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Abstract In this paper, we search for theoretical limitations of the Tile Assembly Model

(TAM), along with techniques to work around such limitations. Specifically, we investigate

the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal

weakly self-assembles at temperature 1 in a locally deterministic tile assembly system, and

that certain kinds of discrete self-similar fractals do not strictly self-assemble at any

temperature. Additionally, we extend the fiber construction of Lathrop et al. (2009) to show

that any discrete self-similar fractal belonging to a particular class of ‘‘nice’’ discrete self-

similar fractals has a fibered version that strictly self-assembles in the TAM.

Keywords Self-assembly � Self-similar fractal � Local determinism �
Tile Assembly Model

1 Introduction

Self-assembly is a bottom-up process by which (usually a small number of) fundamental

components automatically coalesce to form a target structure. In 1998, Winfree (1998)

introduced the (abstract) Tile Assembly Model (TAM)—an effective version of Wang

tiling (Wang 1961, 1963)—and a mathematical model of DNA self-assembly pioneered by

Seeman (1982). In the TAM, the fundamental components are un-rotatable, but translatable

‘‘tiles’’ whose sides are labeled with glue ‘‘colors’’ and ‘‘strengths.’’ Two tiles that are

placed next to each other interact if the glue colors on their abutting sides match, and they

bind if the strength on their abutting sides matches and is at least as great as a given

Preliminary version appeared in the Proceedings of The Fourteenth International Meeting on DNA Com-
puting (DNA 14), Prague, Czech Republic, June 2–6, 2008. This author’s research was supported in part by
NSF-IGERT Training Project in Computational Molecular Biology Grant number DGE-0504304.

M. J. Patitz (&) � S. M. Summers
Department of Computer Science, Iowa State University, Ames, IA 50011, USA
e-mail: mpatitz@cs.iastate.edu

S. M. Summers
e-mail: summers@cs.iastate.edu

123

Nat Comput (2010) 9:135–172
DOI 10.1007/s11047-009-9147-7



‘‘temperature’’ value. Rothemund and Winfree (2001, 2000) later refined the model, and

Lathrop et al. (2009) gave a treatment of the TAM in which equal status is bestowed upon

the self-assembly of infinite and finite structures. There are also several generalizations

(Aggarwal et al. 2004; Kao and Schweller 2007; Majumder et al. 2007) of the TAM.

Despite its deliberate over-simplification, the TAM is a computationally and geomet-

rically expressive model. For instance, Winfree (1998) proved that the TAM is compu-

tationally universal, and thus can be directed algorithmically. Winfree (1998) also

exhibited a seven-tile-type self-assembly system, directed by a clever XOR-like algorithm,

that ‘‘paints’’ a picture of a well-known shape, the discrete Sierpinski triangle S, onto the

first quadrant. Note that the underlying shapes of each of the previous results are infinite

canvases that cover the first quadrant, onto which computationally interesting shapes are

painted (in Lathrop et al. 2009, this is defined as weak self-assembly). Moreover, Lathrop

et al. (2008) recently gave a characterization of the computably enumerable languages in

terms of weak self-assembly using a ‘‘2-dimensional ray construction’’ in which, for any

TM M, a ‘‘quadratically spaced out’’ version of the projection of L(M) along the positive

x-axis weakly self-assembles.

Strict self-assembly is the self-assembly of a particular connected shape and nothing

else. Note that strict self-assembly is a special case of weak self-assembly, where the

underlying canvas (onto which a shape X � Z
2 is painted) is the shape X itself. We say that

the tile complexity of a shape X is the size of the tile set in which X strictly self-assembles.

For the case of the strict self-assembly of finite shapes, the tile complexity of the shape

becomes an important factor because every finite shape trivially (but perhaps not feasibly)

strictly self-assembles via a spanning-tree construction. Numerous lower bounds on the tile

complexity for the strict self-assembly of particular classes of shapes have been estab-

lished. For instance, Rothemund and Winfree (2000) proved that there exist very small tile

sets in which extremely large squares strictly self-assemble. In 2002, Adleman et al. (2002)

exhibited polynomial-time algorithms capable of finding the ‘‘minimum’’ tile assembly

system (with respect to tile complexity) in which tree shapes and squares strictly self-

assemble. Moreover, Soloveichik and Winfree (2007) discovered the remarkable fact that,

if one is not concerned with the scale of an ‘‘algorithmically describable’’ finite shape X,

then there is always a small tile set in which X strictly self-assembles.

For the case of strict self-assembly of infinite shapes, the power of the TAM has only

recently been investigated. In this case, we ignore tile-complexity and are thus primarily

concerned with the question of whether or not there is any tile assembly system in which a

particular infinite shape strictly self-assembles. Note that, unlike for the case of the strict

self-assembly of finite shapes, the tile complexity of an infinite shape X cannot be a

function of |X|. Much of the previous work in this area has focused on the strict self-

assembly of discrete fractal structures. In particular, Lathrop et al. (2009) established that

self-similar tree shapes do not strictly self-assemble in the TAM. A ‘‘fiber construction’’ is

also given in Lathrop et al. (2009), in which a non-trivial (infinite) fractal structure

resembling the standard discrete Sierpinski triangle strictly self-assembles. Moreover,

Kautz and Lathrop (2009) define an infinite class of ‘‘numerically self-similar’’ discrete

self-similar fractals (to which the Sierpinski triangle and the Sierpinski carpet belong), and

give a general construction for generating tile assembly systems in which such numerically

self-similar fractals weakly self-assemble.

In this paper, we search for (1) theoretical limitations of the TAM, with respect to the

strict self-assembly of infinite shapes, and (2) techniques that allow one to ‘‘work around’’

such limitations. Specifically, we investigate the strict self-assembly of fractal shapes in the

TAM. We are interested in fractal shapes because of their geometric aperiodicity and their
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frequent occurrence in natural biological systems. We prove three main results: two

negative and one positive. Our first negative (i.e., impossibility) result says that no self-

similar fractal weakly self-assembles in the TAM at temperature 1 in a locally deter-

ministic tile assembly system. In our second impossibility result, we exhibit a class of

discrete self-similar fractals, to which the standard discrete Sierpinski triangle belongs, that

do not strictly self-assemble in the TAM (at any temperature). Finally, in our positive

result, we use simple modified counters to extend the fiber construction from Lathrop et al.

(2009) to a particular class of ‘‘nice’’ discrete self-similar fractals.

2 Preliminaries

2.1 The Tile Assembly Model

We work in the 2-dimensional discrete Euclidean space Z
2: We write U2 for the set of all

unit vectors, i.e., vectors of length 1, in Z
2: We regard the 4 elements of U2 as (names of

the cardinal) directions in Z
2:

We now give a brief and relatively self-contained introduction to the abstract Tile

Assembly Model that is adequate for reading this paper. More formal details and discus-

sion may be found in Lathrop et al. (2009), Rothemund (2001), Rothemund and Winfree

(2000), and Winfree (1998). Our notation is that of Lathrop et al. (2009).

A grid graph is a graph G = (V, E) in which V � Z
2 and every edge fa~; b~g 2 E has the

property that a~� b~2 U2: The full grid graph on a set V � Z
2 is the graph G#

V = (V, E) in

which E contains every fa~; b~g 2 ½V�2 such that a~� b~2 U2: Intuitively, a tile type t is a unit

square that can be translated, but not rotated, so it has a well-defined ‘‘side u~’’ for each

u~2 U2: Each side u~ is covered with a ‘‘glue’’ of ‘‘color’’ coltðu~Þ and ‘‘strength’’ strtðu~Þ
specified by its type t. Tiles are depicted as squares whose various sides have a dashed line,

one solid line, or two solid lines, indicating whether the glue strengths on these sides are 0,

1, or 2, respectively. Thus, for example, a tile of the type shown in Fig. 1 has glue of

strength 0 on the left and bottom, glue of color ‘A’ and strength 1 on the top, and glue of

color ‘B’ and strength 2 on the right. This tile also has a label ‘L’, which plays no formal

role.

Two tiles t and t0 that are placed at the points a~ and a~þ u~ respectively, bind with

strength strt u~ð Þ if and only if colt u~ð Þ; strt u~ð Þð Þ ¼ colt0 �u~ð Þ; strt0 �u~ð Þð Þ: In this paper, all

glues have strength 0, 1, or 2. Each side’s ‘‘color’’ is indicated by an alphanumeric label.

An example of a tile set is shown in Figs. 2, 3. Given a set T of tile types and a ‘‘tem-

perature’’ s 2 N; a s-T-assembly is a partial function a : Z2T -intuitively, a placement of tiles

A

BL
Fig. 1 Example tile type

E

A1
E

A B2
C

B 3 D 4
C

D D5
E

Fig. 2 Example tile set
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at some locations in Z
2: The binding graph of an assembly a is the grid graph Ga =

(V, E), where V = dom a, and fm~; n~g 2 E if and only if (1) m~� n~2 U2; (2) colaðm~Þ n~� m~ð Þ ¼
colaðn~Þ m~� n~ð Þ; (3) straðm~Þ n~� m~ð Þ ¼ straðn~Þ m~� n~ð Þ; and (4) straðm~Þ n~� m~ð Þ[ 0:An assembly

is s-stable, if it cannot be broken up into smaller assemblies without breaking bonds of total

strength at least s (i.e., if every cut of Ga cuts edges, the sum of whose strengths is at least s).

For each t 2 T; the s-t-frontier of a, written as qs
t a, is the set of all locations to which t can be

s-stably added to a. For each t 2 T ; we write qta for the set of all locations to which a tile of

type t can be s-stably added. We write qa for the set of all locations to which some tile can be

s-stably added to a. We refer to qa as the frontier of a. If a and a0 are assemblies, then a is a

subassembly of a0, and we write aY a0; if dom a � dom a0 and aðm~Þ ¼ a0ðm~Þ for all

m~ 2 dom a:
Self-assembly begins with a seed assembly r and proceeds asynchronously and non-

deterministically, with tiles adsorbing one at a time to the existing assembly in any manner

that preserves s-stability at all times. A tile assembly system (TAS) is an ordered triple

T ¼ ðT ; r; sÞ; where T is a finite set of tile types, r is a seed assembly with finite domain,

and s 2 N: A generalized tile assembly system (GTAS) is defined similarly, but without the

finiteness requirements. An assembly sequence in a TAS T is a (finite or infinite) sequence

a~¼ ða0; a1; . . .Þ of assemblies in which each ai?1 is obtained from ai by the addition of a

single tile. The result resða~Þ of such an assembly sequence is its unique limiting assembly

(This is the last assembly in the sequence if the sequence is finite). Figures 4, 5 shows an

example of a 2-T-assembly sequence (where T is the tile set shown in Fig. 2), with its result

being the right most assembly.

