that some or all of these six pieces of

information might not be relevant at certain times during the assembly process. Therefore,

we use underscores (i.e., ‘‘place holder’’ values) to denote the absence of values of some of

the signals when they are not required. The following list of tile types encode the logic of

the Turing machine M that decides A.

while 1 B w \? do

simulate M on the binary representation of w

if M accepts then

output 1

else

output 0

end if

w := w ? 1

end while

Self-assembly of decidable sets 861

123

http://www.cs.iastate.edu/~lnsa
http://www.cs.iastate.edu/~lnsa

1. The following tile types appear only near the seed tile type (the tile having the ‘S’

label).

δ(,1),1,yes,_q0

Sq0,1
1, ,_,1,yes,_q0

-,_,_,0,no,grow

S ap-

1, ,_,1,yes,_q0

D1S
landing

2. The following tile type only appears near the seed and receives the tape head from

the left. For all p 2 Q� fqaccept; qrejectg, add the following tile type.

δ(,-),0,no,_p

p >growp,-
-,_,_0,no,grow

3. The following tile types ‘‘grow’’ the tape one cell to the right.

-,_,_,0,no,_

>copy >grow-
,,_,_,_,grow

,,_,0,no,grow

>grow ap-

Symbol

State SignificanceDirection

L

Fig. 3 Each tile that contributes
to the simulation of the Turing
machine takes as input six pieces
of information. We omit
discussion of the east and west
glue labels for our tile types
because the type of information
that is being taken as input and
produced as output is always
clear from the context

862 M. J. Patitz, S. M. Summers

123

4. The following tile types move the tape head right. For all For all p 2 Q�
fqaccept; qrejectg, a [C, bit [{0, 1}, and lsb [{yes, no}, add the following tile types.

As noted above, the three pieces of information passed upward are the current

symbol in this particular tape cell, and the current value of the bit of this column

along with its significance.

,_,_, , ,_

<copy pa
(, ,R), , ,_

5. The following tile type receives the tape head from the left. For all p 2 Q�
fqaccept; qrejectg, a [C, and bit [{0, 1}, add the following tile types.

δ(,), ,no,_

p >copyp,a
a bit,_,_ ,no,_

6. The following tile types receive the tape head from the right and move the tape head

left (respectively). For all For all p 2 Q� fqaccept; qrejectg, a [C, bit [{0, 1}, and

lsb [{yes, no}, add the following tile types.

δ(,), , ,_

<copy pp,a
a bit,_,_, ,lsb,_

,_,_, , ,_

p >copya
(, ,L), , ,_

7. The following tile types copy the contents of the tape to the left and right of the tape

head up to the next row (respectively). For all a [C, bit [{0, 1}, lsb 2 fyes; nog,
add the following tile types.

,_,_, , ,_

<copy <copya
,_,_, , ,_

,_,_, , ,_

>copy >copya
a bit,_,_, ,lsb,_

Self-assembly of decidable sets 863

123

8. The following tile type halts the Turing machine when the tape head is not reading

the left most tape cell. For all h 2 faccept; rejectg, and bit [{0, 1}, add the

following tile type.

,,_, ,no,_bit

<halt hh
(-, ,R), ,no,_q bith

9. The following tile type halts the Turing machine when the tape head is reading the

left most tape cell. For all h 2 faccept; rejectg, and bit [{0, 1}, add the following

tile type.

,,_, ,yes,_bit

hh
(-, ,R), ,yes,_q bith

10. The following tile types search (to the left of the tape head) for the left most tape cell

after halting. For all a [C, and bit [{0, 1}, add the following tile types.

,,_, ,no,_bit

<halt <halt

a bit,_,_, ,no,_

,,_, ,yes,_bit

<halt

a bit,_,_, ,yes,_

11. The following tile type transfers the halting state (either accept or reject) to the right

enroute to the negative y-axis. For all a [C and bit [{0, 1}, add the following tile

type.

,,_, ,no,_bit

h hh
a bit,_,_, ,no,_

12. The following tile types prepare to send the one-tile-wide path containing the halting

state (either accept or reject) down to the negative y-axis. For all h 2 fqaccept; qrejectg,
add the following tile types.

