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Abstract The generalized traveling salesman problem (GTSP) is an extension of the

well-known traveling salesman problem. In GTSP, we are given a partition of cities into

groups and we are required to find a minimum length tour that includes exactly one city

from each group. The recent studies on this subject consider different variations of a

memetic algorithm approach to the GTSP. The aim of this paper is to present a new

memetic algorithm for GTSP with a powerful local search procedure. The experiments

show that the proposed algorithm clearly outperforms all of the known heuristics with

respect to both solution quality and running time. While the other memetic algorithms were

designed only for the symmetric GTSP, our algorithm can solve both symmetric and

asymmetric instances.

Keywords Generalized traveling salesman problem � Asymmetric generalized

traveling salesman problem � Memetic algorithm � Genetic algorithm �
Local search

1 Introduction

The generalized traveling salesman problem (GTSP) is defined as follows. We are given a

weighted complete directed or undirected graph G and a partition V = V1 [ V2 [ ��� [ VM of

its vertices; the subsets Vi are called clusters. The objective is to find a minimum weight

cycle containing exactly one vertex from each cluster. There are many publications on

GTSP (see, e.g., the surveys Fischetti et al. (2002), Gutin (2003) and the references there)

and the problem has many applications, see, e.g. Ben-Arieh et al. (2003) and Laporte et al.

(1996). The problem is NP-hard, since the traveling salesman problem (TSP) is a special
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case of GTSP when |Vi| = 1 for each i. GTSP is trickier than TSP in the following sense: it

is an NP-hard problem to find a minimum weight collection of vertex-disjoint cycles such

that each cluster has only one vertex in the collection (and the claim holds even when each

cluster has just two vertices) (Gutin and Yeo 2003). Compare it with the well-known fact

that a minimum weight collection of vertex-disjoint cycles in a weighted complete digraph

can be found in polynomial time (Gutin and Punnen 2002).

We call GTSP and TSP symmetric if the complete graph G is undirected and asymmetric
if G is directed. Often instead of the term weight we use the term length.

Various approaches to GTSP have been studied. There are exact algorithms such as

branch-and-bound and branch-and-cut algorithms in Fischetti et al. (1997). While exact

algorithms are very important, they are unreliable with respect to their running time that can

easily reach many hours or even days. For example, the well-known TSP solver CONCORDE

can easily solve some TSP instances with several thousand cities, but it could not solve

several asymmetric instances with 316 cities within the time limit of 104 s (in fact, it appears

it would fail even if significantly much more time was allowed) (Fischetti et al. 1997).

Several researchers use transformations from GTSP to TSP (Ben-Arieh et al. 2003) as

there exists a large variety of exact and heuristic algorithms for the TSP, see, e.g., Gutin

and Punnen (2002) and Lawler et al. (1985). However, while the known transformations

normally allow to produce GTSP optimal solutions from the obtained optimal TSP tours,

all known transformations do not preserve suboptimal solutions. Moreover, conversions of

near-optimal TSP tours may well result in infeasible GTSP solutions. Thus, the transfor-

mation do not allow us to obtain quickly approximate GTSP solutions and there is a

necessity for specific GTSP heuristics. Not every TSP heuristic can be extended to GTSP;

for example, so-called subtour patching heuristics often used for the Asymmetric TSP, see,

e.g., Johnson et al. (2002), cannot be extended to GTSP due to the above mentioned NP-

hardness result from Gutin and Yeo (2003).

It appears that the only metaheuristic algorithms that can compete with Lin-Kirnighan-

based local search for TSP are memetic algorithms (Hart et al. 2004; Moscato 1999) that

combine powers of genetic and local search algorithms (Johnson and McGeoch 2002; Tsai

et al. 2004). Thus, it is no coincidence that the latest studies in the area of GTSP explore

the memetic algorithm approach (Silberholz and Golden 2007; Snyder and Daskin 2006;

Tasgetiren et al. 2007).

The aim of this paper is to present a new memetic algorithm for GTSP with a powerful

local search part. Unlike the previous heuristics which can be used for the symmetric GTSP

only, our algorithm can be used for both symmetric and asymmetric GTSPs. The com-

putational experiments show that our algorithm clearly outperforms all published memetic

heuristics (Silberholz and Golden 2007; Snyder and Daskin 2006; Tasgetiren et al. 2007)

with respect to both solution quality and running time.

