
Discrete Particle Swarm Optimization for the minimum
labelling Steiner tree problem

Sergio Consoli Æ José Andrés Moreno-Pérez Æ Kenneth Darby-Dowman Æ
Nenad Mladenović

Published online: 17 June 2009
� Springer Science+Business Media B.V. 2009

Abstract Particle Swarm Optimization is a population-based method inspired by the

social behaviour of individuals inside swarms in nature. Solutions of the problem are

modelled as members of the swarm which fly in the solution space. The improvement of

the swarm is obtained from the continuous movement of the particles that constitute the

swarm submitted to the effect of inertia and the attraction of the members who lead the

swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combi-

natorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is

illustrated on the minimum labelling Steiner tree problem: given an undirected labelled

connected graph, the aim is to find a spanning tree covering a given subset of nodes, whose

edges have the smallest number of distinct labels.

Keywords Combinatorial optimization � Discrete Particle Swarm Optimization �
Heuristics � Minimum labelling Steiner tree problem � Graphs and networks

1 Introduction

Biological and natural processes have always been a source of inspiration for computer

science and information technology in many real-world applications (Holland 1992). It is

well known that biological entities, from single cell organisms—like bacteria—to humans,

S. Consoli (&) � K. Darby-Dowman � N. Mladenović
CARISMA and NET-ACE, School of Information Systems, Computing and Mathematics,
Brunel University, Uxbridge, Middlesex UB8 3PH, UK
e-mail: sergio.consoli@brunel.ac.uk

K. Darby-Dowman
e-mail: kenneth.darby-dowman@brunel.ac.uk

N. Mladenović
e-mail: nenad.mladenovic@brunel.ac.uk

J. A. Moreno-Pérez
DEIOC, IUDR, Universidad de La Laguna, 38271 Santa Cruz de Tenerife, Spain
e-mail: jamoreno@ull.es

123

Nat Comput (2010) 9:29–46
DOI 10.1007/s11047-009-9137-9

often engage in a rich repertoire of social interaction that could range from altruistic

cooperation to open conflict. One specific kind of social interaction is cooperative problem

solving, where a group of autonomous entities work together to achieve a certain goal

(Holland 1992). Over the years, mathematical strategies influenced by nature and natural

systems for the solution of complex problems have been widely used as robust techniques

for solving hard combinatorial optimization problems. Their behaviour is directed by the

natural evolution of a population in the search for an optimum. These strategies are

referred to as nature-inspired algorithms.

Particle Swarm Optimization (PSO) is a nature-inspired algorithm first proposed by

Kennedy and Eberhart (1995). It has been applied with success in many areas and appears

to be a suitable approach for several optimization problems (Kennedy and Eberhart 2001).

Similarly to Genetic Algorithms, PSO is a population-based technique, inspired by the

social behaviour of individuals (or particles) inside swarms in nature (for example, flocks

of birds or schools of fish). Since the original PSO was applicable to optimization problems

with continuous variables, several adaptations of the method to discrete problems, known

as Discrete Particle Swarm Optimization (DPSO), have been proposed (Kennedy and

Eberhart 1997). In this paper we examine the effectiveness of DPSO for the minimum

labelling Steiner tree (MLSteiner) problem.

1.1 Discrete Particle Swarm Optimization

The standard PSO considers a swarm S containing n particles (S = 1,2,…,n) in a

d-dimensional continuous solution space (Kennedy and Eberhart 1995, 2001). Each i-th
particle of the swarm has a position xi = (xi1, xi2,…,xij,…,xid), and a velocity vi = (vi1,

vi2,…,vij,…,vid). The position xi represents a solution to the problem, while the velocity vi

gives the rate of change for the position of particle i at the next iteration. Indeed, con-

sidering iteration k, the position of particle i is adjusted according to xi
k = xi

k-1 ? vi
k.

Each particle i of the swarm communicates with a social environment or neighbour-

hood, NðiÞ � S, representing the group of particles with which it communicates, and which

could change dynamically. In nature, a bird adjusts its position in order to find a better

position, according to its own experience and the experience of its companions. In the same

manner, considering iteration k of the PSO algorithm, each particle i updates its velocity

reflecting the attractiveness of its best position so far (bi) and the best position (gi) of its

social neighbourhood N(i), according to the equation (Kennedy and Eberhart 1995, 2001):

vk
i ¼ c1nvk�1

i þ c2nðbi � xk�1
i Þ þ c3nðgi � xk�1

i Þ: ð1Þ

The parameters ci are positive constant weights representing the degrees of confidence

of particle i in the different positions that influence its dynamics, while the term n refers to

a random number with uniform distribution [0,1] that is independently generated at each

iteration.

The original PSO algorithm can only optimize problems in which the elements of the

solution are continuous real numbers since, in words of the inventors of PSO, it is not

possible to ‘‘throw to fly’’ particles in a discrete space (Kennedy and Eberhart 1995). In the

last years, several modifications of the PSO algorithm for solving problems with discrete

variables have been proposed in the literature. They are referred to as Discrete Particle

Swarm Optimization (DPSO) methods.

Kennedy and Eberhart (1997) developed a DPSO algorithm for problems with

binary-valued solution elements where the position of each particle is a vector

30 S. Consoli et al.

123

xi ¼ ðxi1; xi2; . . .; xij; . . .; xidÞ of the d-dimensional binary solution space, xi 2 f0; 1gd
, but

the velocity is still a vector vi = (vi1, vi2,…,vij,…,vid) of the d-dimensional continuous

space, vi 2 <d . As with the standard PSO strategy by Kennedy and Eberhart (1995), the

velocity is still updated by means of Eq. 1. However the significance of the velocity term

has been changed to indicate the probability of the corresponding solution element

assuming a value of 0 or 1. In other words, the continuous value vij refers to the probability

that the j-th binary variable within the position of the i-th particle, xij, assumes a value of 0

or 1 at the next iteration. For assigning a new position value to a particle i, each position

variable xij is randomly set with probability of selecting a value of 1 given by the sigmoid

function:

1

1þ exp ð�vijÞ
: ð2Þ

In this variation of the PSO algorithm, the velocity term is limited to |vij| \ Vmax, where

Vmax is some value typically close to 6.0. This setting prevents the probability of the

particle element assuming either a value of 0 or 1 from being too high. Though this DPSO

has been shown to be capable of optimizing several combinatorial problems (Kennedy and

Eberhart 1997), it is limited only to discrete problems with binary-valued solution

elements.