We writeA½T � for the set of all assemblies that can arise via some assembly sequence in

T : An assembly a is terminal, and we write a 2 A(½T �; if no tile can be s-stably added to

it. The set A½T � is partially ordered by the relation �! defined by

E E C

A B

DD

A B

D

1 2 3

45
CE

Fig. 3 Example 2-T-assembly,
where T is the tile set shown in
Fig. 2. Note that the size of the
frontier of this assembly is 1

E E C

A B

DDD

A B

DD

1 2 3

455
CEE

Fig. 5 An example of
a 2-T-assembly that is terminal,
where T is the tile set shown
in Fig. 2

EEEEE EEEE CCC

AAAA BBB

DD D

AAAAA BBBB

D

11111 2222 333

44 5
CC E

Fig. 4 An example assembly sequence with respect to the tile set shown in Fig. 2
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a �! a0 , there is an assembly

sequence a~¼ ða0; a1; . . .Þ
such that a0 ¼ a and

a0 ¼ resða~Þ:
We say that T is directed if the relation �! is directed, i.e., if for all a; a0 2 A½T �; there

exists a00 2 A½T � such that a�!a00 and a0 �! a00: It is easy to show that T is directed if and

only if there is a unique terminal assembly a 2 A½T � such that r�!a: The reader is

cautioned that the term ‘‘directed’’ has also been used for a different, more specialized

notion in self-assembly (Adleman et al. 2002). We interpret ‘‘directed’’ to mean ‘‘deter-

ministic’’, though there are multiple senses in which a TAS may be deterministic or

nondeterministic.

A set X � Z
2 weakly self-assembles if there exists a TAS T ¼ ðT ; r; sÞ and a set B � T

(B constitutes the ‘‘black’’ tiles) such that a-1(B) = X holds for every assembly a 2 A(½T �:
A set X strictly self-assembles if there is a TAS T for which every assembly a 2 A(½T �
satisfies dom a = X. Note that if X strictly self-assembles, then X weakly self-assembles.

(Let all tiles be black.)

For the sake of example, let T ¼ ðT ; r; 2Þ be the tile assembly system where T is the set

of tile types given in Fig. 2 and r is an assembly such that r(0,0) = t, where t 2 T is the

unique tile type with the label ‘1’ (and undefined elsewhere). Then it is clear that the set

X ¼ fð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þg

strictly self-assembles in T : Furthermore, if we define the set B of ‘‘black’’ tiles to be the

singleton set containing the tile type labeled ‘5’, then it follows that the set

Y ¼ fð0; 1Þ; ð1; 1Þg

weakly self-assembles in T :

2.2 A brief sketch of local determinism

Our first main theorem uses local determinism (Soloveichik and Winfree 2007), which we

now briefly review.

Notation 2.1 For each assembly a, each m~ 2 Z
2; and each u~2 U2;

straðm~; u~Þ ¼ straðm~Þðu~Þ � aðm~Þðu~Þ ¼ aðm~þ u~Þð�u~Þ½ �½ �;

where [[/]] is the Boolean value of the statement /. The Boolean value on the right is 0 if

fm~;m~þ u~g*dom a:

Notation 2.2 If a~¼ ðai j 0� i \ kÞ is an assembly sequence in the TAS T ¼ ðT; r; sÞ;
and m~ 2 Z

2; then the a~ -index of m~ is

ia~ðm~Þ ¼ minfi 2 N m~ 2 dom aij g:

Observation 2.3 m~ 2 dom resða~Þ , ia~ðm~Þ\1:

Notation 2.4 If a~¼ ðai j 0� i \ kÞ is an assembly sequence in the TAS T ¼ ðT; r; sÞ;
then, for m~;m~0 2 Z

2;
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m~ �a~ m~0 , ia~ðm~Þ\ia~ðm~0Þ:

Definition 2.5 (Soloveichik and Winfree 2007) Let a~¼ ðai j 0� i\kÞ be an assembly

sequence in the TAS T ¼ ðT ; r; sÞ; and let a ¼ resða~Þ: For each location m~ 2 dom a;
define the following sets of directions.

1. INa~ðm~Þ ¼ u~2 U2 m~ þ u~�a~ m~ and straia~ðm~Þ
ðm~; u~Þ[ 0

�
�
�

n o

:
2. OUTa~ðm~Þ ¼ u~2 U2 �u~2 INa~ðm~þ u~

�
� Þ

� �

:

Intuitively, INa~ðm~Þ is the set of sides on which the tile at m~ initially binds in the

assembly sequence a~; and OUTa~ðm~Þ is the set of sides on which this tile propagates

information to future tiles. Note that INa~ðm~Þ ¼ ; for all m~ 2 a0:

Notation 2.6 If a~¼ ðai j 0� i\kÞ is an assembly sequence in the TAS T ¼ ðT; r; sÞ;
a ¼ resða~Þ; and m~ 2 dom a� dom a0; then

a~n m~ ¼ a� dom a� fm~g � m~þ OUTa~ðm~Þ
� �� �

:

(Note that a~n m~ may or may not be a stable assembly.)

Definition 2.7 (Soloveichik and Winfree 2007). An assembly sequence a~¼ ðai j
0� i\kÞ in the TAS T ¼ ðT ; r; sÞ; with result a is locally deterministic if it has the

following three properties.

1. For all m~ 2 dom a� dom a0;
X

u~2INa~ðm~Þ
straia~ðm~Þ

ðm~; u~Þ ¼ s:

2. For all m~ 2 dom a� dom a0 and all t 2 T � faðm~Þg;m~ 62 os
t a~n m~ð Þ:

3. a 2 A(½T �:

Intuitively, a~ is locally deterministic if (1) each tile added in a~ ‘‘just barely’’ binds to the

assembly; (2) if a tile of type t0 at a location m~ and its immediate ‘‘OUT-neighbors’’ are

deleted from the result of a~; then no tile of type t 6¼ t0 can attach itself to the thus-obtained

configuration at location m~; and (3) the result of a~ is terminal. See Fig. 4 for an example of

a locally deterministic assembly sequence.

Definition 2.8 A TAS T ¼ ðT; r; sÞ is locally deterministic if there exists a locally

deterministic assembly sequence a~¼ ðai j 0� i\kÞ with a0 = r.

Lemma 2.9 (Soloveichik and Winfree 2007) If the TAS T ¼ ðT ; r; sÞ is locally deter-
ministic, then every assembly sequence a~¼ ðai j 0� i\kÞ in T is locally deterministic.

Theorem 2.10 (Soloveichik and Winfree 2007) Every locally deterministic TAS is
directed.

2.3 Discrete self-similar fractals

In this subsection we introduce discrete self-similar fractals, and a kind of discrete fractal

dimension called zeta-dimension (Doty et al. 2005).
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Definition 2.11 Let 1\c 2 N; and X(N
2 (we do not consider N

2 to be a self-similar

fractal). We say that X is a c-discrete self-similar fractal, if there is a set V �
f0; . . .; c� 1g � f0; . . .; c� 1g with |V| [ c, and

V 62 fði; iÞ j 0� i\cg; fði; 0Þ j 0� i\cg; fð0; iÞ j 0� i\cgf g;

such that

X ¼
[1

i¼0

Xi;

where Xi is the ith stage satisfying X0 = {(0,0)}, and Xi?1 = Xi [ (Xi ? ci V). In this case,

we say that V generates X.

Intuitively, we define c-discrete self-similar fractals as follows (demonstrated in Fig. 6).

Begin with a c x c square where the 0th stage is defined simply by the point (0,0). The first

stage, which we call the generator is defined by selecting additional locations in the c x c
square. Every subsequent stage i is formed by treating the stage i-1 as a magnified version

of the point (0,0) in the generator and creating one full copy of stage i-1 for every other

point in the generator, then treating those copies as the magnified versions of their

respective points in the generator and translating them accordingly.

Definition 2.12 X(N
2: We say that X is a discrete self-similar fractal if it is a c-discrete

self-similar fractal for some c 2 N:

In this paper, we are concerned with the following class of self-similar fractals.

Definition 2.13 A nice discrete self-similar fractal is a discrete self-similar fractal such

that ðf0; . . .; c� 1g � f0gÞ [ ðf0g � f0; . . .; c� 1gÞ � V; and G#
V is connected.

See Fig. 7 for examples of nice discrete self-similar fractals.

The most commonly used dimension for discrete fractals is zeta-dimension, which we

use in this paper.

Definition 2.14 (Doty et al. 2005) For each set A � Z
2; the zeta-dimension of A is

DimfðAÞ ¼ lim sup
n!1

log jA� nj
log n

;

where A� n ¼ fðk; lÞ 2 A j jkj þ jlj � ng:

It is clear that 0 B Dimf(A) B 2 for all A � Z
2:

(a) (b) (c) (d)

Fig. 6 The first four stages of the discrete Sierpinski carpet (X0, X1 = V, X2, and X3 are shown in (a), (b),
(c), and (d) respectively)
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3 Impossibility results

In this section, we explore the theoretical limitations of the Tile Assembly Model with

respect to the self-assembly of fractal shapes. We are specifically interested in the self-

assembly of discrete fractal structures because of their geometrically aperiodic structure.

First, we establish that no discrete self-similar fractal weakly self-assembles at temperature

s = 1 in a locally deterministic tile assembly system. Second, we exhibit a class C of

discrete self-similar fractals, and prove that if F 2 C; then F does not strictly self-assemble

in the TAM.

Throughout this section, we assume (without loss of generality) that T is a finite set of

tile types, and r is an assembly that places a single tile at the origin.

The following theorem is evidence in support of the claim that locally deterministic

temperature 1 tile assembly systems cannot produce ‘‘sophisticated’’ shapes and patterns.

Theorem 3.1 Let T ¼ ðT ; r; s ¼ 1Þ be a tile assembly system, and a 2 A(½T �: If T is
locally deterministic, then the binding graph Ga is a tree.

Proof Suppose that the binding graph Ga is not a tree. Then there is a cycle C in Ga. Let

z~2 C; t ¼ aðz~Þ and a~ be an assembly sequence satisfying a ¼ dom resða~Þ: There must be

two simple paths p1 and p2 in Ga from 0~ to z~with p1=p2. Since s = 1, there exists an

assembly sequence a~0 where a~0 first assembles p1 \ p2 (if such an intersection exists), then

assembles ðp1 � p2Þ � fz~g; and finally assembles ðp2 � p1Þ � fz~g: We can use a~0 to define

the assembly sequence a~00 that does what a~0 does but places the tile type t at position z~and

then does whatever a~does for all m~ 62 dom resða~0Þ: But since z~2 C; the tile that a~0 places at

position z~ has two input sides and binds with strength 2 [ s = 1. Thus, the assembly

sequence a~0 is not locally deterministic, and it follows by Lemma 2.9 that T is not locally

deterministic. h

See Fig. 8 for a visual depiction of the above proof.

Note that the converse of Theorem 3.1 is not necessarily true.