2 The genetic algorithm

Our heuristic is a memetic algorithm, which combines power of genetic algorithm with that

of local search (Hart et al. 2004; Krasnogor and Smith 2005). We start with a general

scheme of our heuristic, which is similar to the general schemes of many memetic

algorithms.

Step 1 Initialize. Construct the first generation of solutions. To produce a solution we use

a semirandom construction heuristic (see Sect. 2.2).
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Step 2 Improve. Use a local search procedure to replace each of the first generation

solutions by the local optimum. Eliminate duplicate solutions.

Step 3 Produce next generation. Use reproduction, crossover, and mutation genetic

operators to produce the non-optimized next generation. Each of the genetic

operators selects parent solutions from the previous generation. The length of a

solution is used as the evaluation function.

Step 4 Improve next generation. Use a local search procedure to replace each of the

current generation solutions except the reproduced ones by the local optimum.

Eliminate duplicate solutions.

Step 5 Evolute. Repeat Steps 3 and 4 until a termination condition is reached.

2.1 Coding

The Genetic Algorithm (GA) requires each solution to be coded in a chromosome, i.e., to

be represented by a sequence of genes. Unlike Snyder and Daskin (2006) and Tasgetiren

et al. (2007) we use a natural coding of the solutions as in Silberholz and Golden (2007).

The coded solution is a sequence of numbers (s1 s2 ... sM) such that si is the vertex at the

position i of the solution. For example (2 5 9 4) represents the cycle visiting vertex 2, then

vertex 5, then vertex 9, then vertex 4, and then returning to vertex 2. Note that not any

sequence corresponds to a feasible solution as the feasible solution should contain exactly

one vertex from each cluster, i.e., C(si) = C(sj) for any i = j, where C(v) is the cluster

containing vertex v.

Note that, using natural coding, each solution can be represented by M different

chromosomes: the sequence can be ‘rotated’, i.e., the first gene can be moved to the end of

the chromosome or the last gene can be inserted before the first one and these operations

will preserve the cycle. For example, chromosomes (2 5 9 4) and (5 9 4 2) represent the

same solution. We need to take this into account when considering several solutions

together, i.e., in precisely two cases: when we compare two solutions, and when we apply

crossover operator. In these cases we ‘normalise’ the chromosomes by rotating each of

them such that the vertex v [V1 (the vertex that represents the cluster 1) takes the first place

in the chromosome. For example, if we had a chromosome (2 5 9 4) and the vertex 5

belongs to the cluster 1, we rotate the chromosome in the following way: (5 9 4 2).

In the case of the symmetric problem the chromosome can also be ‘reflected’ while

preserving the solution. But our heuristic is designed for both symmetric and asymmetric

instances and, thus, the chromosomes (1 5 9 4) and (4 9 5 1) are considered as the

chromosomes corresponding to distinct solutions.

The main advantage of the natural coding is its efficiency in the local search. As the

local search is the most time consuming part of our heuristic, the coding should be

optimized for it.

2.2 First generation

We produce 2M solutions for the first generation, where M is the number of clusters. The

solutions are generated by a semirandom construction heuristic. The semirandom con-

struction heuristic generates a random cluster permutation and then finds the best vertex in

each cluster when the order of clusters is given by the permutation.

It chooses the best vertex selection within the given cluster sequence using the Cluster

Optimization Heuristic (see Sect. 3).
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The advantages of the semirandom construction heuristic are that it is fast and its cycles

have no regularity. The latter is important as each completely deterministic heuristic can

cause solutions uniformity and as a result some solution branches can be lost.

2.3 Next generations

Each generation except the first one is based on the previous generation. To produce the

next generation one uses genetic operators, which are algorithms that construct a solution

or two from one or two so-called parent solutions. Parent solutions are chosen from the

previous generation using some selection strategy. We perform r runs of reproduction, 8r
runs of crossover, and 2r runs of mutation operator. The value r is calculated as

r = 0.2G ? 0.05M ? 10, where G is the number of generations produced before the

current one. (Recall that M is the number of clusters.) As a result, we obtain at most 11r
solutions in each generation but the first one (since we remove duplicated solutions from

the population, the number of solutions in each generation can be smaller than 11r). From

generation to generation, one can expect the number of local minima found by the algo-

rithm to increase. Also this number can be expected to grow when the number of clusters

M grows. Thus, in the formula above r depends on both G and M. All the coefficients in the

formulas of this section were obtained in computational experiments, where several other

values of the coefficients were also tried. Note that slight variations in selection of the

coefficients do not influence significantly the results of the algorithm.