864 M. J. Patitz, S. M. Summers

123

13. The following tile type is the right most tile to attach in any halting row. Add the

following tile type.

,,_,0,no,grow

3 ap

The following tile types ‘‘extract’’ the bits that are embedded within each simulation of the

Turing machine. This is the final step before the count is incremented by one and used as

input to the next simulation.

1. The following tile types initiate and carry out the bit extraction procedure starting

from the least significant bit and working toward the right edge of the previous

row of the assembly. For all bit [{0, 1}, add the following tile types.

,,_, ,yes,_bit

>bitbit
,,_, ,yes,_bit

,,_, ,_,_bit

>bit >bitbit
,,_, ,no,_bit

2. The following tile types extract the final two bits. The tile type on the left extracts the

final bit of the previous row, and the tile type on the right side adds a dummy bit to

maintain the geometry of the right most edge of the assembly. Add the following tile

types.

,,_,0,no,_

>bit >bit0
,,_,0,no,grow

,,_,0,no,grow

>bit ap0

The following tile types self-assemble on top of the bit-extraction row and increments the

value of these bits by 1.

,,_,0,no,_

h h!h

,,_,0,no,_

h! 3h
h

,,_,0,no,_

h! 3h
h

Self-assembly of decidable sets 865

123

1. The following tile type initiates the increment process starting from the least

significant bit. For all bit [{0, 1}, add the following tile type.

,,_,1- ,yes,_bit

bit1-bit
,,_, ,yes,_bit

2. The following tile type performs the bulk of the increment procedure. For all

bit0 [{0, 1} and c0 [{0, 1}, add the following tile type, where c1 ¼ bbit0þc0c
2

and

bit1 ¼ bit0 þ c0ð Þ mod 2.

,,_, ,no,_bit1

c0 c1bit
,,_, ,no,_bit0

3. The following tile types are the final two tile types to attach in any increment row.

Since the right edge of the construction grows faster than the length of the binary

integers, the bits will always be 0. Add the following tile types.

,,_,0,no,_

0 00
,,_,0,grow

,,_,0,no,tape

0 ap0

The following list of tile types build the initial configuration of the ‘‘next’’ simulation of

M.

1. The following tile type assembles the right most tape cell (it always contains a blank)

with a 0 bit embedded in it. Note that the ‘y’ signal is used to search for the right most

1 bit in the previous row. Add the following tile type

-,_,_,0,no,_

y >grow-
,,_,0,no,tape

2. The following tile type continues the search (via the ‘y’ signal) for the right most 1 bit

in the previous row. While doing so, blank symbols are encoded in the tape and 0 bits

are also embedded. For all bit [{0, 1}, add the following tile type.

866 M. J. Patitz, S. M. Summers

123

3. The following tile type attaches directly above the right most 1 bit in the previous row.

In this case, the 1 bit is encoded in the tape and the embedded bit is 1. Note that this

never occurs in the least significant bit. We terminate our search by changing the ‘y’

signal to \init. Add the following tile types.

1,_,_,1,no,_

<init y1
,,_,1,no,_

4. The following tile type initializes the contents of the tape to the left of the right most 1

bit. Here, we simply encode each cell with the appropriate bit from the previous row.

Add the following tile type.

bit bit,_,_, ,no,_

<init <initbit
,,_, ,no,_bit

5. This tile type starts the next simulation of M. For all bit [{0, 1}, add the following tile

type.

(R), ,yes,_bit, ,q bit0

<initq0,bit

,,_, ,yes,_bit

‘‘Decision path’’ tiles: All of the previous tile types contribute to the simulation of M on

every input x 2 N. We complete our construction by adding the tile types that self-

assemble one-tile-wide ‘‘decision paths’’ that result in the placement of black (accept) or

non-black (reject) tiles on the negative y-axis.