Other PSO techniques for discrete optimization include the work of Al-kazemi and

Mohan (2002) who developed a method, based on the DPSO proposed by Kennedy and

Eberhart (1997), whose particles are influenced alternatively by their own best position and

the best position among their neighbours. In this DPSO strategy, the velocity is updated as

in the standard PSO by means of Eq. 1, with the difference that the coefficients ci assume

only the values 1 and -1, i.e. ci 2 f�1; 1g, and only a given number of combinations of

the coefficients are possible. The different combinations of the coefficients are referred to

as phases of the particles, and determine the directions of movement of the particles. At

any given time, each particle is in one of the possible phases, and the next phase to select is

determined by means of the previous phase of the particle and the number of iterations

executed so far. The smallest possible non-trivial number of phases, used in the DPSO

method by Al-kazemi and Mohan (2002), consists of two phases. In the first phase, each

i-th particle uses coefficients (1, -1, 1), by directing the particle movement toward gi, that

is the best position of its social neighbourhood N(i). Instead, in the second phase, each i-th
particle uses coefficients (1, 1, -1), by directing the particle movement toward its own best

position bi. Phase change occurs if no improvement of the best solution to date is obtained

within a given number of iterations (typically 10 iterations) in the current phase.

A similar strategy was developed by Yang et al. (2004) by considering a larger number

of combinations of the coefficients, referred to as quantum states of the particles, and a

slightly different update equation for the velocity inspired by the principles of quantum

computing. Both the methods developed in Al-kazemi and Mohan (2002) and in Yang

et al. (2004) use the same principles as the DPSO by Kennedy and Eberhart (1997) and

both are limited to discrete problems with binary-valued variables. A non-binary version of

the DPSO by Kennedy and Eberhart (1997) was presented in Secrest (2001) and applied to

the Travelling Salesman Problem. In this DPSO algorithm, the particles in the swarm were

represented as linked lists of cities and genetic operators, such as mutation and recombi-

nation, were adopted to induce the move of the swarm.

Pampara et al. (2005) developed an indirect DPSO method by reducing a binary

problem into a continuous trigonometric function having only four parameters to optimize.

This reduction is obtained by means of Angle Modulation, a popular technique used in the

DPSO for the MLSteiner problem 31

123

field of signal processing from telecommunications (Pampara et al. 2005). The standard

PSO algorithm by Kennedy and Eberhart (1995, 2001) is then applied to optimise the four

parameters of the continuous trigonometric function. Successively the function is sampled

at even intervals by producing a continuous value for each interval. If a value is positive,

the corresponding bit value assigned to that interval assumes value 1, otherwise the cor-

responding bit value assumes value 0. The set of all generated bit values associated with

the intervals represents the binary solution vector to the original binary problem. The

benefit of this technique is that a larger dimensional binary space can be represented by a

smaller 4-dimensional continuous space, by allowing a faster convergence of the optimi-

zation phase with respect to the other binary PSO methods in the literature. However, in

some circumstances, the reduction process may be too costly for some complex binary

problems in terms of computational running time and, therefore, the overall benefits of the

method are nullified. Furthermore, the method is limited to considering only discrete

problems with binary-valued solution elements.

The multi-valued PSO (MVPSO) proposed by Pugh and Martinoli (2006) deals with

variables with multiple discrete values. While in the case of a continuous PSO the position

of each particle is a mono-dimensional array, and in the case of a DPSO is a 2-dimensional

array, in a MVPSO algorithm it is expressed by means of a 3-dimensional array xijk,

representing the probability that the i-th particle, in the j-th iteration, assumes the k-th

value. To evaluate the fitness of a particle, the solution elements xijk are generated prob-

abilistically following a sigmoid distribution, by making the evaluation process inherently

stochastic. Because particle terms are real-valued, this representation allows the velocity to

be used in the same way as in the standard PSO by Kennedy and Eberhart (1995, 2001),

where vijk represents the velocity of xijk. Therefore, it is still possible to update the velocity

vijk by means of Eq. 1.

Another DPSO algorithm was developed by Correa et al. (2006) to tackle the data

mining task of attribute selection, in order to classify data sets into classes or categories of

the same type. The objective of attribute selection is to simplify a data set by reducing its

dimensionality and redundancy in the information provided by the selected attributes, and

by identifying relevant underlying attributes without sacrificing predictive accuracy. The

attribute selection problem is a combinatorial problem, where each attribute is identified by

a unique positive integer number. The DPSO by Correa et al. (2006) differs from other

traditional PSO algorithms because its swarm contains particles representing combinations

of selected attributes of different size, from 1 to the total number of attributes, k. Every

particle is associated with a velocity vector of cardinality 1-by-k containing positive

numbers, each one representing the proportional likelihood of the corresponding attribute

be selected. The updating process for the velocity of a particle is based on a procedure

analogous to the standard PSO by Kennedy and Eberhart (1995, 2001), by using the

concepts of best position of the particle and best position among its neighbours and by

applying Eq. 1. In order to obtain the new position of a particle from the corresponding

updated velocity vector, each component of the velocity is multiplied by a random number

n uniformly distributed in [0,1]. The new length of the particle is determined by selecting

another random number k smaller than the total number of attributes, i.e. k 2 ½0; k�, and

finally the k attributes with the largest likelihood in the velocity vector are selected to

compose the new position of the particle. Although the efficiency of this DPSO algorithm

has been proved for attribute selection problems, its complex implementation makes it

difficult to apply this methodology to other discrete problems.

Moraglio et al. (2008) showed a close connection between Particle Swarm Optimization

and Evolutionary Algorithms by using a geometric framework for the interpretation of the

32 S. Consoli et al.

123

crossover operator. The advantage of their PSO algorithm, referred to as Geometric Par-

ticle Swarm Optimization (GPSO), is that it can be derived rigorously for any combina-

torial space. Firstly, Moraglio et al. (2008) derived their GPSO for Euclidean, Manhattan,

and Hamming spaces and discussed how to derive a GPSO for virtually any representation

in a similar way. They tested the GPSO theory experimentally by reporting extensive

experimental results of each GPSO algorithm implemented. In particular, they showed how

to apply their GPSO to solve efficiently the Sudoku puzzle, which is a nontrivial

constrained combinatorial problem.