Definition 3.2 (Lathrop et al. 2009) Let G = (V,E) be a graph, and let D � V: For each

r 2 V; the D-r-rooted subgraph of G is the graph GD,r = (VD,r, ED,r ), where

VD;r ¼ v 2 V every simple path from v to D in G goes through rjf g

and ED;r ¼ E \ VD;r

� �2
: B is a D-subgraph of G if it is a D-r-rooted subgraph of G for some

r 2 V:

Definition 3.3 Let A;B � Z
2: We say that A and B are isomorphic, and we write A * B

if there exists v~2 Z
2 such that A ¼ Bþ v~:

(a) (b)

Fig. 7 The generators of discrete self-similar fractals. The fractals in (a) are nice, whereas (b) shows two
non-nice fractals
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Definition 3.4 Let G1 = (V1, E1) and G2 = (V2, E2) be grid graphs. We say that G1 and

G2 are isomorphic and we write G1 * G2 if V1 and V2 are isomorphic.

See Fig. 9 for an intuitive example of a D-subgraph.

Lemma 3.5 Let T ¼ ðT ; r; 1Þ be a locally deterministic tile assembly system, a~ be an
assembly sequence with resða~Þ ¼ a 2 A(½T �; and p be a simple path in the binding graph
Ga = (V, E) originating at the origin. If there exist points p~; q~2 p with a p~ð Þ ¼ a q~ð Þ
ðp~ precedes q~ on p), then, for all a~2 V

0~f g;p~; aða~Þ ¼ aða~þ v~Þ; where v~¼ q~� p~:

Proof Let n 2 N; and pðnÞp~ ¼ p~; . . .ð Þ be a simple path in G
0~f g;p~ with pðnÞp~

�
�
�

�
�
� ¼ n: Define,

for all i 2 f0; . . .; n� 2g; the unit vector u~i ¼ pðnÞp~ ½iþ 1� � pðnÞp~ ½i�: It suffices to show that

there exists a simple path pðnÞq~ ¼ q~; q~þ u~0; q~þ u~0 þ u~1; . . .; q~þ
Pn�1

i¼0 u~i

� 	

in G
0~f g;p~;

satisfying, for all i 2 f0; . . .; n� 1g; v~¼ pðnÞq~ ½i� � pðnÞp~ ½i�; and a pðnÞp~ ½i�
� 	

¼ a pðnÞq~ ½i�
� 	

: We

will proceed by induction on n.

For the base case (i.e., n = 0), we have pð0Þp~ ¼ p~ð Þ: The hypothesis of the lemma tells us

that q~2 G
0~f g;p~; whence there exists a simple path pð0Þq~ ¼ q~ð Þ in G

0~f g;p~ with pð0Þq~

�
�
�

�
�
� ¼ 0:

Furthermore, we have

0

(a)

0

(b)

Fig. 8 Visual depiction of the proof of Lemma 3.1. If a cycle could exist (image a), then image b shows a
possible partial assembly to which the tile attaching in location z~ would bind with strength 2. This is a
contradiction to the claim that the tile assembly system is temperature one and locally deterministic. a An
example of a cycle existing in the binding graph of an assembly; b A possible partial assembly which forms
both paths to z~ before z~ is tiled

D

r
GD,r

Fig. 9 An example D-r-rooted
subgraph of a graph G. Notice
that the paths from all points in
the region labeled GD,r to the
region labeled D must go through
the point r
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pð0Þq~ ½0� � pð0Þp~ ½0� ¼ q~� p~

¼ v~;

and

a pð0Þp~ ½0�
� 	

¼ a p~ð Þ

¼ a q~ð Þ

¼ a pð0Þq~ ½0�
� 	

:

Assume that, if pðn�1Þ
p~ ¼ p~; . . .ð Þ is a simple path in G 0~f g;p~ with pðn�1Þ

p~

�
�
�

�
�
� ¼ n� 1; then

there exists a simple path pðn�1Þ
q~ ¼ q~; q~þ u~0; q~þ u~0 þ u~1; . . .; q~þ

Pn�2
i¼0 u~i

� 	

in G
0~f g;p~;

satisfying, for all i 2 f0; . . .; n� 2g; v~¼ pðn�1Þ
q~ ½i� � pðn�1Þ

p~ ½i�; and a pðn�1Þ
p~ ½i�

� 	

¼

a pðn�1Þ
q~ ½i�

� 	

:

Let pðnÞp~ ¼ p~; . . .ð Þ be any simple in G
0~f g;p~ with pðnÞp~

�
�
�

�
�
� ¼ n: Write

pðnÞp~ ¼ p~; p~þ u~0; p~þ u~0 þ u~1; . . .; p~þ
Xn�2

i¼0

u~i; p~þ
Xn�1

i¼0

u~i

 !

;

where each u~i is defined as above. Then pðn�1Þ
p~ ¼ p~; p~þ u~0; p~þð u~0 þ u~1; . . .; p~þ

Pn�2
i¼0 u~iÞ

is a simple path in G
0~f g;p~ with pðn�1Þ

p~

�
�
�

�
�
� ¼ n� 1:�� > By the induction hypothesis, there

exists a simple path pðn�1Þ
q~ ¼ q~; q~þ u~0; q~þ u~0 þ u~1; . . .; q~þ

Pn�2
i¼0 u~i

� 	

in G
0~f g;p~ satisfy-

ing, for all i 2 f0; . . .; n� 2g; v~¼ pðn�1Þ
q~ ½i� � pðn�1Þ

p~ ½i�; and a pðn�1Þ
p~ ½i�

� 	

¼ a pðn�1Þ
q~ ½i�

� 	

: It

suffices to verify that

pðnÞq~ ¼ q~; q~þ u~0; q~þ u~0 þ u~1; . . .; q~þ
Xn�2

i¼0

u~i; q~þ
Xn�1

i¼0

u~i

 !

is a simple path in G 0~f g;p~ satisfying

1. v~¼ pðnÞq~ ½n� 1� � pðnÞp~ ½n� 1�; and

2. a pðnÞp~ ½n� 1�
� 	

¼ a pðnÞq~ ½n� 1�
� 	

:
To see that pðnÞq~ is a simple path in G

0~f g;p~; suppose otherwise. Then

q~þ
Pn�2

i¼0 u~i; q~þ
Pn�1

i¼0 u~i

n o

is not an edge in G
0~f g;p~: This implies that a q~þ

Pn�1
i¼0 u~i

� 	

#

: Let t ¼ a q~þ
Pn�1

i¼0 u~i

� 	

; and t� ¼ a pðnÞp~ ½n� 1�
� 	

: Note that t*= t. Then we have

q~þ
Xn�1

i¼0

u~i 2 os¼1
t� a~n q~þ

Xn�1

i¼0

u~i

( ) !

because, by the induction hypothesis, a pðnÞp~ ½n� 2�
� 	

¼ a pðnÞq~ ½n� 2�
� 	

: However, this

contradicts the fact that T is locally deterministic, whence pðnÞq~ is a simple path in G
0~f g;p~:

Note that the argument in the above paragraph also establishes that a pðnÞp~ ½n� 1�
� 	

¼

a pðnÞq~ ½n� 1�
� 	

: Finally, we have
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pðnÞq~ ½n� 1� � pðnÞp~ ½n� 1� ¼ q~þ
Xn�1

i¼0

u~i � p~þ
Xn�1

i¼0

u~i

 !

¼ q~� p~

¼ v~;

and the induction hypothesis has been verified. h

Figure 10 gives a visual outline of the proof of Lemma 3.5. Image 10 shows an example

path p beginning at the origin of an assembly. The points p~ and q~ can be seen, along with

the darkened portion of the path, labeled v~; between them. Since the points p~ and q~ were

defined as being positions in the path containing the same tile type, they’ve both been

labeled with tile type t0. This represents the base case for the proof by induction with n = 0

and pð0Þp~ ¼ p~ð Þ:
Image 10b depicts the induction hypothesis with a path of length n - 1, where the

sequence of n - 1 tiles immediately following p~are of types identical to those following q~:
Then, the final step, n, is shown by the tiles with dashed lines. The induction must hold

because the tile set is locally deterministic and therefore tiles of type tn are the only type

that can attach to that side of tiles of type tn-1. Furthermore, position q~ could then be treated

as the next p~; with a new q~ displaced by vector v~ further down the path, and thus the same

pattern must repeat infinitely many times along the path p.

Theorem 3.1, in conjunction with Lemma 3.5, supports the claim that if a set X � Z
2

weakly self-assembles in a locally deterministic temperature 1 tile assembly system, then X
is necessarily ‘‘simple’’ (of course, this is not surprising given the strength of local

determinism). We formally define ‘‘simple’’ as follows.

Definition 3.6 Let X � Z
2:

1. We say that X is periodic with respect to 0~ 6¼ v~2 Z
2 if, for all x~2 X; x~þ v~2 X:

2. We say that X is periodic if it is periodic with respect to v~ for some 0~ 6¼ v~2 Z
2:

Note that the Definition 2.11 tells us that discrete self-similar fractals are not periodic

sets. The following observation is also clear.

0

t0
t0

(a)

0

t0
t0

t1
t1

t2
t2 tn

tn tn+1
tn+1

(b)

Fig. 10 Visual depiction of the inductive proof of Lemma 3.5. a Base case: path p with tile type t0 at
locations p~ and q~, and v~ as the vector between them; b Steps n and n ? 1 of the induction, showing
identical tile types at each location along p from p~ offset by v~
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Observation 3.7 Let X(N
2; and suppose that C 	 N is finite. If X is a discrete self-

similar fractal then X-C is not a finite union of periodic sets.

This observation simply states that, while we know from Definition 2.11 that discrete

self-similar fractals are not periodic sets, there is also no finite portion of a discrete self-

similar fractal which could be removed from it, leaving a set which is a finite union of

periodic sets.

We will use the following technical lemma in the proof of our first main theorem.

Lemma 3.8 Let T ¼ ðT ; r; 1Þ be a locally deterministic tile assembly system, and
a 2 A(½T �: If X � Z

2 weakly self-assembles in T ; then, there exists m 2 N; such that

X ¼
[m�1

i¼0

Xi;

where, for each i 2 f0; . . .;m� 1g;Xi is either finite or periodic.

Proof Assume the hypothesis. If X is finite, then we are done, so assume otherwise. Let

D ¼ ðx; yÞ 2 Z
2 \ dom a

�
� jxj þ jyj � jT j

� �

;

and

B ¼ ðx; yÞ 2 Z
2 \ dom a

�
� jxj þ jyj ¼ jT j þ 1

� �

:

For each r~2 B; let

G
0~f g;r~¼ V

0~f g;r~;E 0~f g;r~
� 	

be the 0~
n o

-subgraph of Ga rooted at r~: See Fig. 11 for an intuitive and visual explanation

of D, B, and G
0~f g;r~: Note that if V

0~f g;r~ is infinite, then X \ V
0~f g;r~ is periodic by Lemma

3.5. The lemma follows by taking

(a)

r1

r2

G{0} 1

G{0} 2

(b)

Fig. 11 Example images of proof of Lemma 3.8, a shows sets D and B, and b shows sample finite and
infinite 0~

n o

-subgraphs. Note that any infinite 0~
n o

-subgraph must be periodic by Lemma 3.5. a D (dark
grey) and B (light grey) centered on 0~ (black) for jT j ¼ 5; b Example finite G 0~f g;r~1

and infinite G 0~f g;r~2
for

r~1, r~2 2 B
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X ¼ D [
[

r~2B

V
0~f g;r~:

h

Our first main result is as follows.