2.4 Reproduction

Reproduction is a process of simply copying solutions from the previous generation.

Reproduction operator requires a selection strategy to select the solutions from the pre-

vious generation to be copied. In our algorithm we select r (see Sect. 2.3) shortest solutions

from the previous generation to copy them to the current generation.

2.5 Crossover

A crossover operator is a genetic operator that combines two different solutions from the

previous generation. We use a modification of the two-point crossover introduced by

Silberholz and Golden (2007) as an extension of an Ordered Crossover (Davis 1985). Our

crossover operator produces just one child solution (r1 r2 ... rM) from the parent solutions

(p1 p2 ... pM) and (q1 q2 ... qM). At first it selects a random position a and a random

fragment length 1 B l \ M and copies the fragment [a, a ? l) of the first parent to the

beginning of the child solution: ri = pi?a for each i = 0, 1, ..., l - 1.1 To produce the rest of

the child solution, we introduce a sequence q0 as follows: q0i = qi?a?l-1, where i = 1, 2, ...,

M. Then for each i such that the cluster C(q0i) is already visited by the child solution r, the

vertex q0i is removed from the sequence: q0 = (q01 q02... q0i-1 q0i?1...). As a result l vertices

will be removed: |q0| = M - l. Now the child solution r should be extended by the sequence

q0: r = (r1 r2 ... rl q01 q02 ... q0M-l).

A feature of this crossover is that it preserves the vertex order of both parents.

Crossover example. Let the first parent be (1 2 3 4 5 6 7) and the second parent (3 2 5 7

6 1 4) (here we assume for explanation clarity that every cluster contains exactly one

vertex: Vi = { i }). First of all we rotate the parent solutions such that C(p1) = C(q1) = 1: p

1 We assume that si?M = si for the solution (s1 s2 ... sM) and for any 1 B i B M.
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= (1 2 3 4 5 6 7) (remains the same) and q = (1 4 3 2 5 7 6). Now we choose a random

fragment in the parent solutions:

p = (1 2 | 3 4 | 5 6 7)

q = (1 4 | 3 2 | 5 7 6)

and copy this fragment from the first parent p to the child solution: r = (3 4). Next we

produce the sequence q0 = (5 7 6 1 4 3 2) and remove vertices 3 and 4 from it as the

corresponding clusters are already visited by r: q0 = (5 7 6 1 2). Finally, we extend the child

solution r by q0:

r = (3 4 5 7 6 1 2).

The crossover operator requires some strategy to select two parent solutions from the

previous generation. In our algorithm an elitist strategy is used; the parents are chosen

randomly between the best 33 % of all the solutions in the previous generation.

2.6 Mutation

A mutation operator modifies partially some solution from the previous generation. The

modification should be stochastic and usually worsens the solution. The goal of the

mutation is to increase the solution diversity in the generation.

Our mutation operator removes a random fragment of the solution and inserts it in some

random position. The size of the fragment is selected between 0.05M and 0.3M. An elitist

strategy is used in our algorithm; the parent is selected randomly among 75 % of all the

solutions in the previous generation.

Mutation example. Let the parent solution be (1 2 3 4 5 6 7). Let the random fragment

start at 2 and be of the length 3. The new fragment position is 3, for example. After

removing the fragment we have (1 5 6 7). Now insert the fragment (2 3 4) at the position 3:

(1 5 2 3 4 6 7).

2.7 Termination condition

For the termination condition we use the concept of idle generations. We call a generation

idle if the best solution in this generation has the same length as the length of the best

solution in the previous generation. In other words, if the produced generation has not

improved the solution, it is idle. The heuristic stops after some idle generations are pro-

duced sequentially.

In particular, we implemented the following new condition. Let I(l) be the number of

sequential idle generations with the best solution of length l. Let Icur = I(lcur), where lcur is

the current best solution length. Let Imax = maxl [ l_cur I(l). Then our heuristic stops if Icur

C max(1.5 Imax, 0.05M ? 5). This formula means that we are ready to wait for the next

improvement 1.5 times more generations than we have ever waited previously. The con-

stant 0.05M ? 5 is the minimum boundary for the number of generations we are ready to

wait for improvement. All the coefficients used in the formula were found empirically.