A new DPSO proposed in Moreno-Pérez et al. (2007) and Martı́nez-Garcı́a and

Moreno-Pérez (2008) does not consider any velocity since, from the lack of continuity of

the movement in a discrete space, the notion of velocity has less meaning; however they

kept the attraction of the best positions. They interpret the weights of the updating equation

as probabilities that, at each iteration, each particle has a random behaviour, or acts in a

way guided by the effect of an attraction. The moves in a discrete or combinatorial space

are jumps from one solution to another. The attraction causes the given particle to move

towards this attractor if it results in an improved solution. An inspiration from nature for

this process is found in frogs, which jump from a lily pad to a pad in a pool. Thus, this new

discrete PSO is called Jumping Particle Swarm Optimization (JPSO). This methodology

has been recently applied with success to the vehicle routing problem with time windows

(Castro-Gutiérrez et al. 2008) and to the Steiner tree in graph and delay-constrained

routing problems (Qu et al. 2009). This paper extends and more rigorously tests the

Jumping Particle Swarm Optimization algorithm for the minimum labelling Steiner tree

problem first introduced in Consoli et al. (2008b). We compare this strategy with other

algorithms used to solve the problem considered, and we show that JPSO is able to obtain

good approximate solutions for large instances of the problem. The effectiveness of this

approach and its superiority with respect to the other methods is further confirmed by

means of a rigorous statistical analysis of the results.

1.2 The minimum labelling Steiner tree problem

The minimum labelling Steiner tree (MLSteiner) problem is an NP-hard graph problem

introduced by Cerulli et al. (2006) and defined as follows. Let G = (V,E,L) be a labelled,

connected, undirected graph, where V is the set of nodes, E is the set of edges, that are

labelled (not necessarily properly) on the set L of labels (or colours). Let Q�V be a set of

nodes that must be connected (basic vertices or nodes). The MLSteiner problem searches

for an acyclic connected subgraph T�G, spanning all basic nodes Q and using the mini-

mum number of different colours.

Figure 1 shows an example of an input graph, where the solid vertices represent the

basic nodes to cover. The minimum labelling Steiner tree solution of this example is shown

in Fig. 2.

This problem has many real-world applications. For example, in telecommunications

networks, a node may communicate with other nodes by means of different types of

communications media. Considering a set of basic nodes that must be connected, the

construction cost may be reduced, in some situations, by connecting the basic nodes with

the smallest number of possible communications types (Tanenbaum 1989).

Another example is given by multimodal transportation networks (Van-Nes 2002). The

multimodal transportation network is represented by a graph where each edge is assigned a

colour, denoting a different company managing that edge, and each node represents a

different location. It is often desirable to provide a complete service between a basic set of

DPSO for the MLSteiner problem 33

123

locations, without cycles, using the minimum number of companies, in order to minimise

cost.

In order to solve the MLSteiner problem, it is easier to work firstly with feasible

solutions instead of spanning trees. A feasible solution is defined as a set of colours C � L,

such that all the edges with labels in C represent a connected subgraph of G and span all

the basic nodes Q. If C is a feasible solution, then any spanning tree of C has at most |C|

labels. Thus, in order to solve the MLSteiner problem we seek a feasible solution with the

smallest number of colours (Cerulli et al. 2006).

The MLSteiner problem is an extension of the well-known Steiner tree problem, and of

the minimum labelling spanning tree problem. Given a graph with positive-weighted

edges, the Steiner tree (Steiner) problem searches a minimum-weight tree spanning a

subset of nodes, called basic nodes (or terminals) (Garey et al. 1977). Several heuristics for

the Steiner problem in graphs are reported in Voß (2000). The minimum labelling spanning

tree (MLST) problem is used where, given a graph with coloured edges, one seeks a

spanning tree with the least number of colours (Chang and Leu 1997; Krumke and Wirth

1998). Several heuristics have been proposed in Cerulli et al. (2005), Xiong et al. (2006)

and Consoli et al. (2008a). The MLSteiner problem was considered by Cerulli et al. (2006)

where their Pilot Method (PM) was compared with some other metaheuristics: Tabu

Fig. 1 Example of a labelled
connected undirected graph,
input of the MLSteiner problem.
The solid vertices represent the
basic nodes to cover

Fig. 2 Minimum labelling
Steiner tree solution for the graph
of Fig. 1

34 S. Consoli et al.

123

Search, Simulated Annealing, and Variable Neighbourhood Search. From their analysis,

PM was shown to be an effective heuristic for this problem.

The structure of the paper is as follows. In Sect. 2 the details of Pilot Method are

presented, along with an exact approach, a basic Multi-Start (MS) metaheuristic (with and

without an embedded local search), and the Jumping Particle Swarm Optimization (JPSO).

Section 3 shows the experimental comparison of these algorithms and a rigorous statistical

analysis of their results by means of the Friedman Test (Friedman 1940) and the Nemenyi
Post-hoc Test (Nemenyi 1963). It is shown that JPSO is able to obtain solutions of good

quality in short computational running times for large instances of the problem (say

|V| = 500 nodes with 0.2 � |V| and 0.4 � |V| basic vertices). Finally, the paper ends with

some conclusions and suggestions for further research in Sect. 4.

2 Algorithms considered

In this section we describe the algorithms that we consider for the MLSteiner problem: an

exact method, the Pilot Method by Cerulli et al. (2006), a basic Multi-Start method (with

and without an embedded local search), and finally the Jumping Particle Swarm

Optimization.

2.1 Exact method

This exact approach to the MLSteiner is based on a backtracking procedure. Given a

labelled, connected, undirected graph G = (V,E,L) with n vertices, m edges, ‘ labels, and a

subset Q�V of basic nodes, the exact method performs a branch and prune procedure in

the partial solution space based on a recursive procedure.

The recursive procedure starts from an empty set of colours and iteratively builds a

solution by adding colours one by one until all the basic nodes, Q�V , are connected. This

method is based on an enumeration of all the possible combinations of colours, so its

computational running time grows exponentially with the number of colours. Some heu-

ristic rules are applied to the branch-and-prune strategy in order to reduce the running time.

If either the problem size is moderate (say n B 100) or the optimal objective function value

is small (say up to 4–5 colours), the running time of this exact method is reasonable and it

is possible to obtain the exact solution.

2.2 Pilot Method

The Pilot Method (PM) metaheuristic was first introduced by Duin and Voß (1999) for the

Steiner tree problem. Its core idea consists of exhausting all the possible choices with

respect to a so called master solution, by means of a basic heuristic. This basic heuristic

tentatively performs iterations with respect to the master solution until all the possible local

choices are evaluated. The best solution to date becomes the new master solution, and the

procedure proceeds until the user termination conditions are reached.