Theorem 3.9 (first main theorem) Let T ¼ ðT; r; 1Þ be a locally deterministic tile
assembly system. If X(N

2 is a discrete self-similar fractal, then X does not weakly self-
assemble in T :

Proof Assume that X weakly self-assembles in T : It suffices to prove that X is not a discrete

self-similar fractal. If X is finite, then we are done, so assume otherwise. Lemma 3.8 tells us

that there exists m 2 N; such that

X ¼
[m�1

i¼0

Xi;

where, for each i 2 f0; . . .;m� 1g;Xi is either finite or periodic. If, for every

i 2 f0; . . .;m� 1g;Xi is infinite, then we are done, because X is a finite union of periodic sets,

and the theorem follows from Observation 3.7 by taking C = Ø. However, if there exists

i 2 N such that i 2 f0; . . .;m� 1g and Xi is finite, then we can assume, without loss of

generality, that X0,…,Xj-1 are finite, and Xj,…,Xm-1 are infinite. The theorem follows from

Observation 3.7 by taking

C ¼
[j�1

i¼0

Xi

 !

�
[m�1

i¼j

Xi

 !

:

h

We now shift our attention to the strict self-assembly of discrete self-similar fractals at

temperature s C 2. Specifically, we exhibit a class C of (non-tree) ‘‘pinch-point’’ discrete

self-similar fractals that do not strictly self-assemble. Note that, unlike for the case s = 1,

our proofs exploit the geometry of the fractal as opposed to the nature of self-assembly. In

proving our second main result, we assume that r is a stable assembly having a finite

domain that contains the origin. We use the following lower bound in the proof of our

second main theorem.

Lemma 3.10 If X � Z
2 strictly self-assembles in the TAS T ¼ ðT ; r; sÞ; then

jT j 
 ½B� B is a dom r-subgraph of G#
X

�
�
�

n o�
�
�

�
�
�;

where B is a dom r-subgraph of G#
X, and [B] is the set of all dom r-subgraphs of G#

X that
are isomorphic to B.

Proof Assume the hypothesis, and let a be the unique terminal assembly satisfying

a 2 A(½T �: Note that

½B� ¼ B0 B0 is a dom r-subgraph of G#
X and B0 �B

�
�
�

n o

:

For the purpose of obtaining a contradiction, suppose that
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jT j\ ½B� B is a dom r-subgraph of G#
X

�
�
�

n o�
�
�

�
�
�:

By the Pigeonhole Principle, there exists points r1~; r2~ 2 X satisfying (1) a r1~ð Þ ¼ a r2~ð Þ; and

(2) Gdom r;r1~¿Gdom r;r2~: Let r1 be the assembly with dom r1 ¼ r1~f g; and for all u~2 U2;
define

r1ðr1~Þðu~Þ ¼ colaðr1~Þðu~Þ; straðr1~Þðu~Þ
� �

if r1~ þ u~2 Gdom r;r1~

ðk; 0Þ otherwise.




Intuitively, r1ðr1~Þ is a modified version of a r~kð Þ such that the input sides of a r~kð Þ are

zeroed out and the output sides left unchanged. Let r2 be the assembly with dom r2 ¼
r2~f g; and for all u~2 U2; define

r2ðr2~Þðu~Þ ¼ colaðr2~Þðu~Þ; straðr2~Þðu~Þ
� �

if r2~ þ u~2 Gdom r;r2~

ðk; 0Þ otherwise.




Then T 1 ¼ ðT ; r1; sÞ is a TAS in which Gdom r;r1~ strictly self-assembles, and T 2 ¼
ðT ; r2; sÞ is a TAS in which Gdom r;r2~ strictly self-assembles. But this is a contradiction,

because a r1~ð Þ ¼ a r2~ð Þ implies that, for all u~2 U2; r1 r1~ð Þ u~ð Þ ¼ r2 r2~ð Þ u~ð Þ: h

Essentially, this proof sets a lower bound on the size of a tile set which strictly self

assembles a shape by relating it to the number of equivalence classes of dom-r subgraphs

that appear in that shape. Each such equivalence class is rooted by a single tile, but since it

forms a unique shape there must be a unique tile type for each such root.

Note that Theorem 3.2 of Lathrop et al. (2009) is ‘‘quantitatively stronger’’ than

Lemma 3.10. However, Lemma 3.10 applies to a more general class of discrete self-similar

(non-tree) fractals. Our second impossibility result is the following.

Definition 3.11 Let X(N
2 be a discrete self-similar fractal. We say that X is a pinch-

point discrete self-similar fractal if X is a discrete self-similar fractal, generated by V, and

V satisfies the following three conditions.

1. fð0; 0Þ; ð0; c� 1Þ; ðc� 1; 0Þg�V:
2. V \ ðf1; . . .; c� 1g � fc� 1gÞ ¼ ;:
3. V \ ðfc� 1g � f1; . . .; c� 1gÞ ¼ ;:
4. G#

V is connected.

The generator for a pinch-point fractal has exactly one point in each of its top-most and

right-most rows, (0, c) and (c, 0), respectively. The other constraint is that the points in the

generator are connected. See Fig. 12 for an example.

We now have the machinery to prove our second main theorem.

(a) (b) (c)

Fig. 12 ‘‘Construction’’ of a
pinch-point fractal generator. a
Dark gray points must be in the
generator; b Light gray points in
top row and right column cannot
be in the generator; c The
generator must be connected
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Theorem 3.12 (second main theorem) If X(N
2 is a pinch-point discrete self-similar

fractal, then X does not strictly self-assemble in the Tile Assembly Model.

Proof By Lemma 3.10, it suffices to show that, for any m 2 N;

½B� B is a dom r-subgraph of G#
X

�
�
�

n o�
�
�

�
�
�
m;

where B is a dom r-subgraph of G#
X, and [B] is the set of all dom r-subgraphs of G#

X that

are isomorphic to B. Define the points, for all k 2 N; r~k ¼ ckðcðc� 1Þ; c� 1Þ; and let

Bk ¼ X \ 0; . . .; ck � 1
� �2þ r~k

� 	

:

See Fig. 13 for an example (with c = 4) of a c-discrete self-similar fractal with the points

r~0; r~1; and r~2 highlighted in black.

Fig. 13 An example of a pinch-point discrete self-similar fractal. The black squares are the points r~0; r~1

and r~2; respectively. Notice that the dom r -subgraphs, rooted at each of these points, are growing larger. In
general, for any pinch-point discrete self-similar fractal, there will exist an infinite sequence of points
r~0; r~1; . . . at which successively larger dom r-subgraphs are rooted
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Conditions (1), (2), and (3) of Definition 3.11 tell us that, for each k 2 N;G#
Bk

is a

dom r-subgraph of G#
X (rooted at r~k). Furthermore, it is routine to verify that, for all

k1; k2 2 N;G#
Bk1
�G#

Bk2
¼) k1 ¼ k2: Thus, we have

m ¼ G#
Bk

�
�
�0� k\m

n o�
�
�

�
�
�

� ½B� B is a dom r-subgraph of G#
X

�
�
�

n o�
�
�

�
�
�:

Corollary 3.13 (Lathrop et al. 2009) The standard discrete Sierpinski triangle S does not
strictly self-assemble in the Tile Assembly Model.

4 Every nice self-similar fractal has a fibered version

In this section, given a nice c-discrete self-similar fractal X(N
2 (generated by V), we

define its fibered counterpart FðXÞ: Intuitively, FðXÞ is nearly identical to X, but each

successive stage of FðXÞ is slightly thicker than the equivalent stage of X (see Fig. 14 for

an example). Our objective is to define sets F0;F1; . . .;� Z
2; sets T0; T1; . . . � Z

2; and

functions l; f ; t : N! N with the following meanings.

1. Ti is the ith stage of our construction of the fibered version of X, i.e., FðXÞ:
2. Fi is the fiber associated with Ti. It is the smallest set whose union with Ti has a straight

vertical left edge and a straight horizontal bottom edge, together with one additional

layer added to these two now-straight edges (see Fig. 14 for an example of the set F0,

F1, and F2 for the fibered version of the discrete Sierpinski carpet).

3. l (i) is the length (number of tiles in) the left (or bottom) edge of Ti [ Fi.

4. f (i) = |Fi|.

5. t (i) = |Ti|.

These five entities are defined recursively by the equations

l(2)

T2

T1T1

T0T0

F0

F1

F2

Fig. 14 Construction of the fibered Sierpinski carpet. The black, dark gray, and light gray tiles represent
(possibly translated copies of) F0, F1, and F2, respectively
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T0 ¼ X2ðthe third stage of XÞ;
F0 ¼ f�1g � �1; . . .; c2

� �� �

[ �1; . . .; c2
� �

� �1f g
� �

;

lð0Þ ¼ c2 þ 1; f ð0Þ ¼ 2c2 þ 1; tð0Þ ¼ ðjV j þ 1Þ2;
Tiþ1 ¼ Ti [ Ti [ Fið Þ þ lðiÞVð Þ;
Fiþ1 ¼ Fi [ �i� 2f g � �i� 2;�i� 1; . . .; lðiþ 1Þ � i� 3f gð Þ
[ �i� 2;�i� 1; . . .; lðiþ 1Þ � i� 3f g � �i� 2f gð Þ;

lðiþ 1Þ ¼ c � lðiÞ þ 1;

f ðiþ 1Þ ¼ f ðiÞ þ c � lðiþ 1Þ � 1;

tðiþ 1Þ ¼ jV jtðiÞ þ f ðiÞ:

Finally, we let

FðXÞ ¼
[1

i¼0

Ti:

We have the following ‘‘similarity’’ between X and FðXÞ:

Lemma 4.1 If X(N
2 is a nice self-similar fractal, then DimfðXÞ ¼ DimfðFðXÞÞ:

Proof Solving the recurrences for l, f, and t, in that order, gives the formulas

lðiÞ ¼ ciþ3 � ciþ2 þ ciþ1 � 1

c� 1
;

f ðiÞ ¼ ciþ5 � ciþ4 þ ciþ3 � 2c2iþ 3ci� i� c5 þ 3c4 � 5c3 þ 3c2 � 2cþ 1

c� 1ð Þ2
;

and

tðiÞ ¼ K jV jiþ4 þ jVjiþ3 � jV jiþ2c� ciþ3jV j2 � 2c3jV jiþ 2c2jVj2iþ c2jVji� 3cjVj2i
�

þ 2cjVji� 3jV jiþ1 � 3jVj2c2 � 3jVjiþ3cþ 5c2 þ 2jVj � 2c� 5c3 � ciþ3

þ ci� 3c2iþ 2c3i� 3c5 þ 5c4 þ c6 � jVj2 � ciþ5 þ ciþ4 � 2jV jc4 þ 3jVjc2

� 4jVjcþ 2jV jc5 � 2jVjc3 þ 2jVj2cþ 5jVj2c3 � 3jVj2c4 � c6jVj þ jVj2c5 � jVji
þ jV j2i� 7c2jVji þ 3cjV ji þ 7c3jVji þ 4c5jV ji � 6c4jVji � c6jVji � c3jVjiþ3

þ 3c2jVjiþ3 þ c2jVjiþ4 � 2cjVjiþ4 þ c3jVjiþ1 � 4c5jVjiþ1 þ 7cjVjiþ1 � 6c2jVjiþ1

þ 4c4jVjiþ1 þ jVj2ciþ4 � 2jVjciþ4 þ 2jVjciþ5 þ c6jVjiþ1 � jV j2ciþ5 þ 2c4jVjiþ2

�5c3jVjiþ2 þ 2jV jciþ3 þ 4c2jVjiþ2
	

;

where

K ¼ 1

c� 1ð Þ2ðjVj � 1ÞðjVj � cÞ
:

Note that for every nice discrete self-similar fractal, we have |V| [ c, whence
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DimfðFðXÞÞ ¼ lim sup
n!1

log tðnÞ
log lðnÞ

¼ log jVj
log c

¼ DimfðXÞ:

h

In the next section we outline a proof that the fibered version of every nice discrete self-

similar fractal strictly self-assembles.

5 Main construction

Our second main theorem says that the fibered version of every nice discrete self-similar

fractal strictly self-assembles in the Tile Assembly Model. It is not known at the time of

this writing whether or not there exists a nice discrete self-similar fractal that strictly self-

assembles.

Theorem 5.1 For every nice discrete self-similar fractal X(N
2; there exists a directed

TAS T FðXÞ in which FðXÞ strictly self-assembles.

To prove Theorem 5.1, it suffices to exhibit a locally deterministic TAS T FðXÞ ¼
TFðXÞ; rFðXÞ; 2
� �

in which FðXÞ strictly self-assembles. Throughout this section, assume

that c 2 N; and let X(N be a nice c-discrete self-similar fractal generated by V. We have

implemented our construction of T FðXÞ in C?? which is available at the URL

http://www.cs.iastate.edu/*lns. In the next subsection, we provide an intuitive example

showing how our construction will ultimately work before we give the formal construction.

We must first define some notation that we will use throughout our construction. We

construct a directed spanning tree T = (V,E) of G#
V, rooted at the point 0~2 V; satisfying

the following properties.

1. For all v~2 f0g � f0; . . .; c� 2g; v~; v~þ ð0; 1Þð Þ 2 E:
2. For all v~2 f0; . . .; c� 2g � f0g; v~; v~þ ð1; 0Þð Þ 2 E:

An example of such a spanning tree T is depicted in the middle image of Fig. 15 for a

particular nice discrete self-similar fractal.

(0,1)

(0,2)

(0,3)

(0,4) (1,4)

(0,0)(0,0) (1,0) (2,0) (3,0) (4,0)

(4,1)

(4,2)

(4,3)

(2,2)

(2,3) (3,3)

(0,1)

(1,0)

Fig. 15 Phase 1 of our construction on an example nice discrete self-similar fractal. The left-most image
represents the set V - the generator of X. The middle image represents the spanning tree T. The right-most
image represents TR. Notice the two special cases (right-most image) in which we define (0,1)in and (1,0)in
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Notation 5.2 We define, for each v~2 V; the set

OUTðv~Þ ¼ w~ j v~;w~ð Þ 2 E and w~ 62 f0g � f0; . . .; c� 1g [ f0; . . .; c� 1g � f0gð Þf g:

The set OUTðv~Þ is the set of vertices, reachable from v~; whose x or y-coordinate is not 0.

Next, we compute from T, the graph TR ¼ V;ERð Þ; where

ER ¼ v~; u~ð Þ 6¼ 0~
�
�
� u~; v~ð Þ 2 E

n o

[ fðð0; 1Þ; ð0; c� 1ÞÞ; ðð1; 0Þ; ðc� 1Þ; 0Þg:

Essentially, ER is the ‘‘reverse’’ of E. Namely, ER satisfies the following.

1. Every edge in E is reversed.

2. All edges that point to 0~ are removed.

3. One edge emanating at (0,1) and one edge emanating at (1,0) are added to create

cycles by pointing to (0, c-1) and (c-1, 0), respectively

Figure 15 depicts phase 1 of our construction for a particular nice discrete self-similar

fractal. Note that the graph TR is not a spanning tree. In fact, 0~2 V is an isolated vertex in TR.

Notation 5.3 For all 0~ 6¼ u~2 V; u~in is the unique location v~2 V satisfying u~; v~ð Þ 2 ER:

In the next sub-section, we will exhibit a characterization of FðXÞ in terms of squares

and rectangles that will help guide its strict self-assembly.

5.1 Bar characterization of FðXÞ

We now formulate the characterization of FðXÞ that guides its strict self-assembly. At the

outset, in the notation of Sect. 4, we focus on the manner in which the sets Ti [ Fi can be

constructed from horizontal and vertical bars. Recall that

lðiÞ ¼ ciþ3 � ciþ2 þ ciþ1 � 1

c� 1

is the length of (number of tiles in) the left or bottom edge of the set Ti [ Fi:

Definition 5.4 Let �1� i 2 Z:

1. The Si-square is the set

Si ¼ f�i� 1; . . .; 0g � f�i� 1; . . .; 0g:

2. The Xi-bar is the set

Xi ¼ f1; . . .; lðiÞ � i� 2g � f�i� 1; . . .; 0g:

3. The Yi-bar is the set

Yi ¼ f�i� 1; . . .; 0g � f1; . . .; lðiÞ � i� 2g:

It is clear that the set

Si [ Xi [ Yi

is the ‘‘outer framework’’ of Ti [ Fi: Define the interior of T0 (i.e., the first stage of FðXÞ)
to be the set
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I ¼ T0 � f0g � f0; . . .; c� 1g [ f0; . . .; c� 1g � f0gð Þ:

Our attention thus turns to the manner in which smaller and smaller bars are recursively

attached to this framework.

We use, for c 2 N; the generalized ruler function

q : Zþ ! N

defined by the recurrence

qðck þ 1Þ ¼ 0;

qðckÞ ¼ qðkÞ þ 1

for all k 2 N: It is easy to see that q(n) is the (exponent of the) largest power of c that

divides n. Equivalently, q(n) is the number of 0’s lying to the right of the rightmost 1 in the

base-c expansion of n (Graham et al. 1994).

Using the ruler function, we define the function

h : Zþ ! Z
þ

by the recurrence

hð1Þ ¼ c2 þ 1;

hðjþ 1Þ ¼ hðjÞ þ qðjÞ þ c2 þ 1
� �

for all j 2 Z
þ:

See Fig. 16 for an illustration of the first ten ‘‘h points’’ of the fibered Sierpinski

triangle.

Notation 5.5 Let j 2 N:

1. x~j ¼ qðjÞ � c j j½ �½ � þ j mod cð Þ � c - j½ �½ �; 0ð Þ
2. y~j ¼ 0; qðjÞ � c j j½ �½ � þ j mod cð Þ � c - j½ �½ �ð Þ

The following recursion attaches smaller bars to larger bars in a recursive fashion.

Definition 5.6 Let i 2 N: The h-closures of Xi, Yi and Si are the sets h(Xi), h(Yi) and

ha~ðSiÞ (for each a~2 V) defined, for all i 2 N; via the following mutual recursion.

h Xið Þ ¼ Xi [ I [
[c
i�1

j¼1

ðhðjÞ; 1Þ þ h YqðjÞ
� �

[ I
� �� �

[
[

a~2OUTðx~jÞ
ðhðjÞ; lðqðjÞ þ 1ÞÞ þ ha~ SqðjÞ

� �� �

0

@

1

A

h X0ð Þ ¼ X0 [ I

h Yið Þ ¼ Yi [
[c
i�1

j¼1

ð1; hðjÞÞ þ h XqðjÞ
� �� �

[
[

a~2OUTðy~jÞ
ðlðqðjÞ þ 1Þ; hðjÞÞ þ ha~ SqðjÞ

� �� �

0

@

1

A

h Y0ð Þ ¼ Y0

ha~ Sið Þ ¼ Si [ hðXiÞ [ hðYiÞ [
[

b~2OUTða~Þ

hb~ðSiÞ þ b~� a~
� 	

� lðiÞ
� 	

We have the following characterization of the set Ti [ Fi:
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Lemma 5.7 For all i 2 N;

Ti [ Fi ¼ Si [ hðXiÞ [ hðYiÞ:

We now shift our attention to the global structure of the set FðXÞ:

Definition 5.8

1. The x-axis of FðXÞ is the set

eX ¼ fðm; nÞ 2 FðXÞ j m [ 0; and n� 0g:

2. The y-axis of FðXÞ is the set

eY ¼ fðm; nÞ 2 FðXÞ j m� 0; and n [ 0g:

Y−1

Y ↑
0

Y ↑
1

Y ↑
2

S↑
0

S↑
1

S↑
2

Fig. 16 The structure of eY for
the ‘‘fibered Sierpinski triangle’’
(see Lathrop et al. 2009 for a
more detailed discussion of the
fibered Sierpinski triangle). The
dots denote the points (1,h(j)) for
j = 1,…,10

Self-assembly of discrete self-similar fractals 155

123



Intuitively, the x -axis of FðXÞ is the part of FðXÞ that is a ‘‘gradually thickening bar’’

lying on and below the (actual) x-axis in Z
2: For technical convenience, we have omitted

the origin from this set. Similar remarks apply to the y-axis of FðXÞ: Define the sets

eX�1 ¼ fð1; 0Þ; ð2; 0Þ; ð3; 0Þ; . . .; ðc2 � 1; 0Þg;
eY�1 ¼ fð0; 1Þ; ð0; 2Þ; ð0; 3Þ; . . .; ð0; c2 � 1Þg:

For each i 2 N; define the translations

S!i ¼ ðlðiÞ; 0Þ þ Si;

S"i ¼ ð0; lðiÞÞ þ Si;

X!i ¼ ðlðiÞ; 0Þ þ Xi;

Y"i ¼ ð0; lðiÞÞ þ Yi

of Si, Xi, and Yi. It is clear by inspection that eX is the disjoint union of the sets

eX�1; S
!
0 ;X

!
0 ; S

!
1 ;X

!
1 ; S

!
2 ;X

!
2 ; . . .

which are written in their left-to-right order of position in eX :

Definition 5.9 The h-closures of the axes eX and eY are the sets

h eX
� �

¼ eX [ I [
[1

j¼1

ðhðjÞ; 1Þ þ h YqðjÞ
� �

[ I
� �� �

[
[

a~2OUTðx~jÞ
ðhðjÞ; lðqðjÞ þ 1ÞÞ þ ha~ SqðjÞ

� �� �

0

@

1

A

h eY
� �

¼ eY [
[1

j¼1

ð1; hðjÞÞ þ h XqðjÞ
� �� �

[
[

a~2OUTðy~jÞ
ðlðqðjÞ þ 1Þ; hðjÞÞ þ ha~ SqðjÞ

� �� �

0

@

1

A

respectively.