2.8 Asymmetric instances

Our algorithm is designed to process equally both symmetric and asymmetric instances,

however some parameters should take different values for these types of instances for

the purpose of high efficiency. In particular, we double the size of the first generation
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(4M instead of 2M, see Sect. 2.2) and increase the minimum number of idle generations by

5 (i.e., Icur C max(1.5Imax, 0.05M ? 10). The local improvement procedure (see below)

has also some differences for symmetric and asymmetric instances.

3 Local improvement part

We use a local improvement procedure for each solution added to the current generation.

The local improvement procedure runs several local search heuristics sequentially. The

following local search heuristics are used in our algorithm:

• Swaps tries to swap every non-neighboring pair of vertices. The heuristic applies all the

improvements found during one cycle of swaps.

• k-Neighbor Swap tries different permutations of every solution subsequence ðs1s2. . .skÞ.
In particular it tries all the non-trivial permutations which are not covered by any of

i-Neighbor Swap, i ¼ 2; 3; . . .; k � 1 . For each permutation the best selection of the

vertices within the considered cluster subsequence is calculated. The best permutation is

accepted if it improves the solution. The heuristic applies all the improvements found

during one cycle.

• 2-opt tries to replace every non-adjacent pair of edges si si?1 and sj sj?1 in the solution

by the edges si sj and si?1 sj?1 if the new edges are lighter, i.e., the sum of their weights

is smaller than the sum of the weights of old edges. The heuristic applies all the

improvements found.

• Direct 2-opt is a modification of 2-opt heuristic. Direct 2-opt selects a number of the

longest edges contained in the solution and then tries all the non-adjacent pairs of the

selected edges. It replaces edges si si?1 and sj sj?1 with the edges si sj and si?1 sj?1 if

the new edges are shorter, i.e., the sum of their weights is smaller than the sum of the

weights of old edges. The heuristic applies all the improvements found.

• Inserts tries to remove a vertex from the solution and to insert it in the different

position. The best vertex in the inserted cluster is selected after the insertion. The

insertion is accepted if it improves the solution. The heuristic tries every combination

of the old and the new positions except the neighboring positions and applies all the

improvements found.

• Cluster Optimization (CO) uses the shortest (s, t)-path algorithm for acyclic digraphs

(see, e.g., Bang-Jensen and Gutin 2000) to find the best vertex for each cluster when the

order of clusters is fixed. This heuristic was introduced by Fischetti et al. (1997) (see its

detailed description also in Fischetti et al. 2002).

The CO Heuristic uses the fact that the shortest (s, t)-path in an acyclic digraph can be

found in polynomial time. Let the given solution be represented by chromosome

ðs1s2. . .sMÞ: The algorithm builds an acyclic digraph GCO = (VCO, ECO), where VCO

= V [C0(s1) is the set of the GTSP instance vertices extended by a copy of the cluster

C(s1) and ECO is a set of edges in the digraph GCO. (Recall that C(x) is the cluster

containing the vertex x.) An edge xy [ ECO if and only if C(x) = C(si) and C(y)

= C(si?1) for some i \ M or if C(x) = C(sM) and C(y) = C0(s1). For each vertex s
[ C(s1) and its copy s0 [ C0(s1), the algorithm finds the shortest (s, s0)-path in GCO. The

algorithm selects the shortest path ðsp2p3. . .pMs0Þ and returns the chromosome

ðsp2p3. . .pMÞ which is the best vertex selection within the given cluster sequence.

Note that the algorithm’s time complexity grows linearly with the size of the cluster

C(s1). Thus, before applying the CO algorithm we rotate the initial chromosome in such

a way that |C(s1)| = mini B M |Ci|.
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For each local search algorithm with some cluster optimization embedded, i.e., for

k-Neighbour Swap and Inserts, we use a speed-up heuristic. We calculate a lower bound

lnew of the new solution length and compare it with the previous length lprev before the

vertices within the clusters optimization. If lnew C lprev, the solution modification is

declined immediately. For the purpose of the new length lower bound calculation we

assume that the unknown edges, i.e., the edges adjacent to the vertices that should be

optimized, have the length of the shortest edges between the corresponding clusters.

Some of these heuristics form a heuristic-vector H as follows:

Symmetric instances Asymmetric instances

Inserts Swaps

Direct 2-opt for M/4 longest edges Inserts

2-Opt Direct 2-opt for M/4 longest edges

2-Neighbour Swap 2-opt

3-Neighbour Swap 2-Neighbour Swap

4-Neighbour Swap 3-Neighbour Swap

The improvement procedure applies all the local search heuristic from H cyclically.