Cerulli et al. (2006) performed a comparison between PM and other ad-hoc metaheu-

ristics (Tabu Search, Simulated Annealing, and Variable Neighbourhood Search) for dif-

ferent instances of the MLSteiner problem. From their computational analysis, PM

obtained the best results. Their Pilot Method for the MLSteiner focuses on the initial label

to add, using the null solution (an empty set of colours) as master solution. The basic

heuristic consists of inserting in the partial solution the colour which decreases the number

DPSO for the MLSteiner problem 35

123

of Steiner components of the partial subgraph. PM tries to add each label at the initial step,

and then it performs iterations of the basic heuristic until a feasible solution is obtained. At

the final stage, a local search mechanism tries to greedily drop colours (i.e., the associated

edges) whilst retaining feasibility. After exhausting all the iterations, the best solution to

date represents the output of the method.

2.3 Multi-Start method

The Multi-Start (MS) method that we consider for the MLSteiner problem starts from an

empty set of colours, and at each iteration adds one colour at random, until a connected

subgraph spanning all the basic nodes is obtained. This process is repeated, continuing

until the user termination condition (maximum allowed CPU time, maximum number of

iterations, or maximum number of iterations between two successive improvements) is

reached. The best solution to date is produced as the output of this method.

A local search phase may be embedded in this process to try to improve the intensi-

fication capability of the algorithm. This local search consists of trying to greedily drop

some labels (i.e., the associated edges) at the end of each iteration of the MS method,

whilst retaining feasibility. Further details on Multi-Start techniques to combinatorial

optimization can be found in Martı́y (2003).

2.4 Jumping Particle Swarm Optimization

The spirit of nature to deal with some real-life problems is often based on simple processes.

Trying to emulate this aspect of life, the discrete PSO proposed in Moreno-Pérez et al.

(2007) and Martı́nez-Garcı́a and Moreno-Pérez (2008), called Jumping Particle Swarm

Optimization (JPSO), was chosen to deal with the minimum labelling Steiner tree problem

(Consoli et al. 2008b) for its easy implementation and simplicity.

JPSO considers a swarm S containing n particles (S ¼ 1; 2; . . .;n) whose positions xi

evolve in the solution space, jumping from one solution to another. The number of particles

in the swarm was chosen after preliminary experimentation which indicated that using a

swarm size of n = 100 particles is a reasonable choice. The position of a particle is

encoded as a feasible solution to the MLSteiner problem. At each iteration, each particle

has a random behaviour, or jumps to another solution in a manner guided by the effect of

some attractors.

JPSO considers three attractors for the movement of each particle i: its own best

position to date (bi), the best position of its social neighbourhood (gi), interpreted as the

best position obtained within the swarm in the current iteration, and the best position to

date obtained by all the particles, which is called the global best position (g*). A jump

approaching an attractor consists of changing a feature of the current solution by a feature

of the attractor. Each particle is further allowed to have a random behaviour by performing

random jumps. A random jump consists of selecting at random a feature of the solution and

changing its value. For the MLSteiner problem the features of a solution are the colours

that are included in the solution. Thus, a particle performs a jump with respect to the

selected attractor by randomly adding some colours to its current position from the selected

attractor, or dropping from its current position further colours that are not included in the

attractor.

Further details of the DPSO that we propose for the MLSteiner problem are specified in

Algorithm 1. The algorithm proceeds as follows. The initial positions of the swarm S are

generated by starting from empty sets of colours and adding at random colours until

36 S. Consoli et al.

123

Algorithm 1: Discrete Particle Swarm Optimization for the MLSteiner problem

Input: A labelled, undirected, connected graph G = (V,E,L), with n vertices, m
edges, ‘ labels, and Q�V basic nodes;

Output: A spanning tree T;

Initialization:

- Let C / 0 be a set of colours, initially empty set;

- Let H = (V,E(C)) be the subgraph of G restricted to V and edges with labels in C,
where E(C) = {e [E: L(e) [C};

- Set the size ns of the swarm S;

begin

- Generate the initial swarm S with positions at random:

X ¼ ½x0; x1; . . .; xns
� Generate-Swarm-At-Random(G);

- Update the vector of the best positions B ¼ ½b0; b1; . . .; bns
� X;

- Extract the best position among all the particles:g� Extract-The-Best(S, X);

repeat

for i = 1 to ns do

If i = 1 then

- Initialize the best position of the social neighbourhood: gi ‘;

else

- Update the best position of the social neighbourhood i: gi gi�1;

end

- Select at random a number between 0 and 1: n = Random(0, 1);

If n 2 ½0; 0:25½ then

- selected xi;

else if n 2 ½0:25; 0:5½ then

- selected bi;

else if n 2 ½0:5; 0:75½ then

-selected gi;

else if n 2 ½0:75; 1½ then

- selected g�;

- Combine particle i and the selected particle: xi Combineðxi; selectedÞ;
- Local-Search(i, xi);

if jxij\jbijthen

- Update the best position of the given particle i: bi xi;

end

if jxij\jgijthen

- Update the best position of the social neighbourhood of i : gi xi;

end

if jxij\jg�jthen

- Update the global best position to date: g� xi;

end

end

until termination conditions;

- Set C g�;

- Update H = (V,E(C));

) Take any arbitrary spanning tree T of H = (V,E(C)).

end

DPSO for the MLSteiner problem 37

123

feasible solutions emerge. According to our experience this is the best choice for the initial

positions of the swarm. The position xi of a particle i is a 0–1 vector denoting which labels

are present in particle i. At each iteration, the positions of the particles are updated.

Considering the i-th particle of the swarm (i [S) and a generic iteration k, the update

procedure to obtain the new position xi
k of i from its previous position xi

k-1 is as follows.

Position xi
k is obtained by performing random jumps with respect to its current position xi

k-1

with probability c1, improving jumps approaching bi with probability c2, improving jumps

approaching gi with probability c3, and improving jumps approaching g* with probability

c4 ¼ ð1� c1 � c2 � c3Þ. For the MLSteiner problem the value of the parameters c1, c2, c3,

c4, are set to 0.25, giving the same probability value to each of the possible jumps to be

selected. That is, a random number n between 0 and 1 is selected. If n belongs to [0, 0.25[

the current position of the given particle is selected (selected xi) in order to perform a

random jump. Otherwise, if n is in [0.25, 0.5[the best position to date (bi) of the given

particle is selected (selected bi) as attractor for the movement of xi. Instead, if n 2
½0:5; 0:75½ the selected attractor is the best position gi of the social neighbourhood

(interpreted as the best position obtained within the swarm in the current iteration). For the

remaining case, if n 2 ½0:75; 1½ the selected attractor is the best position to date obtained by

all the particles (selected g�).