1. The following tile types initiate the one-tile-wide ‘‘decision path.’’ This path starts

from the right edge of a halting row (see above tile types) and carries the answer to the

question, ‘‘did the Turing machine accept or reject?’’ Note that the geometry of the

-,_,_, ,no,_bit

y y-
,,_, ,no,_bit

Self-assembly of decidable sets 867

123

existing assembly guides the path down to the appropriate point on the negative y-axis.

For each h [{accept, reject}, add the following tile types.

ap hh
h

h

h aph

2. The following tile types allow the decision paths to ‘‘turn’’ the corner and thus head

straight for the appropriate point on the negative y-axis. We use the D0 and D1 signals

to accomplish this task. For each h 2 faccept; rejectg, add the following tile types.

D1 hh
h,D0

h,D0

h D1h
final

3. The following tile types assemble the final segment of each decision path. The tile type

that is placed on the negative y-axis is the left most tile below. For each

h 2 faccept; rejectg, add the following tile types.

landing

hh
landing

final

h hh
final

Let TA be the set of all of the tile types that are defined above. Let r be the seed assembly

consisting of the unique tile type having the label ‘S’ placed at the origin and undefined at

every other point 0~ 6¼ x~2 Z
2: Finally, define the tile assembly system T A ¼ TA; r; 2ð Þ. A

routine local determinism argument can be used to show that T A is locally deterministic

and therefore directed.

Choosing the set B (a.k.a., the set of ‘‘black’’ tiles) to be the singleton set containing the

left most tile type in the last pair of tile types defined above, where h = accept, proves that

{0} 9 -A weakly self-assembles. h

868 M. J. Patitz, S. M. Summers

123

4.2 Discussion of Proof of Lemma 4.1

This section gives a high-level, intuitive description of the constructive Proof of Lemma

4.1. Note that T A is a singly-seeded, two-dimensional temperature 2 tile assembly system.

The seed tile type is the unique tile type having a label of ‘S.’ We place the seed tile at the

point (0, 0).

Definition 4.2 In our construction, for all n 2 N, there exists a one-tile-wide path that

carries the answer to the question ‘‘is n [A?’’ to the point (0, -n). We call such a path a

decision path.

The tile assembly system T A consists of two logical modules. The first of these modules

carries out the simulation of M on the binary representation of 1� n 2 N. In order to

simulate M on the binary representation of every natural number, we embed a kind of log

width binary counter into the tiles of T A. Thus, each tile must ‘‘remember’’ (and possibly

modify) the value and significance of a particular bit in the binary counter. Note that,

because of the way we embedded the counter, T A actually simulates M on the reverse of
the binary representation of every natural number. Tiles must also keep track of infor-

mation pertaining to the simulation of M on a given input. The information that each tile is

responsible for is shown visually in Fig. 3.

The assembly process starts by T A simulating M on the binary representation of 1. In

general, after the simulation of M on i but before the simulation of M on i ? 1, T A

performs the following tasks.

1. The answer to the question ‘‘Does M accept or reject i?’’ is propagated via a one-tile-

wide ‘‘decision path’’ down to the point (0, -i) (discussed below),

2. the bits of the embedded binary counter are extracted in the row immediately above

the row of tiles representing the halting configuration of M on i,
3. in the row immediately above the row in which the bits of the binary counter were

extracted, the value of the binary counter is incremented by 1, and finally,

4. the simulation of M on i ? 1 is initialized and proceeds in the same fashion as that of

M on i.

We give a concrete example of this four-step procedure in Fig. 4.

The second component of T A is a small group of tile types that carry the ‘‘accept’’ and

‘‘reject’’ signals to the appropriate location on the negative y-axis via a one-tile-wide path

of tiles. The geometry of the existing assembly ‘‘guides’’ these decision paths to the

correct location. Each decision path originates from the halting tile and proceeds down

toward the x-axis. In order for each path to turn the corner and proceed toward their final

destination somewhere on the negative y-axis, we propagate ‘‘diagonal’’ signals (i.e., D0

and D1) down and to the right into the fourth quadrant. An example of this process is

illustrated in Fig. 5.