Once some heuristic fails to improve the tour, it is excluded fromH: If 2-opt heuristic fails,

we also exclude Direct 2-opt from H: Once H is empty, the CO heuristic is applied to the

solution and the improvement procedure stops.

4 Results of computational experiments

We tested our heuristic using GTSP instances which were generated from some TSPLIB

(Reinelt 1991) instances by applying the standard clustering procedure of Fischetti et al.

(1997). Note that our heuristic is designed for medium and large instances and, thus, we

selected all the instances with 40 to 217 clusters. Unlike Silberholz and Golden (2007),

Snyder and Daskin (2006) and Tasgetiren et al. (2007), smaller instances are not considered.

All the information necessary for reproducing our experiments is available online at

http://www.cs.rhul.ac.uk/Research/ToC/publications/Karapetyan:

• All the instances considered in our experiments. For the purpose of simplicity and

efficiency we use a uniform binary format for instances of all types.

• The binary format definition.

• Source codes of binary format reading and writing procedures.

• Source codes of the clustering procedure (Fischetti et al. 1997) to convert TSP

instances into GTSP instances.

• Source codes of the TSPLIB files reading procedure.

• Source codes of our memetic algorithm.

• Source codes of our experimentation engine.

The tables below show the experiments results. We compare the following heuristics:

GK is the heuristic presented in this paper.

SG is the heuristic by Silberholz and Golden (2007).
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SD is the heuristic by Snyder and Daskin (2006).

TSP is the heuristic by Tasgetiren et al. (2007).

The results for GK and SD were obtained in our own experiments. Other results are

taken from the corresponding papers. Each test of GK and SD includes ten algorithm runs.

The results for SG and TSP were produced after five runs.

To compare the running times of all the considered heuristics we need to convert the

running times of SG and TSP obtained from the corresponding papers to the running times

on our evaluation platform. Let us assume that the running time of some Java implemented

algorithm on the SG evaluation platform is tSG = kSG �tGK, where kSG is some constant and

tGK is the running time of the same but C?? implemented algorithm on our evaluation

platform. Let us assume that the running time of some algorithm on the TSP evaluation

platform is tTSP = kTSP �tGK, where kTSP is some constant and tGK is the running time of the

same algorithm on our evaluation platform.

The computer used for GK and SD evaluation has the AMD Athlon 64 X2 3.0 GHz

processor. The computer used for SG has Intel Pentium 4 3.0 GHz processor. The computer

used for TSP has Intel Centrino Duo 1.83 GHz processor. Heuristics GK, SD, and TSP are

implemented in C?? (GK is implemented in C# but the most time critical fragments are

implemented in C??). Heuristic SG is implemented in Java. Some rough estimation of

Java performance in the combinatorial optimisation applications shows that C?? imple-

mentation could be approximately two times faster than the Java implementation. As a

result the adjusting coefficient kSG &3 and the adjusting coefficient kTSP &2.

We are able to compare the results of SD heuristic tests gathered from different papers

to check the kSG and kTSP values because SD has been evaluated on each of the platforms

of our interest (the heuristic was implemented in Java in Silberholz and Golden (2007) for

the exact comparison to SG). The time ratio between the SD running times from Sil-

berholz and Golden (2007) and our own results vary significantly for different problems,

but for some middle size problems the ratio is about 2.5–3. These results correlate well

with the previous estimation. The suggested value kTSP &2 is also confirmed by this

method.

The headers of the tables in this section are as follows:

• Name is the instance name. The prefix number is the number of clusters in the instance;

the suffix number is the number of vertices.

• Error (%) is the error, in per cent, of the average solution above the optimal value. The

error is calculated as value�opt
opt � 100% , where value is the obtained solution length and

opt is the optimal solution length. The exact optimal solutions are known from Ben-

Arieh et al. (2003) and from Fischetti et al. (1997) for 17 of the considered instances

only. For the rest of the problems we use the best solutions ever obtained in our

experiments instead.

• Time (s) is the average running time for the considered heuristic in seconds. The

running times for SG and for TSP are obtained from the corresponding papers thus

these values should be adjusted using kSG and kTSP coefficients, respectively, before the

comparison.