Algorithm 2: Procedure Combine(xi, selected)

- Let Comp(xi) be the number of Steiner components of xi;

- Select a random integer between 0 and |xi|: w Random(0,|xi|);

for j 1 to w do

- Select at random a number between 0 and 1: n Random(0,1);

if n� 0:5 then

- Select at random a label c0 2 xi;

- Delete label c0 from the position of the given particle: xi xi � fc0g;
else

- Select at random a label c0 2 selected;

- Add label c0 to the position of the given particle i: xi xi [fc0g;
end

end

- Update Comp(xi);

while Comp(xi) [1 do

- Select at random an unused label u 2 ðL� xiÞ;
- Add label u to the position of the given particle i: xi xi [fug;

end

Algorithm 3: Procedure Local-Search(i, xi)

- Let Comp(xi) be the number of Steiner components of xi;

for j = 1 to |xi| do

if Comp(xi-{j}) = 1 then

- Delete label j from the position xi of the given particle, i.e. xi xi � fjg;
Update Comp(xi);

end

end

38 S. Consoli et al.

123

The jump of the i-th particle towards the selected attractor (selected) is performed by

means of the procedure Combine(xi, selected) (see Algorithm 2). In this procedure we

make use of the concept of a Steiner component (Cerulli et al. 2006), which is a connected

subgraph of the input graph containing at least one basic node. A solution is feasible if and

only if it contains only one Steiner component, by assuring that all the basic nodes are

connected. Let Comp(xi) be the number of Steiner components of xi. The procedure

Combine first selects a random integer w between 0 and |xi|. Successively, it either drops

some colours from xi, or randomly picks up some colours from the selected attractor and

adds to xi, until w colours have been added or deleted with respect to xi. At this point the

number of Steiner components of the solution xi is updated (Update Comp(xi)). If an

infeasible xi is obtained at this stage (i.e. Comp(xi) [1), further colours are added at

random to xi from the set of unused colours (L - xi) until the feasibility is restored

(Comp(xi) = 1).

At the end of this stage, a local search procedure is applied to the resulting particle, in

order to try to delete some colours from xi (i.e., the associated edges) whilst retaining

feasibility (see Algorithm 3). After the local search phase, all the attractors (bi, gi, g*) are

updated. Note that the best position (gi) of the social neighbourhood of a particle i consists

of the best position obtained within the swarm in the current iteration. Thus, when the first

particle in the swarm is evaluated (i = 1), the best position of its social neighbourhood is

initialized with the worst possible solution, that is the total number of colours (gi ‘). In

contrast, all the successive particles in the swarm (i C 1) initialize the best position of the

social neighbourhood with the best position of the social neighbourhood of the previous

particle, that is: gi gi�1.

The same procedure is repeated for all the particles in the swarm, and the entire

algorithm continues until the user termination conditions are satisfied.

3 Computational results

In this section, the metaheuristics are compared in terms of solution quality and compu-

tational running time. We identify the metaheuristics with the abbreviations: EXACT

(exact method), PM (Pilot Method), MS (Multi-Start method), MS ? LS (Multi-Start

method with the local search mechanism), and JPSO (Jumping Particle Swarm

Optimization).

Different sets of instances of the problem have been generated considering combina-

tions of the following parameters:

– the total number of edges of the graph (m);

– the total number of nodes of the graph (n);

– the number of basic nodes of the graph (q);

– the total number of colours assigned to the edges of the graph (‘).

In our experiments, we consider 48 different datasets, each one containing 10 instances

of the problem, with n 2 f100; 500g nodes, ‘ 2 f0:25n; 0:5n; n; 1:25ng colours, and q 2
f0:2n; 0:4ng basic nodes. The number of edges, m, is obtained indirectly from the density

d, whose values are chosen to be in {0.8, 0.5, 0.2}. We thank the authors of Cerulli et al.

(2006), who kindly provided data for use in our experiments.

For each dataset, solution quality is evaluated as the average objective function value

for the 10 problem instances, for each combination of the parameters n, ‘, and d. A

maximum allowed CPU time, that we call max-CPU-time, is chosen as the stopping

DPSO for the MLSteiner problem 39

123

condition for all the metaheuristics, determined experimentally with respect to the

dimension of the problem instance. Since the Pilot Method considers, for each instance,

every label as the initial colour to add, max-CPU-time is chosen in order to allow the Pilot

Method to finish. Selection of the maximum allowed CPU time as the stopping criterion is

made in order to have a direct comparison of all the metaheuristics with respect to the

quality of their solutions.

Our computational results are reported in Tables 1, 2, 3, and 4. In each table, the first

two columns show the parameters characterizing the different datasets (‘, d), while the

values of n and q determine the different tables. All the heuristic methods run for max-
CPU-time and, in each case, the best solution is recorded. All the computations have been

made on a Pentium Centrino microprocessor at 2.0 GHz with 512 MB RAM. The com-

putational times reported in the tables are the average times at which the best solutions are

obtained. Where possible, the results of the metaheuristics are compared with the exact

Table 1 Computational results for n = 100 and q = 0.2n (max-CPU-time = 5,000 ms)

Parameters EXACT PM MS MS ? LS JPSO

n ‘ d

Average objective function values

100 25 0.8 1 1 1 1 1

0.5 1.5 1.5 1.5 1.5 1.5

0.2 2.1 2.1 2.1 2.1 2.1

50 0.8 1.9 1.9 1.9 1.9 1.9

0.5 2 2 2 2 2

0.2 3.2 3.2 3.2 3.2 3.2

100 0.8 2 2 2 2 2

0.5 3 3 3 3 3

0.2 4.6 4.6 5.7 4.6 4.6

125 0.8 2.8 2.8 2.8 2.8 2.8

0.5 3.3 3.3 3.6 3.3 3.3

0.2 5.2 5.4 6.5 5.4 5.2

Total: 32.6 32.8 35.4 32.8 32.6

Computational times (ms)