Note that the simulation component of T A can self-assemble in the absence of the

decision path component whereas the latter requires the former to self-assemble. Figure 6

shows the ‘‘flow’’ of information from the simulation components (the light grey spaces) to

their respective halting rows (dark grey horizontal rows) down to the appropriate point on

the negative y-axis via a decision path (the dark grey paths that snake down and to the left

along the assembly).

Self-assembly of decidable sets 869

123

4.3 First main theorem

The following technical result is a primitive self-assembly simulator.

Lemma 4.3 Let A � Z
2. If A weakly self-assembles, then there exists a TM MA with

L(MA) = A.

,,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_

,,_, ,no,_1 _,_,_, ,no,_0 _,_,_, ,no,_0 _,_,_, ,no,_0 _,_,_, ,no,_0 _,_,_, ,no,_0

-,_,_,0,no,_-,_,_,0,no,_-,_,_,0,no,_-,_,_,0,no,_-,_,_,0,no,_-,_,_,0,no,_1,_,_,1,no,_, ,q0

,,_,0,no,_

,,_,0,no,_

,,_,0,no,grow

,,_,0,no,tape

-,_,_,0,no,_

,,_,1,yes,_

,,_,0,yes,_

,,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,grow

-,_,_,0,no,_

,,_,1,yes,_

δ (,3),1,yes,_q1 -,_,_,0,no,_

,,_,0,no,grow

,,_,_,_,grow

>bit >bit >bit >bit >bit

1 00000

yyyyyy<init

>bit

0

>bit

0

y

tcejertcejertcejertcejer reject! 3

q1<copy >copy

>grow

>grow

>bit >bit >bit >bit >bit

000000

yyyyyyy<init

>bit

0

ap

ap

>grow

>bit

1

tcejertcejer reject reject! 3 ap

>copy

reject

q1 >grow

ap

ap

0 0 0 0 0

1 0 0 0 0 0

------1q0,0

0

0

0

0

-

1

0

reject reject reject reject reject

-

reject

1 3 -

-

-

,,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_

,,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_

,,_,0,no,__,_,_,0,no,__,_,_,0,no,__,_,_,0,no,__,_,_,0,no,__,_,_,0,no,__,_,_,1,no,__,_,_,0,yes,_

,,_,0,no,grow

,,_,0,no,grow

,,_,0,no,tape

,,_,1,yes,_

,,_,1,yes,_

-,_,_,0,no,_ -,_,_,0,no,_ _,_,_,_,_,grow reject

(-, ,L),0,noq1 ,_

(-, ,R),1,yes,_qreject

3,_,_,1,yes,_ _,_,_,_,_,grow

M
w

M

“reject”

“ ”

Fig. 4 Trivial example of the ‘‘halt-extract-increment-initialize’’ procedure carried out by our construction

1, ,_,1,yes,_q0

1, ,_,1,yes,_q0

landing reject,D0

reject

reject

reject

reject

,,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,0,no,_ _,_,_,_,_,grow_,_,_,1,yes,_

δ (,3),1,yes,_q1

D1

reject

ap

ap

ap

reject

reject

reject

reject

reject reject reject reject reject! 3

<copy

D1

reject

reject

D1

reject

reject

reject

ap

ap

ap

ap

reject reject reject reject! 3 apreject

q1 q1 ap

ap

ap

S

reject

reject

reject

reject

reject

reject

reject

reject

reject

reject

reject reject reject reject rejectreject

1 3

landing

landing

reject,D0

final

reject

reject

reject

-,_,_,0,no,_

-,_,_,0,no,_

-,_,_,0,no,_

-,_,_,0,no,_

,,_,_,_,grow

,,_,_,_,grow

reject(-, ,R),1,yes,_qreject

3,_,_,1,yes,_

3,_,_,1,yes,_

M
w

Fig. 5 Trivial example of the one-tile-wide ‘‘decision path’’ that carries the answer to the question ‘‘is
1 [L(M)?’’ down to the appropriate point on the negative y-axis. Note that the D0 and D1 signals allow each
decision path to turn the ‘‘corner’’ and proceed left toward the negative y-axis

870 M. J. Patitz, S. M. Summers

123

Proof Assume that A weakly self-assembles. Then there exists a TAS T ¼ ðT ; r; sÞ in

which the set A weakly self-assembles. Let B be the set of ‘‘black’’ tile types given in the

definition of weak self-assembly. Fix some enumeration a~1; a~2; a~3. . . of Z2, and let MA be

the TM, defined as follows.