Finally, we have the following theorem, which is the bar characterization of FðXÞ:

Theorem 5.10 FðXÞ ¼ fð0; 0Þg [ h eX
� �

[ h eY
� �

:

It is easy to verify that the (recursive) union in Theorem 5.10 is disjoint. In Sect. 5.3, we

discuss the construction of a collection of tile sets that carry out the (recursive) strict self-

assembly of FðXÞ as dictated by Definition 5.9.

5.2 Intuitive example

Before giving the formal construction of Theorem 5.1, we provide an intuitive example of

how our construction will work.

In Fig. 17, stages 0 through 2 of a particular nice discrete self-similar fractal are shown.

Note that, for this example, c (from Definition 2.12) is 3. It is clear that the second stage is

constructed by treating stage 1 as a ‘‘magnified’’ version of the origin, then creating 5

additional copies of stage 1 (1 for each point in the generator, V, other than the origin) and

treating them as magnified versions of those points and translating them accordingly. Each

of the (infinitely many) subsequent stages of the discrete self-similar fractal are formed in

this manner. Given our example fractal, Fig. 18 shows the (intended) result of applying our

construction. As noted above, we construct a directed spanning tree of G#
V in order to

assign a ‘‘type’’ to each point in the generator, except for 0~: The ‘‘type’’ for each point is
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simply a name derived from the vector to that point from the origin, e.g. (0,1), and then

assigns a single point in the generator as that point’s ‘‘input’’ point, as determined by the

aforementioned directed spanning tree that we compute. Note that the origin is not used as

an input point, but instead the points (0,1) and (1,0) use the points (0,c-1) and (c-1,0),

respectively, as their input points. These points are guaranteed to be in V by the definition

of nice discrete self-similar fractals. For this example, there are no points with inputs

coming from above or to the right, so the case of ‘‘reverse growth’’ (see cases 1(d) and 1(e)

of Sect. 5.4) are not utilized. Reverse growth will therefore be ignored in the discussion of

this example. Note, however, that handling reverse growth is a relatively straightforward

modification of forward growth and does any change major details.

In the construction of tile types, for each point (excluding the origin) in the generator,

several sub-tile sets are generated (see Sect. 5.4 for more details). However, in this

(a) (b) (c)

Fig. 17 First 3 stages of the
example nice discrete self-similar
fractal. a Stage 0; b Stage 1, or V;
c Stage 2

(0,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1)

(1,0)

(a)

T(0,1),

T(0,1),↑

T(0,1),→

T(0,2),

T(0,2),↑

T(0,2),→ T(1,2),

T(1,2),↑

T(1,2),→

T(1,0),

T(1,0),↑

T(1,0),→ T(2,0),

T(2,0),↑

T(2,0),→

(b)

Fig. 18 Our construction applied to a particular nice discrete self-similar fractal. a Construction of
spanning tree; b Construction of tile types
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example, we will concentrate on the three tile sets in which Si, Yi, and Xi strictly self-

assemble (for i C 0). The first is the set Tv~;( that forms the square at the bottom left of each

such location in Fig. 18b. This is known as the ‘‘transition’’ block because, in the case of

forward growth, it is the first portion of each type to assemble for any given stage of the

fibered fractal, and its growth is initiated from the assembly of the portion corresponding to

the type of its input point. Thus, it transitions from one type to another.

The remaining two sub-tile sets ðTv~;"; Tv~;!Þ that are constructed for each point in the

generator self-assemble into vertical and horizontal modified counters. We will only dis-

cuss the vertical counter here, but the construction of the horizontal counter is conceptually

identical in the sense that it is simply a reflection of its vertical counterpart across the

diagonal line y = x. The vertical counter tile set for each point type is a modified fixed-

width base-c, or, for this specific example, base-3 counter. The width is specified by, and

identical to, the transition block that initiates its growth. The modification from a standard

base-3 counter will be discussed next. Each modified fixed-width counter performs the dual

jobs of counting and initiating the growth of the necessary horizontal modified counters to

the right. The trivial example of the fibered version of stage 2 of the example fractal is

shown in Fig. 19. (It is trivial because no row of fiber is added until the next stage.) The

darker locations represent the transition blocks (in this case, single tiles), which transition

from counters of one point type to another. These transition block tiles are vertical width-1

base-3 counters. Despite being only one tile, or digit, wide, they demonstrate two important

properties of the counters used in this construction. First, whenever the most significant bit

of a counter (the left-most) would have to flip back to 0 (because the counter has reached

its maximum value based on its width), instead it stops assembling and initiates the growth

of the transition block for the point type, if any, which uses this point type as input from

below.

The second property of the counters that can be seen in Fig. 19 is that, for each value of

the least significant (or right-most) bit b, if point (1, b) exists in V and (0, b) is its assigned

input point, then a hard coded tile type will attach to the right of the counter (see case 1(a)

of Sect. 5.4). Similarly, hard coded tile types for (2, b) will attach to (1, b), etc. so that each

point in V that is not on the x and y-axes is tiled. Keep in mind that the corresponding

behavior also occurs for the horizontal counters.

Figure 20 depicts the completed assembly of the third stage of the fibered fractal.

Certain portions of the assembly produced by T(0,1),h, T(0,1),:, T(0,2),h, and T(0,2),: have been

labeled appropriately. Notice that for the first fibered stage, a single additional row of tiles

has been added to the right (and bottom for transition blocks), and likewise two rows for

the second fibered stage. Each additional row provides the counters with enough bits to

count through another factor of c, or 3 in this example, over the previous stage.

Another important feature of the modified counters can be seen in Fig. 20, namely the

initiation of horizontal counters and the creation of spacing rows. Every time a bit value

changes in the counter other than the least significant bit, rows are added which, on their

right edges, mimic the behavior of a transition block. In general, if the new value of the

Fig. 19 Fibered equivalent of
stage 2
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flipped bit is j, then a transition block assembled via T(0,j),h is mimicked. This will cause

the assembly of the horizontal counter via the set T(0,j),? to the right. If the flipped bit is in

the ith row from the right (with the right-most row being the 0th row), then exactly i-1

spacing rows self-assemble before counting resumes, so that the height of the simulated

transition block will be exactly i rows. In this manner, by including the same, reflected

behavior for the horizontal counters and applying the technique recursively for succes-

sively smaller stages (or widths of the transition blocks), the entire internal structure of

each fibered stage assembles.

The final point to note is that, whenever a transition block assembles for point types

(0,1) or (1,0), these transition blocks spontaneously add a row of tiles to their widths and

heights (see the tile types defined in Sect. 5.3.3). This is because they represent the

beginning of the next stage of the fibered fractal, and thereby they increase the width of the

fiber, and subsequently the number of bits in the proceeding counters, by 1.

5.3 Tile types for main construction

In this section, we give detailed constructions of three fundamental tile sets that we will use

in the proof of Theorem 5.1.

T(0,1),

T(0,1),↑

T(0,2),

T(0,2),↑

Fig. 20 Fibered equivalent of the third stage
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5.3.1 Modified counter tile types

The following tile types implement a modified base-c counter.

1. The following tile types perform base-b counting.

(a) The following tile types are used in, and only in, the first row of the counter.

0,W

0,W

B0

0

0

B B0

c

-1,E

B 1

(b) The following tile types perform addition on the least significant bit.

i. For all x ∈ {0, . . . , c − 3} , construct the following tile types:

x+1,E

x,E

c x+1

ii. For x = c − 2, add the following tile type:

x+1,E

x,E

s x+1

(c) The following tile types perform copy operations between rows. For all x ∈ {0, . . . , c −1} , construct
the following tile types:

x,W

x,W

cx

x

x

c cx

(d) The following tile types search for the right most digit that is notb− 1. For all x ∈ {0, . . . , c − 2} ,
construct the following tile types:

x,#,W

x,W

sx

x,#

x

c sx

x

x

s sx

(e) The following tile type is always the left most tile in thelast row of the counter.

W

c-1,W

sc-1
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2. The following tile types implement the spacing rows.

(a) The following tile types initiate the spacing rows. For all x ∈ {0, . . . , c −2}, construct the following
tile types:

0,W

x,#,W

x,#,S0

x+1

x,#

c x,#,Sx+1

(b) The following tile types are always part of the first spacing row and they initiate the shifting of
‘$’ up and to the right. For all x ∈ {0, . . . , c − 2}, construct the following tile types:

0

c-1

x,#,S x,$,S0

0,E

c-1,E

x,#,S 0,W0

(c) The following tile types are always part of the first spacing row, and shift the ‘$’ over to the right
and then up once. For all x ∈ {0, . . . , c − 2}, construct the following tile types:

x,$

c-1

x,$,S x,S$

x,$,E

c-1,E

x,$,S 0,E$

(d) The following tile types construct the remainder of the first spacing row. Note that the ‘S’
(SOUTH) signal is propagated to the right. For all x ∈ {0, . . . , c − 2}, construct the following tile
types:

0

c-1

x,S x,S0

0,E

c-1,E

x,S 0,E0

(e) The following tile types shift the ‘$’ up and to the right.For all x ∈ {0, . . . , c − 2}, construct the
following tile types:

0

x,$

c x,$0

x,$

0

x,$ x,>0

(f) The following tile types terminate the shifting of ‘$’. For all x ∈ {0, . . . , c − 2}, construct the
following tile types:

x,$,E

0,E

x,$ 00

0,E

x,$,E

c 0,W0

(g) The following tile types copy values up to the next row that are below and to the right of the
main diagonal. For all x ∈ {0, . . . , c − 2}, construct the following tile types:

0

0

x,> x,>0

0,E

0,E

x,> 00
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The set of tiles given above implements a fixed-width base-c counter that, assuming an

initial (appropriately constructed) seed row of width i 2 N; performs the following

counting scheme: Count each positive integer j, satisfying 1 B j B ci-1, in order but count

each integer exactly J times, where

J ¼ c divides j½ �½ � � qðjÞ þ c does not divide j½ �½ � � 1:

The value of a row is the number that it represents. We refer to any row whose value is a

multiple of c as a spacing row. All other rows are count rows.