100 25 0.8 14.7 14.1 10.6 10.6 1.6

0.5 26.3 20.3 10.5 10.5 3.2

0.2 16.2 15.6 20.9 13.2 6.1

50 0.8 59.4 56.1 22.6 11.6 6.4

0.5 66.3 67.2 26.4 24.6 10.9

0.2 40.6 75.1 199.9 51.4 15.7

100 0.8 306.3 270.3 167.6 51.8 75.1

0.5 251.6 275.1 309 57.7 31.2

0.2 914 314.1 635.8 792.1 45.3

125 0.8 78.2 381.2 233.8 121.8 48.4

0.5 451.5 443.9 482.8 469 157.7

0.2 4703.2 518.8 1659.4 1007.9 322

Total: 6828.3 2451.8 3779.3 2622.2 723.6

40 S. Consoli et al.

123

solution (EXACT). The solution given by the exact method is reported unless a single

instance computes for more than 3 hours of CPU time. In the case that no solution is

obtained in 3 hours by the exact method, a not found (NF) is reported in the tables. All the

reported times have precision of ±5 ms.

Tables 1 and 2 examine relatively small instances of the MLSteiner problem. Looking

at these tables, all the metaheuristics performed well for the considered problem instances.

The Multi-Start method obtained the worst performance with respect to the solution quality

and computational running time. The addition of the local search mechanism improves the

results of the Multi-Start method, although MS ? LS is generally slower than PM and

JPSO as a result of a poor intensification capability and an excessive diversification

capability for these instances. PM is characterized sometimes by a limited diversification

capability which does not allow the search process to escape from local optima. For

Table 2 Computational results for n = 100 and q = 0.4n (max-CPU-time = 6,000 ms)

Parameters EXACT PM MS MS ? LS JPSO

n ‘ d

Average objective function values

100 25 0.8 1 1 1 1 1

0.5 1.9 1.9 1.9 1.9 1.9

0.2 3 3 3 3 3

50 0.8 2 2 2 2 2

0.5 2.2 2.2 2.2 2.2 2.2

0.2 4.3 4.4 4.5 4.3 4.3

100 0.8 3 3 3 3 3

0.5 3.6 3.6 3.6 3.6 3.6

0.2 NF 6.5 8.7 6.8 6.4

125 0.8 3 3 3 3 3

0.5 4 4 4.4 4.1 4

0.2 NF 7 10.7 8 6.9

Total: – 41.6 48 42.9 41.3

Computational times (ms)

100 25 0.8 24.7 15.6 11.2 11.6 9.3

0.5 29.7 21.7 14.8 11.6 6.4

0.2 36.9 29.8 25.6 25 23.6

50 0.8 60.9 53 15.6 13.1 20.4

0.5 117.2 76.6 47.5 39.7 34.3

0.2 314.1 111 1093.8 129 45.1

100 0.8 175 260.9 169.6 48 39.2

0.5 389.1 312.5 1148.4 157.9 96.8

0.2 NF 472 1604.7 870.7 350

125 0.8 354.6 440.7 237.5 81.1 57.6

0.5 479.6 507.8 643.7 887.6 67.1

0.2 NF 811 2012.7 1072 411

Total: – 3112.6 7025.1 3347.3 1160.8

DPSO for the MLSteiner problem 41

123

example, PM was faster than MS ? LS in the instance [n = 100, ‘ = 50, d = 0.2] in

Table 2 but it produced a slightly worse result with respect to solution quality. JPSO

obtained the best performance in terms of solution quality and computational running time

with respect to the other algorithms for all these small problem instances.

Tables 3 and 4 show larger instances of the problem (n = 500 with q = 0.2n and

q = 0.4n respectively). The inspection of these tables demonstrates that JPSO is able to

obtain good performance also in large problem instances. Indeed, JPSO obtained the

solutions with the best quality and computational running times in most of the cases, even

though the running times increase considerably with the size of the instances. As in the

previous analysis, PM and MS ? LS showed the same relative behaviour for the con-

sidered instances. However, MS ? LS showed an excessive diversification and poor

intensification capabilities, obtaining poor performance in terms of solution quality. Again,

the Multi-Start method without the local search mechanism produced the worst results with

Table 3 Computational results for n = 500 and q = 0.2n (max-CPU-time = 500 9 103 ms)

Parameters EXACT PM MS MS ? LS JPSO

n ‘ d

Average objective function values

500 25 0.8 1.1 1.1 1.1 1.1 1.1

0.5 2 2 2 2 2

0.2 3 3 3 3 3

50 0.8 2 2 2 2 2

0.5 2.9 2.9 2.9 2.9 2.9

0.2 NF 4.4 5 4.8 4.3

100 0.8 3 3 3.1 3 3

0.5 NF 3.9 4.5 4.5 4

0.2 NF 6.8 9.4 8.3 6.9

125 0.8 NF 3.8 4 4 3.8

0.5 NF 4.8 5.7 5.3 4.8

0.2 NF 8 11 9.8 7.9

Total: – 45.7 53.7 50.7 45.7

Computational times (ms)

500 25 0.8 1.5 9 103 1.2 9 103 2.5 9 103 876.1 3.4 9 103

0.5 2.1 9 103 2.5 9 103 1.6 9 103 640.1 575

0.2 4.1 9 103 7.1 9 103 7.2 9 103 1.6 9 103 5.9 9 103

50 0.8 13.6 9 103 17.4 9 103 22 9 103 3.6 9 103 9.7 9 103

0.5 37.3 9 103 46.8 9 103 28.1 9 103 10.5 9 103 8.8 9 103

0.2 NF 48.1 9 103 82.5 9 103 47.1 9 103 36.7 9 103

100 0.8 300.8 9 103 304.4 9 103 360 9 103 235.3 9 103 22.1 9 103

0.5 NF 325.8 9 103 361.7 9 103 332.3 9 103 106.5 9 103

0.2 NF 452.2 9 103 326.5 9 103 399.1 9 103 170.4 9 103

125 0.8 NF 465.6 9 103 305.7 9 103 383.5 9 103 180.2 9 103

0.5 NF 403 9 103 494.3 9 103 361.9 9 103 110.4 9 103

0.2 NF 399.3 9 103 488.6 9 103 443.2 9 103 285.7 9 103

Total: – 2446.4 9 103 2480.7 9 103 2219.6 9 103 940.4 9 103

42 S. Consoli et al.

123

respect to solution quality and computational running time. It is also interesting to note that

in all the problem instances in Tables 1–4 for which the exact method obtains the solution,

JPSO also yielded the exact solution.