It is routine to verify that MA accepts A. h

Lemma 4.4 Let A � N. If {0} 9 -A and {0} 9 (-A)c weakly self-assemble, then A is
decidable.

Fig. 6 Intuitive depiction of the behavior of T A. The dark grey (horizontal) rows are halting rows. The
arrows represent one-tile-wide paths of tiles that carry the answer to the question ‘‘is n [A?’’ down to the
negative y-axis

Require v~2 Z
2

a := r

while v~ 62 dom a do

choose the least j 2 N such that some tile can be added to a at a~j

choose some t [T that can be added to a at a~j

add t to a at a~j

end while

if a v~ð Þ 2 B then

accept

else

reject

end if

Self-assembly of decidable sets 871

123

Proof Assume the hypothesis. Then by Lemma 4.3, there exist TMs M{0}9-A and

Mf0g�ð�AÞc��N satisfying L Mf0g��A

� �
¼ f0g � �A, and L Mf0g�ð�AÞc

� �
¼ f0g � ð�AÞc,

respectively. Now define the TM M as follows.

It is clear that M is a decider for A. h

Lemma 4.5 Let A � N. If the set A is decidable, then {0} 9 -A and {0} 9 (-A)c

weakly self-assemble.

Proof This follows immediately from Lemma 4.1. h

We now have the machinery to prove our main result.

Theorem 4.6 Let A � N. The set A is decidable if and only if {0} 9 -A and {0} 9

(-A)c weakly self-assemble. Furthermore, a single tile set suffices in that the choice of B
(the set of ‘‘black’’ tiles) determines whether {0} 9 -A or {0} 9 (-A)c self-assembles.

Proof This follows from Lemmas 4.4 and 4.5. h

In the next section, we will analyze the space requirements of this assembly and present

a series of constructions which require less space, but at a price of increasing the tile set

(a.k.a., program-size (Rothemund and Winfree 2000)) complexity.

5 Space requirements of the self-assembly of decidable sets

In the Proof of Theorem 4.6, we exhibited a directed TAS whose (infinite) terminal

assembly requires two full quadrants of the plane. This leads one to ask the natural

question: is it possible to do any better than two quadrants? In other words, does Theorem

4.6 hold if only one quadrant of space, or less, is allowed? By investigating this, we hope to

develop interesting ‘‘tile programming tricks’’.

If A [DSPACE(n), then it is possible to modify our construction to weakly self-

assemble A 9 {0} using only one quadrant of space by making the tape for each com-

putation M(n) exactly n - 1 tiles wide, then self-assembling a path with the result directly

down the right side of the assembly to the location (n,0). However, in the case that

A 62 DSPACE OðnÞð Þ, this particular construction technique does not suffice to self-

assemble A 9 {0} within only one quadrant because we happen to use one tile to represent

each tape cell and furthermore we grow the Turing machine tape to the right once per

computation step. In the remainder of this section we will discuss why this is the case, as

well as alternative constructions which do suffice even for such complex languages, and

their space requirements.

Require n 2 N

Simulate both M{0}9-A and Mf0g�ð�AÞc
� �

on input (0, -n) in parallel.

if M{0}9-A accepts then

accept

end if

if Mf0g�ð�AÞc
� �

accepts then

reject

end if

872 M. J. Patitz, S. M. Summers

123

5.1 The impact of the decision paths

It is clear that the portions of the assembly of our main construction, which initiate and

perform each of the infinite series of computations, are contained within a wedge-shaped

portion of a single quadrant. However, the decision paths end up being the portion of the

assembly which force the additional space requirement of a second quadrant for suffi-

ciently complex languages.