In our construction, each counter self-assembles on top (or to the right) of a square with

the width of the counter being determined by that of the square. It is easy to verify that if

the width of the square is i ? 2, then the modified counter self-assembles a rectangle

having a width of i ? 2 and a height of

c2 þ 1
� �

ci þ ci � 1

c� 1
¼ lðiÞ � ðiþ 2Þ;

which is exactly Yi. Figure 21 shows the counting scheme of a modified base-3 counter of

width 3.

5.3.2 Standard transition block tile types

The following tile types implement a standard transition block. A transition block will

essentially act as the seed of a modified counter.

1. The following tile types initiate the growth of the transition block. Construct the

following tile types:

2

0

0

1

2

0

0

1

2

1

1

2

2

0

0

0

0

1

1

1

1

2

2

2

2

0

0

1

2

0

0

0

0

1

1

1

1

0

0

0

0

1

2

1

2

1

2

1

2

2

1

2

1

2

2

2

2

1

1

2

1

2

1

1

2

2

1

1

2

2

0

1

1

2

0

0

0

2

0

0

0

0

0

0

Fig. 21 Example of a base-3
modified counting scheme. The
darker shaded rows are the
spacing rows. Note that details
have been purposefully left out
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0,W

W

0,E #,S0

#

c-1

#,S S#

2. The following tile types build the remainder of the first row of the transition block.

Construct the following tile types:

0

c-1

S S0

0,E

c-1,E

S E0

3. The following tile types shift the ‘#’ up and to the right. They essentially fill in the

main diagonal of the square. Construct the following tile types:

0

#

c #0

#

0

# >#

4. The following tile types fill in the upper left half of the square (i.e., tiles above the

main diagonal). Construct the following tile types:

0,W

0,W

c0

0

0

c c0

5. The following tile types fill in the lower right half of the square (i.e., tiles below the

main diagonal). Construct the following tile types:

0

0

> >0

0,E

0,E

> 00

6. The following tile types terminate the shifting of the ‘#’. Construct the following tile

types:
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#,E

0,E

# 0#

-1,E

#,E

N 0,W0

7. The following tile types fill in the last row of the transition block. Construct the

following tile types:

0,W

0,W

0,W N0

0

0

N N0

5.3.3 Growing transition block tile types

The tile types that make up a growing transition block are all of the tile types in Sect. 5.3.2,

in conjunction with the following tile types, which actually initiate the growth:

0,W

+0

#

0,W

+ S#

5.3.4 Tile types for single-bit modified counters

For all x 2 f0; . . .; c� 2g; define the following (single-row modified counter) counting tile

types.

x+1,WE

x,WE

x+1

5.3.5 Tile types for single-bit transition blocks

The following tile type is the last tile to attach in a single-row modified counter.
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WE

c-1,WE

WE WE

5.3.6 The first growing transition block

The following tile types initiate the growth of the first transition block.

#,E

0,WE

+ 0,W#

-1,E

#,E

N 0,E#

5.3.7 The seed tile type

The following tile type is the seed tile type for our construction.

0,WE

0,WES

5.4 Construction of TFðXÞ

In this subsection, we construct the tile set TFðXÞ: Recall that ð0; 0Þ 2 V ( f0. . .; c� 1g �
f0; . . .; c� 1g is the generator of X. For each v~2 V; we construct the tile set

Tv~ ¼ Tv~;( [ Tv~;" [ Tv~;! [ Tv~;(;init [ Tv~;";init [ Tv~;!;init [ Tv~;�

Note that the tile sets Tv~;(; Tv~;"; and Tv~;! make up the bulk of the tile set Tv~: The tile sets

Tv~;(;init; Tv~;";init; Tv~;!;init; and Tv~;� are used exclusively to self-assemble the initial stage and

internal structure of FðXÞ:
We first define some standard operations on (sets of) tile types that we will ultimately

apply to the tile types that we defined in Sects. 5.3.1, 5.3.2, 5.3.3, 5.3.4, 5.3.5, and 5.3.7.

Definition 5.11 Let t be a tile type, and T be a set of tile types.

1. The reflection of t about the line y = x, written as Ry=x(t), is the tile type t0 satisfying,

for all ðx; yÞ 2 U2; t
0ðy; xÞ ¼ tðx; yÞ; Ry¼xðTÞ ¼ Ry¼xðtÞ

�
� t 2 T

� �

:
2. The reflection of t about the y-axis, written as Ry-axis(t), is the tile type t0 satisfying, for

all u~2 fð�1; 0Þ; ð1; 0Þg; t0ðu~Þ ¼ tð�u~Þ; Ry�axisðTÞ ¼ Ry�axisðtÞ
�
� t 2 T

� �

:
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3. The reflection of t about the x-axis, written as Rx-axis(t), is the tile type t0 satisfying, for

all u~2 fð0;�1Þ; ð0; 1Þg; t0ðu~Þ ¼ tð�u~Þ; Rx�axisðTÞ ¼ Rx�axisðtÞ j t 2 Tf g:

Definition 5.12 Let t be a tile type, U � U2 be a set of unit vectors, and s 2 R�: The

concatenation of s to the glue color on each side u~2 U of t, written as C(t, U, s), is the tile

type t0 satisfying, for all u~2 U; t0ðu~Þ ¼ coltðu~Þ � s; strtðu~Þð Þ:

We now have the tools that we need to construct the set Tv~: When building the set Tv~;
we consider the following cases.

1. v~2 V � fð0; 0Þ; ð0; 1Þ; ð1; 0Þg: Let u~¼ v~in � v~:

(a) (hard-coded internal structure) If v~2 ðf0g � f0; . . .; c� 1g [ f0; . . .; c� 1g �
f0gÞ; then let Tv~;� ¼ ftv~;�g; where, tv~;�ðu~Þ ¼ v~; 2ð Þ; for all u~0 2 U2 � fu~g such that

ðv~; v~þ u~0Þ 2 E; tv~;�ðu~0Þ ¼ v~þ u~0; 2ð Þ; and, for all u~0 2 U2 � fu~g such that

ðv~; v~þ u~0Þ 62 E; tv~;�ðu~0Þ ¼ k; 0ð Þ:
(b) (forward growth) We label this case as ‘‘forward growth’’ because the transition

block of type ‘‘v~ ’’ will self-assemble before both counters of the same type.

Furthermore, both counters will not grow toward from the x or y-axis.

If u~¼ ð�1; 0Þ; then we construct Tv~;(; Tv~;"; and Tv~;! as follows.

i. Define the following sets of tile types.

Tx5:3:2 ¼ t t is a tile type defined in Sect. 5:3:2jf g

Tx5:3:2;S ¼ t t 2 Tx5:3:2 and the symbol ‘S’ is in some glue color of t
�
�
�

n o

Tx5:3:5 ¼ t t is a tile type defined in Sect. 5:3:5jf g

Let

Tv~;( ¼ Ry¼xðC Tx5:3:2 � Tx5:3:2;S;U2; v~
� 	

[

C C Tx5:3:2;S; fð0;�1Þg; v~in

� 	

;U2 � fð0;�1Þg; v~
� 	

Þ:

Tv~;(;init ¼ Ry¼xðCðCðTx5:3:5;U2 � fð0;�1Þg; v~inÞ;U2 � fð0;�1Þg; v~ÞÞ

This ensures that the transition block of ‘‘type v~ ’’ binds to the horizontal counter of type

‘‘v~in:’’

ii. Define the following sets of tile types.

Tx5:3:1 ¼ t t is a tile type defined in Sect. 5:3:1jf g
Tx5:3:4 ¼ t t is a tiletypedefined in Sect. 5:3:4jf g

Tx5:3:1;Counting
¼ t t 2 Tx5:3:1 and t is defined in Group 1

�
�
�

n o

Tx5:3:1;Spacing
¼ Tx5:3:1 � Tx5:3:1;Counting

Tx5:3:1;E ¼ t t 2 Tx5:3:1 and the symbol ‘E’ is in some gluecolor of t
�
�
�

n o
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Let

Tv~;" ¼ C Tx5:3:1 � Tx5:3:1;E;U2; v~
� 	

[

C C Tx5:3:1;Spacing
\ Tx5:3:1;E; fð1; 0Þg; ð0; xÞ

� 	

;U2 � fð1; 0Þg; v~
� 	

[

C C Tx5:3:1;Counting
\ Tx5:3:1;E; fð1; 0Þg; ð1; xþ 1Þ

� 	

;U2 � fð1; 0Þg; v~
� 	

Tv~;";init ¼ CðCðTx5:3:4; fð1; 0Þg; ð1; xÞÞ;U2 � fð1; 0Þg; v~Þ

iii. Let

Tv~;! ¼ Ry¼xðC Tx5:3:1 � Tx5:3:1;E;U2; v~
� 	

[

C C Tx5:3:1;Spacing
\ Tx5:3:1;E; fð1; 0Þg; ðx; 0Þ

� 	

;U2 � fð1; 0Þg; v~
� 	

[

C C Tx5:3:1;Counting
\ Tx5:3:1;E; fð1; 0Þg; ðxþ 1; 1Þ

� 	

;U2 � fð1; 0Þg; v~
� 	

Þ

Tv~;!;init ¼ Ry¼xðCðCðTx5:3:4; fð0; 1Þg; ðx; 1ÞÞ;U2 � fð0; 1Þg; v~ÞÞ

(c) (forward growth) If u~¼ ð0;�1Þ; then we construct Tv~;(; Tv~;"; and Tv~;! as

follows.

i. Let

Tv~;( ¼ C Tx5:3:2 � Tx5:3:2;S;U2; v~
� 	

[

C C Tx5:3:2;S; fð0;�1Þg; v~in

� 	

;U2 � fð0;�1Þg; v~
� 	

Tv~;(;init ¼ CðCðTx5:3:5;U2 � fð0;�1Þg; v~inÞ;U2 � fð0;�1Þg; v~Þ

This ensures that the transition block of ‘‘type v~ ’’ binds to the vertical counter of type

‘‘v~in:’’
ii. Let Tv~;"; Tv~;!; Tv~;";init; and Tv~;!;init be defined as they were in case 2(a).

(d) (reverse growth) We label this case as ‘‘reverse growth’’ because one of the

counters that we construct will grow toward the x or y-axis. Furthermore, the

transition block of type ‘‘v~ ’’ will not self-assemble before both counters of

the same type. We must take special care when constructing the tile types for a

reverse growing counter (and transition block) because nice discrete self-similar

fractals need not be symmetric. See Fig. 22 for an illustration of reverse growth.

If u~¼ ð1; 0Þ; then we construct Tv~;(; Tv~;"; and Tv~;! as follows.

i. Define the following set of tile types.