Table 4 Computational results for n = 500 and q = 0.4n (max-CPU-time = 600 9 10 3 ms)

Parameters EXACT PM MS MS ? LS JPSO

n ‘ d

Average objective function values

500 25 0.8 1.9 1.9 1.9 1.9 1.9

0.5 2 2 2 2 2

0.2 NF 4.1 4.4 4.1 4.1

50 0.8 2 2 2 2 2

0.5 3 3 3 3 3

0.2 NF 6.2 8.5 7.4 6.3

100 0.8 NF 3.7 4 4 3.7

0.5 NF 5 5.7 5.5 5

0.2 NF 9.9 16.6 12.6 9.9

125 0.8 NF 4 5 4.8 4

0.5 NF 5.8 6.9 6.6 5.7

0.2 NF 11.5 18.6 14.6 11.4

Total: – 59.1 78.6 68.5 59

Computational times (ms)

500 25 0.8 218 1.1 9 103 1.2 9 103 900 778.2

0.5 2.8 9 103 2.6 9 103 2.5 9 103 6.5 9 103 4.3 9 103

0.2 NF 8.3 9 103 70 9 103 101 9 103 8.8 9 103

50 0.8 44.6 9 103 20.2 9 103 21.1 9 103 12.7 9 103 12.5 9 103

0.5 48.8 9 103 49.8 9 103 59.8 9 103 46.9 9 103 13.4 9 103

0.2 NF 48.7 9 103 180 9 103 160.2 9 103 122.2 9 103

100 0.8 NF 201.1 9 103 282.6 9 103 282.5 9 103 19.4 9 103

0.5 NF 193.1 9 103 269.9 9 103 229.8 9 103 19.6 9 103

0.2 NF 579.7 9 103 470.8 9 103 497.5 9 103 195.3 9 103

125 0.8 NF 384 9 103 329.9 9 103 353.7 9 103 18.5 9 103

0.5 NF 421.2 9 103 428.1 9 103 375 9 103 32.6 9 103

0.2 NF 397.9 9 103 479.4 9 103 397.5 9 103 232.1 9 103

Total: – 2307.7 9 103 2595.3 9 103 2422.2 9 103 679.5 9 103

Table 5 Pairwise differences of the average ranks of the algorithms*

Algorithm (rank) JPSO (1.42) MS ? LS (2.57) PM (2.85) MS (3.92) EXACT (4.24)

JPSO (1.42) – 1.15 1.43 2.5 2.82

MS ? LS (2.57) – – 0.28 1.35 1.67

PM (2.85) – – – 1.07 1.39

MS (3.92) – – – – 0.32

EXACT (4.24) – – – – –

* Critical difference = 1.05 for a significance level of 1% for the Nemenyi test

DPSO for the MLSteiner problem 43

123

From this analysis, JPSO obtained the best performance for all the considered datasets.

In addition, to confirm this evaluation, the ranks of the algorithms for each dataset are

evaluated, with a rank of 1 assigned to the best performing algorithm, a rank of 2 to the

second best one, and so on. The performance of an algorithm is considered better than

another one if either it obtains a smaller average objective function value, or an equal

average objective function value but in a shorter computational time. Obviously, if the

exact method records a NF for a dataset, the worst rank is assigned to it in the specified

dataset. The average ranks of the algorithms among the considered datasets are:

EXACT = 4.24, PM = 2.85, MS = 3.92, MS ? LS = 2.57, JPSO = 1.42. According to

the ranking, JPSO is the best performing algorithm, followed by MS ? LS, then PM, MS

and finally EXACT achieving the worst results. Thus, this evaluation further indicates the

superiority of JPSO with respect to the other approaches.

To analyse the statistical significance of differences between the evaluated ranks, we

make use of the Friedman Test (Friedman 1940) and its corresponding Nemenyi Post-hoc
Test (Nemenyi 1963). For more details on the issue of statistical tests for comparison of

algorithms over multiple datasets see Demśar (2006) and Hollander and Wolfe (1999).

According to the Friedman Test, a significant difference between the performance of the

metaheuristics, with respect to the evaluated ranks, exists (at the 1% of significance level).

Since the equivalence of the algorithms is rejected, the Nemenyi post-hoc test is applied in

order to perform pairwise comparisons. It considers the performance of two algorithms

significantly different if their corresponding average ranks differ by at least a specific

threshold critical difference. In our case, considering a significance level of the Nemenyi

test of 1%, this critical difference is 1.05. The differences between the average ranks of the

algorithms are reported in Table 5. The italicized values illustrate the pairwise differences

larger than the critical difference.

From this table, it is possible to identify three groups of algorithms with different

performance. The best performing group consists of just JPSO, because it obtains the

smallest rank which is significantly different from all the other ranks. The remaining

groups are, in order, MS ? LS and PM, and then MS and EXACT. Considering a sig-

nificance level 1%, the algorithms within each group have comparable performance

according to the Nemenyi test since, in each case, the value of the test statistic is less than

the critical difference. Conversely, two algorithms belonging to different groups have

significantly different performance according to the Nemenyi test. Summarizing, from the

Friedman and Nemenyi statistical tests, JPSO is the best performing algorithm. On the

other hand, MS ? LS and PM have comparable performance, better than that of MS and

EXACT. From this further analysis, the results reinforce the conclusion that JPSO is an

effective metaheuristic for the MLSteiner problem. On average, it was the best performing

algorithm with respect to solution quality and computational running time.

4 Conclusions

In this work we considered a Discrete Particle Swarm Optimization (DPSO), called

Jumping Particle Swarm Optimization (JPSO), for the minimum labelling Steiner tree

(MLSteiner) problem (Consoli et al. 2008b). This is a NP-hard graph problem extending

the well-known Steiner tree problem, and the minimum labelling spanning tree problem to

the case where only a subset of specified nodes, the basic nodes, need to be connected.

Considering a wide range of problem instances, JPSO was compared with other algo-

rithms: an exact approach, the Pilot Method (PM) by Cerulli et al. (2006) (the most popular

44 S. Consoli et al.

123

MLSteiner heuristic in the literature), and a basic Multi-Start (MS) technique (with and

without an embedded local search). Based on our computational analysis, JPSO clearly

outperformed all the other procedures, obtaining high-quality solutions in short compu-

tational running times.