If the language A 62 DSPACE OðnÞð Þ, then there exists some n for which the compu-

tation M(n) requires more than O(n) amount of space, and therefore the assembly simu-

lating M(n) requires at least one row of tiles whose width is at least n tiles. Since the row of

tiles forming the computation will already be in place and cannot be removed to allow the

decision path through, in order for the decision path emanating from this computation to

terminate in the correct location, (n, 0), it will have to go around that row, passing through

an x-coordinate greater than n, then turn left at some point. (This ignores the possibility of

the decision paths traveling down the left side of the assembly since they would therefore

already be using a second quadrant.) Additionally, each of the infinite number of sub-

sequent decision paths will then have to assemble around that path. Figure 7 depicts the

situation where the first three paths in an infinite series of paths make a left turn. Figure 6

exemplifies how the diagonal along the right side of our construction makes a series of

‘‘left-turns.’’ Note that each subsequent path must be translated one additional coordinate

downward, and therefore, since there must be an infinite number of subsequent paths,

eventually the decision path for some m 2 N must place a tile on the x-axis in a location

other than (m, 0), or otherwise block another decision path. It is for this reason that the

Main Construction requires the use of two quadrants for a language A of sufficient space

complexity.

5.2 Squeezing more information into each decision path

As shown above, the decision paths of the Main Construction form a virtual bottleneck

which force the assembly into a second quadrant. This is due to the fact that each com-

putation has its own, unique, decision path. However, if we ‘‘compress’’ more information

into the decision paths, we can further reduce the space requirements. In fact, with a

tradeoff in tile set complexity, where complexity is measured as the size of the tile set

required, not only can one quadrant be made sufficient, but an arbitrarily small slice of a

single quadrant can suffice.

1 2 3Fig. 7 Example of a series of
paths which make a left turn.
Notice that if path ‘‘2’’ assembles
after path ‘‘1’’, in order to make
the turn it must be translated one
additional coordinate downward.
This must occur for each of the
infinite series of paths which
follow

Self-assembly of decidable sets 873

123

5.2.1 A single-quadrant construction

For our next construction, instead of creating a decision path for each individual com-

putation, we let four computations complete (i.e. M(n), M(n ? 1), M(n ? 2), and

M(n ? 3)) and then create a single decision path which collects and transmits all four

answers to their correct locations on the x-axis. Figure 8 shows a high-level overview of

this construction.

Essentially, an additional counter value which cycles from 0 to 3 and increments at the

completion of each computation is passed upward through the right side of each computation.

This allows the completion of each fourth computation to initiate the growth of a decision path

which moves downward, collecting the previous three results until the single path contains

four results. It then continues to the x-axis where it deposits all four results and initiates the

growth of an upward growing path which eventually allows the next set of results to be

propagated downward. Note that a main function of the upward growing path is to propagate a

marker denoting which row is immediately above the x-axis to the right side of the assembly,

and thus signal the next downward growing path when it needs to ‘‘unpack’’ its results.

This ‘‘compression’’ of four results into each result path obviates the need for the

assembly to grow into a second quadrant, and it does so with only a trivial increase in tile

set complexity, which comes mostly from the 22 ? 23 ? 24 tile types which must be added

to allow the collection and transmission of 4 results in each decision path.

5.2.2 Constructions using arbitrarily thin ‘‘pie’’ slices of one quadrant

We now demonstrate how we can further exploit the method of compressing increasingly

larger sets of results into each decision path to create constructions that use arbitrarily thin

Fig. 8 The single quadrant construction

874 M. J. Patitz, S. M. Summers

123

(but infinite) pie-shaped slices of a single quadrant. These constructions will be accom-

panied by a quickly growing trade off in tile set complexity which we will also analyze.

Note that we merely sketch these constructions and leave open the problem of imple-

mentation, and perhaps further optimization with regards to space and tile set complexity.

First, note that a standard wedge construction can be modified so that the leftmost tile of

each row is s positions further to the right than the leftmost tile of the row immediately

below it. This is done by:

1. Initiating the growth of each row at the leftmost position and growing from left to

right.

2. Within each tile representing the nth tape cell from the left of the tape, encode the

contents of tape cells (n - s, …, n), including the state information if one of those

cells contains the tape head.