• Quality impr. (%) is the improvement of the average solution quality of the GK with

respect to some other heuristic. The improvement is calculated as EH-EGK where EH is

the average error of the considered heuristic H and EGK is the average error of our

heuristic.

• Time impr. (%) is the improvement of the GK average running time with respect to

some other heuristic running time. The improvement is calculated as TH/TGK where TH
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is the average running time of the considered heuristic H and TGK is the average

running time of our heuristic.

• Opt. (%) is the number of tests, in per cent, in which the optimal solution was reached.

The value is displayed for three heuristics only as we do not have it for SG.

• Opt. is the best known solution length. The exact optimal solutions are known from

Fischetti et al. (1997) and Ben-Arieh et al. (2003) for 17 of the considered instances

only. For the rest of the problems we use the best solutions ever obtained in our

experiments.

• Value is the average solution length.

• # gen. is the average number of generations produced by the heuristic.

The results of the experiments presented in Table 1 show that our heuristic (GK) has

clearly outperformed all other heuristics with respect to solution quality. For each of the

considered instances the average solution reached by our heuristic is always not worse than

the average solution reached by any other heuristic and the percent of the runs in which the

optimal solution was reached is not less than for any other considered heuristic (note that

we are not able to compare our heuristic with SG with respect to this value).

The average values are calculated for four instance sets (IS). The Full IS includes all the

instances considered in this paper, both symmetric and asymmetric. The Sym. IS includes

all the symmetric instances considered in this paper. The SG IS includes all the instances

considered in both this paper and Silberholz and Golden (2007). The TSP IS includes all

the instances considered in both this paper and Tasgetiren et al. (2007).

One can see that the average quality of our GK heuristic is approximately 10 times

better than that of SG heuristic, approximately 30 times better than that of SD, and for

TSP IS our heuristic reaches the optimal solution each run and for each instance, in

contrast to TSP that has 0.44% average error. The maximum error of GK is 0.27% while

the maximum error of SG is 2.25% and the maximum error of SD is 3.84%.

The running times of the considered heuristics are presented in Table 2. The running

time of GK is not worse than the running time of any other heuristic for every instance: the

minimum time improvement with respect to SG is 6.6 that is greater than 3 (recall that 3 is

an adjusting coefficient for SG evaluation platform, see above), the time improvement

with respect to SD is never less than 1.0 (recall that both heuristics were tested on the same

platform), and the minimum time improvement with respect to TSP is 4.6 that is greater

than 2 (recall that 2 is an adjusting coefficient for TSP evaluation platform, see above).

The time improvement average is *12 times for SG (or *4 times if we take into account

the platforms difference), *3 times for SD, and *11 times for TSP (or *5 times if we

take into account the platforms difference).

The stability of GK is high, e.g., for the 89pcb442 instance it produces only exact

solutions and the time standard deviation is 0.27 s for 100 runs. The minimum running

time is 1.29 s, the maximum is 2.45 s, and the average is 1.88 s. For 100 runs of

217vm1084 the average running time is 65.32 s, the minimum is 44.30 s, the maximum is

99.54 s, and the standard deviation is 13.57 s. The average solution is 130994 (0.22%

above the best known), the minimum is 130704 (exactly the best known), the maximum is

131845 (0.87% above best known), and the standard deviation is 331.

Some details on the GK experiments are presented in Table 3. The table includes the

average number of generations produced by the heuristic. One can see that the number of

generations produced by our heuristic is relatively small: the SD and TSP limit the number

of generation to 100 while they consider the instances with M \ 90 only; SG terminates
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Table 1 Solvers quality comparison

Name Error (%) Quality impr. (%) Opt. (%)