An interesting area of future research would be to apply JPSO to other important

combinatorial optimization problems such as the Travelling Salesman Problem and Job

Shop Scheduling and evaluating its performance with respect to sensitivity to initialisations

and parameter settings and also comparing performance with that of other DPSO

algorithms.

Acknowledgements Sergio Consoli was supported by an E.U. Marie Curie Fellowship for Early Stage
Researcher Training (EST-FP6) under grant number MEST-CT-2004-006724 at Brunel University (project
NET-ACE). The research of José Andrés Moreno-Pérez was partially supported by the projects TIN2005-
08404-C04-03 of the Spanish Government (with financial support from the European Union under the
FEDER project) and PI042005/044 of the Canary Government.

References

Al-kazemi B, Mohan CK (2002) Multi-phase discrete particle swarm optimization. In: Fourth international
workshop on frontiers in evolutionary algorithms, Kinsale, Ireland

Castro-Gutiérrez JP, Landa-Silva D, Moreno-Pérez JA (2008) Exploring feasible and infeasible regions in
the vehicle routing problem with time windows using a multi-objective particle swarm optimization
approach. In: Proceedings of international workshop on nature inspired cooperatives strategies for
optimization (NICSO 2008)

Cerulli R, Fink A, Gentili M, Voß S (2005) Metaheuristics comparison for the minimum labelling spanning
tree problem. In: Golden BL, Raghavan S, Wasil EA (eds) The next wave on computing, optimization,
and decision technologies. Springer-Verlag, New York, pp 93–106

Cerulli R, Fink A, Gentili M, Voß S (2006) Extensions of the minimum labelling spanning tree problem.
J Telecommun Inf Technol 4:39–45

Chang RS, Leu SJ (1997) The minimum labelling spanning trees. Inf Process Lett 63(5):277–282
Consoli S, Darby-Dowman K, Mladenović N, Moreno-Pérez JA (2008a) Greedy randomized adaptive

search and variable neighbourhood search for the minimum labelling spanning tree problem. Eur J
Oper Res 196(2):440–449

Consoli S, Moreno-Pérez JA, Darby-Dowman K, Mladenović N (2008b) Discrete particle swarm optimi-
zation for the minimum labelling Steiner tree problem. In: Krasnogor N, Nicosia G, Pavone M, Pelta D
(eds) Nature inspired cooperative strategies for optimization, studies in computational intelligence, vol
129. Springer-Verlag, New York, pp 313–322

Correa ES, Freitas AA, Johnson CG (2006) A new discrete particle swarm algorithm applied to attribute
selection in a bioinformatic data set. In: Proceedings of GECCO 2006, pp 35–42

Demśar J (2006) Statistical comparison of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Duin C, Voß S (1999) The Pilot Method: a strategy for heuristic repetition with applications to the Steiner

problem in graphs. Networks 34(3):181–191
Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann

Math Stat 11:86–92
Garey MR, Graham RL, Johnson DS (1977) The complexity of computing Steiner minimal trees. SIAM J

Appl Math 32:835–859
Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to

biology, control, and artificial intelligence. The MIT Press, Cambridge
Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. Wiley, New York
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 4th IEEE international

conference on neural networks, Perth, Australia, pp 1942–1948
Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: IEEE con-

ference on systems, man, and cybernetics, vol 5, pp 4104–4108
Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco
Krumke SO, Wirth HC (1998) On the minimum label spanning tree problem. Inf Process Lett 66(2):81–85

DPSO for the MLSteiner problem 45

123

Martı́ R (2003) Multi-start methods. In: Glover F, Kochenberger G (eds) Handbook in metaheuristics.
Kluwer, Dordrecht, pp 335–368

Martı́nez-Garcı́a FJ, Moreno-Pérez JA (2008) Jumping frogs optimization: a new swarm method for discrete
optimization. Technical Report DEIOC 3/2008, Department of Statistics, O.R. and Computing, Uni-
versity of La Laguna, Tenerife, Spain

Moraglio A, Di Chio C, Togelius J, Poli R (2008) Geometric particle swarm optimization. J Artif Evol Appl.
doi:10.1155/2008/143624

Moreno-Pérez JA, Castro-Gutiérrez JP, Martı́nez-Garcı́a FJ, Melián B, Moreno-Vega JM, Ramos J (2007)
Discrete Particle Swarm Optimization for the p-median problem. In: Proceedings of the 7th meta-
heuristics international conference, Montréal, Canada

Nemenyi PB (1963) Distribution-free multiple comparisons. Ph.D. thesis, Princeton University, New Jersey
Pampara G, Franken N, Engelbrecht AP (2005) Combining Particle Swarm Optimisation with angle

modulation to solve binary problems. In: Proceedings of the IEEE congress on evolutionary com-
puting, vol 1, pp 89–96

Pugh J, Martinoli A (2006) Discrete multi-valued particle swarm optimization. In: Proceedings of IEEE
swarm intelligence symposium, vol 1, pp 103–110

Qu R, Xu Y, Castro-Gutiérrez JP, Landa-Silva D (2009) Particle swarm optimization for the Steiner tree in
graph and delay-constrained multicast routing problems. Swarm Intelligence (submitted)

Secrest BR (2001) Traveling salesman problem for surveillance mission using Particle Swarm Optimization.
Master’s thesis, School of Engineering and Management of the Air Force Institute of Technology

Tanenbaum AS (1989) Computer Networks. Prentice-Hall, Englewood Cliffs
Van-Nes R (2002) Design of multimodal transport networks: a hierarchical approach. Delft University Press,

Delft
Voß S (2000) Modern heuristic search methods for the Steiner tree problem in graphs. In: Du DZ, Smith JM,

Rubinstein JH (eds) Advances in Steiner tree. Kluwer, Boston, pp 283–323
Xiong Y, Golden B, Wasil E (2006) Improved heuristics for the minimum labelling spanning tree problem.

IEEE Trans Evol Comput 10(6):700–703
Yang S, Wang M, Jiao L (2004) A Quantum Particle Swarm Optimization. In: Proceedings of CEC2004, the

congress on evolutionary computing, vol 1, pp 320–324

46 S. Consoli et al.

123

http://dx.doi.org/10.1155/2008/143624

	Discrete Particle Swarm Optimization for the minimum labelling Steiner tree problem
	Abstract
	Introduction
	Discrete Particle Swarm Optimization
	The minimum labelling Steiner tree problem

	Algorithms considered
	Exact method
	Pilot Method
	Multi-Start method
	Jumping Particle Swarm Optimization

	Computational results
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