This works because the tile representing the tape cell that must receive the tape head

after a left or right moving transition always assembles either directly above or above and

to the right of the tile representing the tape head in the previous row, and therefore that

information is available as necessary to each proceeding row. One additional difference

from the standard wedge construction is that, if a computation enters a halting state while

the tape head is on the nth tape cell from the left, n/s additional rows (in which no

computation is performed) will need to assemble before the information that it halted

reaches the leftmost edge and the assembly of that simulation can terminate.

By using such a ‘‘slanted’’ wedge construction in the construction of Sect. 5.2.1 and

modifying the decision paths to conform to the desired slope and to accumulate and carry

2s ? 4 results to the x-axis, (along with a few other trivial modifications) an assembly

which requires only the portion of the first quadrant lying below the line y = x/s can form

which weakly self-assembles A 9 {0}. Two examples of such constructions and their

desired behaviors can be seen in Fig. 9.

We conjecture that the tradeoff for shrinking the assembly into such arbitrarily small

‘‘pie slices’’ of the first quadrant is an exponential increase in tile set complexity. In fact,

for a given s, the size of the tile set required for our proposed assembly would be O(cs?1)

where c = |C| (and C is the tape alphabet of the Turing machine M being simulated). Note

that the tile complexity of our original two-quadrant construction is O(c1) (this bound also

holds for our one-quadrant construction as well).

6 Conclusion

In this paper, we investigated the self-assembly of decidable sets of natural numbers in the

TAM. We proved that, for every decidable language A � N, {0} 9 -A and {0} 9 (-A)c

Fig. 9 Examples of assemblies which weakly self-assembly the set A 9 {0} within the portions of
Quadrant 1 (approximately) underneath the lines y = x (left) and y = x/2 (right), corresponding to s = 1
and s = 2, respectively. Note that the constructions must combine 6 (for the left) and 8 (for the right) signals
into each decision path

Self-assembly of decidable sets 875

123

weakly self-assemble. This implied a novel characterization of decidable sets in terms of

self-assembly. We then analyzed the space requirements of our construction and showed

that, in general, for decidable languages, our construction requires two quadrants of space.

This led us to the presentation of slightly modified constructions which required, first, only

one quadrant of space, and then increasingly smaller portions of a single quadrant.

However, this decrease in space was accompanied a ‘‘proportional’’ increase in the size of

the tile set complexity.

Additional examples of the trade off between the space complexity of languages and the

amount of space required to self-assemble their characteristic sequences in the TAM

include the fact that one spatial dimension is sufficient to self-assemble A 9 {0} if and

only if A is a regular language over a unary alphabet, and our speculation that if A is a

regular language over a binary alphabet that only one fractal dimension would be required.

Many open problems related to such relationships remain, such as the implementation and

potential optimization of our ‘‘pie-slice’’ constructions, and a proof of our above specu-

lation about regular languages over binary alphabets. We hope that continued research in

this direction will further extend these results, exposing, more and more, the rich inter-

connectedness between geometry and computation in the TAM.

Acknowledgments Both authors wish to thank David Doty, Jack Lutz and Damien Woods for useful
discussions. This research was supported in part by National Science Foundation Grants 0652569 and
0728806. A preliminary version of this research was presented at the Sixth International Conference on
Unconventional Computation, August 25–28 2008, Vienna, Austria. Scott M. Summers’s research was
supported in part by NSF-IGERT Training Project in Computational Molecular Biology Grant number
DGE-0504304.

References

Adleman L, Cheng Q, Goel A, Huang M-D (2001) Running time and program size for self-assembled
squares. In: STOC ’01: proceedings of the thirty-third annual ACM symposium on theory of com-
puting. ACM, New York, pp 740–748

Adleman LM, Kari J, Kari L, Reishus D, Sosı́k P (2009) The undecidability of the infinite ribbon problem:
implications for computing by self-assembly. SIAM J Comput 38(6):2356–2381

Barish RD, Schulman R, Rothemund PW, Winfree E (2009) An information-bearing seed for nucleating
algorithmic self-assembly. Proc Natl Acad Sci USA 106(15):6054–6059