Tx5:3:1;B ¼ t t 2 Tx5:3:1 and the symbol ‘B’ is in some glue color of t
�
�
�

n o

Tx5:3:4;x¼0
¼ t t 2 Tx5:3:4 and x ¼ 0

�
�
�

n o
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Let

Tv~;! ¼ Ry�axisðRy¼xðC Tx5:3:1 � Tx5:3:1;E [ Tx5:3:1;B
� 	

;U2; v~
� 	

[

C C Tx5:3:1;Spacing
\ Tx5:3:1;E; fð1; 0Þg; ðc� x; 0Þ

� 	

;U2 � fð1; 0Þg; v~
� 	

[

C C Tx5:3:1;Counting
\ Tx5:3:1;E; fð1; 0Þg; ðc� xþ 1; 1Þ

� 	

;U2 � fð1; 0Þg; v~
� 	

[

C C Tx5:3:1;B; fð0;�1Þg; v~in

� 	

;U2 � fð0;�1Þg; v~
� 	

ÞÞ

Tv~;!;init ¼ Ry�axisðRy¼xðCðCðTx5:3:4 � Tx5:3:4;x¼0
; fð1; 0Þg; ðxþ 1; 0ÞÞ;U2 � fð1; 0Þg; v~Þ[

CðCðCðTx5:3:4;x¼0
; fð0;�1Þg; v~inÞ; fð0; 1Þg; ðc� xþ 1; 0ÞÞ;

U2 � fð0;�1Þ; ð1; 0Þg; v~ÞÞÞ

ii. Let

Tv~;( ¼ Ry�axisðRy¼xðC Tx5:3:2;U2; v~
� 	

ÞÞ

Tv~;(;init ¼ Ry�axisðRy¼xðC Tx5:3:5;U2; v~
� 	

ÞÞ

This ensures that the (reverse growing) transition block of ‘‘type v~ ’’ binds to the (reverse

growing) horizontal counter of type ‘‘v~:’’
iii. Let Tv~;" and Tv~;";init be defined as they were in case 2(a).

(e) (reverse growth) If u~¼ ð0; 1Þ; then we construct Tv~;(; Tv~;"; and Tv~;! as follows.

i. Let

Tv~;" ¼ Rx�axisðC Tx5:3:1 � Tx5:3:1;E;U2; v~
� 	

[

C C Tx5:3:1;Spacing
\ Tx5:3:1;E; fð1; 0Þg; ð0; c� xÞ

� 	

;U2 � fð1; 0Þg; v~
� 	

[

C C Tx5:3:1;Counting
\ Tx5:3:1;E; fð1; 0Þg; ð1; c� xþ 1Þ

� 	

;U2 � fð1; 0Þg; v~
� 	

Þ

Tv~;";init ¼ Rx�axisðRy¼xðCðCðTx5:3:4 � Tx5:3:4;x¼0
; fð1; 0Þg; ð0; xþ 1ÞÞ;U2 � fð1; 0Þg; v~Þ[

CðCðCðTx5:3:4;x¼0
; fð0;�1Þg; v~inÞ;

fð0; 1Þg; ð0; c� xþ 1ÞÞ;U2 � fð0;�1Þ; ð1; 0Þg; v~ÞÞÞ

T T →

(a)

T in,T →

(b)

T in,T →

(c)

Fig. 22 a depicts forward growth, b shows what happens if the tile set Tv~;! were to simply ‘‘count in
reverse,’’ and c is the desired result (that we achieve in our construction)
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This ensures that the (reverse growing) vertical counter of ‘‘type v~ ’’ binds to the transition

block of type ‘‘v~:’’
ii. Let

Tv~;( ¼ Rx�axisðC Tx5:3:2;U2; v~
� 	

Tv~;(;init ¼ Rx�axisðC Tx5:3:5;U2; v~
� 	

Þ

This ensures that the (reverse growing) transition block of type ‘‘v~ ’’ binds to the (reverse

growing) vertical counter of type ‘‘v~:’’
iii. Let Tv~;! and Tv~;!;init be defined as they were in case 2(a).

2. v~2 fð0; 1Þ; ð1; 0Þg: Let u~¼ v~in � v~:

(a) (forward growth) If u~¼ ð0;�1Þ; then we construct Tv~;(; Tv~;"; and Tv~;! as follows.

i. Define the following sets of tile types.

Tx5:3:3 ¼ t t is a tile type defined in Sect. 5:3:3jf g
Tx5:3:6 ¼ t t is a tile type defined in Sect. 5:3:6jf g

Let

Tv~;( ¼ C Tx5:3:2 � ðTx5:3:2;BÞ;U2; v~
� 	

[

C C Tx5:3:2;B [ Tx5:3:3; fð0;�1Þg; v~in

� 	

;U2 � fð0;�1Þg; v~
� 	

Tv~;(;init ¼ CðTx5:3:2 [ Tx5:3:3;U2; v~Þ[

C C Tx5:3:6; fð0;�1Þg; ð0; 0Þ
� 	

;U2 � fð0;�1Þg; v~
� 	

This ensures that the growing transition block of ‘‘type v~ ’’ binds to the horizontal counter

of type ‘‘v~in:’’

ii. Let Tv~;"; Tv~;!; Tv~;";init; and Tv~;!;init be defined as they were in case 2(a).

(b) (forward growth) If u~¼ ð�1; 0Þ; then we construct Tv~;(; Tv~;"; and Tv~;! as follows.

i. Let

Tv~;( ¼Ry¼xðC Tx5:3:2 � ðTx5:3:2;B [ Tx5:3:3Þ;U2; v~
� 	

[

C C Tx5:3:2;B [ Tx5:3:3; fð0;�1Þg; v~in

� 	

;U2 � fð0;�1Þg; v~
� 	

Þ

Tv~;(;init ¼Ry¼xðCðTx5:3:2 [ Tx5:3:3;U2; v~Þ[

CðCðTx5:3:6; fð0;�1Þg; ð0; 0ÞÞ;U2 � fð0;�1Þg; v~ÞÞ

This ensures that the growing transition block of ‘‘type v~ ’’ binds to the horizontal counter

of type ‘‘v~in:’’
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ii. Let Tv~;"; Tv~;!; Tv~;";init; and Tv~;!;init be defined as they were in case 2(a).

Let Tseed be the singleton set containing the seed tile defined in Sect. 5.3.7, and let

T
0~ ¼ C Tseed; fð1; 0Þ; ð0; 1Þg; ð0; 0Þð Þ:

Finally, we have

TFðXÞ ¼
[

v~2V

Tv~;

Figure 23 gives a visual interpretation of our construction. Our final TAS is T FðXÞ ¼
TFðXÞ; r; 2
� �

; where r consists of a single ‘‘seed’’ tile type placed at the origin. In general,

if X(N
2 is a nice discrete self-similar fractal generated by V, then TFðXÞ

�
�

�
� ¼ OðjVjÞ:

Unfortunately, the hidden constant is rather large. For instance, our construction yields a

tile set of 5983 tile types for the discrete self-similar fractal generated by the points in the

left-most image in Fig. 23.

5.5 Correctness of construction

It is routine to verify that our TAS T FðXÞ ¼ ðTFðXÞ; rFðXÞ; 2Þ is locally deterministic and
self-assembles FðXÞ according to the recursion given in Definition 5.9.

6 Conclusion

The Tile Assembly Model is a powerful and robust model that abstracts laboratory-based

DNA tile self-assembly. The model exhibits rich theoretical behavior in that it allows for

the self-assembly of a computationally and geometrically diverse set of assemblies that

form intricate shapes or perform (potentially Turing universal) computation. However, as

our first two main results show, there are limitations to the kinds of shapes and patterns that

can, even theoretically, self-assemble in the TAM.

In our first main (impossibility) result, we proved that non-trivial discrete self-similar

fractals do not self-assemble (in either the strict or the weak sense) in any temperature 1

tile assembly system that is locally deterministic. The assumption of local determinism

allows one to reason about the nature of self-assembly at temperature 1. From this, we

derived that any shape or pattern that self-assembles in a locally deterministic temperature

(0,0)

T T →

T ↑
T →,init, T ↑,init

T ,init, T ∗

Fig. 23 Let V be the set of points in the left-most image. The first arrow represents our construction. The
second arrow shows a magnified view of a particular point in V. Each point 0~ 6¼ v~2 V can be viewed (in
principle) as several sub-tile sets: Tv~;(;Tv~;!;Tv~;"; Tv~;(;init;Tv~;!;init; Tv~;";init; and Tv~;�
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1 tile assembly system is necessarily too simple to be a fractal. At the time of this writing,

the question of whether or not the assumption of local determinism can be removed

remains open.

In our second main theorem, also an impossibility result, we proved that certain kinds

of ‘‘pinch-point’’ discrete self-similar fractals do not strictly self-assemble at any tem-

perature. Unlike our first main theorem, the proof of our second main theorem exploits

the underlying geometry of certain kinds of shapes in order to prove that they do not

strictly self-assemble. This is a necessary feature of the proof because self-assembly at

temperature 2 (or greater) can perform Turing universal comptuation. It remains to be

seen whether or not our second main theorem can be extended to any non-trivial discrete

self-similar fractal.

In our third (and final) main result, we exhibited a construction based on simple

modified base-c counters that overcomes fundamental limitations of the TAM with respect

to the self-assembly of discrete self-similar fractal structures. Our construction takes as

input a simple description of a discrete self-similar fractal and produces a (possibly very

large) tile assembly system in which an ‘‘approximation’’ (i.e., fibered version) of the input

fractal strictly self-assembles. Other ‘‘shape approximation’’ techniques have been

explored in the TAM by Kao and Schweller in (2008), and Soloveichik and Winfree in

(2007). Note that both of the previous results are of the flavor, ‘‘if a lot of (possibly

infinitely many) tile types are necessary for the self-assembly of some particular shape,

then very few tiles types suffice for the self-assembly of another shape that closely

resembles the original shape.’’ Our fiber construction applies to a class of (nice) discrete

self-similar fractals. It not only preserves discrete fractal dimension but also produces

fractal-like shapes that are visually similar to the input fractals. A natural extension of our

third main theorem would be to show that every (connected) discrete self-similar fractal

has a fibered version that strictly self-assembles. In other words, if X(N
2 is a connected

discrete self-similar fractal, then is it always the case that X has a ‘‘fibered’’ version FðXÞ
that strictly self-assembles? Of course, FðXÞ must also be similar to X in some reasonable

sense.

(a) (b)

Fig. 24 a ‘H’ fractal generator;
b Fibered ‘H’ fractal

Self-assembly of discrete self-similar fractals 171

123



For example, consider the ‘H’ fractal, whose generator is shown in Fig. 24. In Fig. 24,

we sketch a naive application of our fiber construction to the H fractal. The result is some

shape that is clearly not similar to the actual H fractal in any reasonable sense.

The results in this paper continue to expand our knowledge about the boundaries of self-

assembly in the Tile Assembly Model. We also present several open problems which, if

answered, will significantly extend them. Such continued research should both benefit

theoretical understanding of the model, as well as guiding the direction of laboratory based

work.
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