Becker F, Rapaport I, Rémila E (2006) Self-assembling classes of shapes with a minimum number of tiles,
and in optimal time. In: Foundations of software technology and theoretical computer science
(FSTTCS), pp 45–56

Cheng Q, Goel A, de Espanés PM (2004) Optimal self-assembly of counters at temperature two. In:
Proceedings of the first conference on foundations of nanoscience: self-assembled architectures and
devices

Cheng Q, Aggarwal G, Goldwasser MH, Kao M-Y, Schweller RT, de Espanés PM (2005) Complexities for
generalized models of self-assembly. SIAM J Comput 34:1493–1515

Demaine ED, Demaine ML, Fekete SP, Ishaque M, Rafalin E, Schweller RT, Souvaine DL (2008) Staged
self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Nat Comput 7(3):347–370

Doty D (2009) Randomized self-assembly for exact shapes. In: Proceedings of the fiftieth IEEE conference
on foundations of computer science (FOCS)

Doty D, Patitz MJ (2009) A domain specific language for programming in the tile assembly model. In:
Proceedings of the fifteenth international meeting on DNA computing and molecular programming,
Fayetteville, Arkansas, USA, June 8–11, 2009, pp 25–34

Doty D, Patitz MJ, Summers SM Limitations of self-assembly at temperature 1. Theor Comput Sci (to
appear)

Fu Y, Schweller R (2009) Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic
assembly in 2D. Technical report 0912.0027, Computing Research Repository

876 M. J. Patitz, S. M. Summers

123

Kao M-Y, Schweller RT (2007) Reducing tile complexity for self-assembly through temperature pro-
gramming. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms (SODA
2006), Miami, FL, January 2006, pp 571–580

Kao M-Y, Schweller RT (2008) Randomized self-assembly for approximate shapes. In: International col-
loqium on automata, languages, and programming (ICALP). Lecture notes in computer science, vol
5125. Springer, pp 370–384

Lathrop JI, Lutz JH, Summers SM (2009) Strict self-assembly of discrete Sierpinski triangles. Theor
Comput Sci 410:384–405

Lathrop JI, Lutz JH, Patitz MJ, Summers SM Computability and complexity in self-assembly. Theory
Comput Syst (to appear)

Patitz MJ (2009) Simulation of self-assembly in the abstract tile assembly model with ISU TAS. In: 6th
Annual conference on foundations of nanoscience: self-assembled architectures and devices, Snow-
bird, UT, USA, 20–24 April 2009

Reif JH (1999) Local parallel biomolecular computing. DNA based computers III, vol 48 of DIMACS.
American Mathematical Society, pp 217–254

Rothemund PWK (2001) Theory and experiments in algorithmic self-assembly. Ph.D. thesis, University of
Southern California

Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares (extended
abstract). In: STOC ’00: Proceedings of the thirty-second annual ACM symposium on theory of
computing, New York, NY, USA. ACM, pp 459–468

Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biol 2(12):2041–2053

Soloveichik D, Winfree E (2007) Complexity of self-assembled shapes. SIAM J Comput 36(6):1544–1569
Wang H (1961) Proving theorems by pattern recognition—II. Bell Syst Tech J XL(1):1–41
Wang H (1963) Dominoes and the AEA case of the decision problem. In: Proceedings of the symposium on

mathematical theory of automata, New York, 1962. Polytechnic Press of Polytechnic Inst. of Brooklyn,
Brooklyn, pp 23–55

Winfree E (1998) Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology

Self-assembly of decidable sets 877

123

	Self-assembly of decidable sets
	Abstract
	Introduction
	Motivation and statement of contributions

	The tile assembly model
	The wedge construction: a review
	A new characterization of decidable languages
	Main construction: self-assembly of 2-dimensional representations of decidable languages
	Discussion of Proof of Lemma 4.1
	First main theorem

	Space requirements of the self-assembly of decidable sets
	The impact of the decision paths
	Squeezing more information into each decision path
	A single-quadrant construction
	Constructions using arbitrarily thin ‘‘pie’’ slices of one quadrant

	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