GK SG SD TSP SG SD TSP GK SD TSP

40d198 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 100 100

40kroa200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 100 100

40krob200 0.00 0.05 0.01 0.00 0.05 0.01 0.00 100 70 100

41gr202 0.00 0.00 0.00 100 100

45ts225 0.00 0.14 0.09 0.04 0.14 0.09 0.04 100 0 60

45tsp225 0.00 0.01 0.01 100 90

46pr226 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 100 100

46gr229 0.00 0.03 0.03 100 60

53gil262 0.00 0.45 0.31 0.32 0.45 0.31 0.32 100 30 60

53pr264 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 100 100

56a280 0.00 0.17 0.08 0.17 0.08 100 70

60pr299 0.00 0.05 0.05 0.03 0.05 0.05 0.03 100 20 60

64lin318 0.00 0.00 0.38 0.46 0.00 0.38 0.46 100 50 60

65rbg323 (asym.) 0.00 100

72rbg358 (asym.) 0.00 100

80rd400 0.00 0.58 0.60 0.91 0.58 0.60 0.91 100 0 20

81rbg403 (asym.) 0.00 100

84fl417 0.00 0.04 0.02 0.00 0.04 0.02 0.00 100 40 100

87gr431 0.00 0.30 0.30 100 40

88pr439 0.00 0.00 0.28 0.00 0.00 0.28 0.00 100 20 80

89pcb442 0.00 0.01 1.30 0.86 0.01 1.30 0.86 100 0 0

89rbg443 (asym.) 0.13 50

99d493 0.11 0.47 1.28 0.36 1.17 10 0

107ali535 0.00 1.36 1.36 100 0

107att532 0.01 0.35 0.72 0.34 0.72 80 0

107si535 0.00 0.08 0.32 0.08 0.32 100 0

113pa561 0.00 1.50 3.57 1.50 3.57 100 0

115u574 0.02 1.54 1.52 80 0

115rat575 0.20 1.12 3.22 0.93 3.03 90 0

131p654 0.00 0.29 0.08 0.29 0.08 100 0

132d657 0.15 0.45 2.32 0.29 2.16 30 0

134gr666 0.11 3.74 3.62 70 0

145u724 0.14 0.57 3.49 0.43 3.35 50 0

157rat783 0.11 1.17 3.84 1.06 3.72 20 0

200dsj1000 0.12 2.45 2.33 30 0

201pr1002 0.14 0.24 3.43 0.10 3.29 30 0

207si1032 0.03 0.37 0.93 0.34 0.91 20 0

212u1060 0.27 2.25 3.60 1.98 3.33 30 0

217vm1084 0.19 0.90 3.68 0.71 3.49 60 0

Full IS average 0.04 81

Sym. IS average 0.05 1.43 1.38 77 16

SG IS average 0.06 0.54 1.57 0.47 1.50 72 11

TSP IS average 0.00 0.21 0.45 0.44 0.21 0.45 0.44 100 17 43
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Table 2 Solvers running time comparison

Name Time (s) Time impr. (%)

GK SG SD TSP SG SD TSP

40d198 0.14 1.63 1.18 1.22 11.6 8.4 8.7

40kroa200 0.14 1.66 0.26 0.79 12.1 1.9 5.8

40krob200 0.16 1.63 0.80 2.70 10.2 5.0 16.8

41gr202 0.21 0.65 3.2

45ts225 0.24 1.71 0.46 1.42 7.0 1.9 5.8

45tsp225 0.19 0.55 2.9

46pr226 0.10 1.54 0.63 0.46 15.5 6.4 4.6

46gr229 0.25 1.14 4.6

53gil262 0.31 3.64 0.85 4.51 11.7 2.7 14.5

53pr264 0.24 2.36 0.82 1.10 10.0 3.5 4.7

56a280 0.38 2.92 1.14 7.7 3.0

60pr299 0.42 4.59 1.74 3.08 10.9 4.1 7.3

64lin318 0.45 8.08 1.42 8.49 18.1 3.2 19.0

65rbg323 (asym.) 1.14

72rbg358 (asym.) 1.26

80rd400 1.07 14.58 3.53 13.55 13.7 3.3 12.7

81rbg403 (asym.) 0.98

84fl417 0.73 8.15 3.17 6.74 11.1 4.3 9.2

87gr431 2.01 4.01 2.0

88pr439 1.48 19.06 4.68 20.87 12.9 3.2 14.1

89pcb442 1.72 23.43 4.26 23.14 13.6 2.5 13.4

89rbg443 (asym.) 3.69

99d493 4.17 35.72 6.34 8.6 1.5

107ali535 5.82 7.75 1.3

107att532 3.45 31.70 8.04 9.2 2.3

107si535 1.88 26.35 6.06 14.1 3.2

113pa561 3.22 21.08 6.37 6.5 2.0

115u574 3.76 11.48 3.1

115rat575 4.12 48.48 9.19 11.8 2.2

131p654 2.82 32.67 13.23 11.6 4.7

132d657 6.82 132.24 15.40 19.4 2.3

134gr666 14.46 21.06 1.5

145u724 11.61 161.82 22.00 13.9 1.9

157rat783 15.30 152.15 22.70 9.9 1.5

200dsj1000 50.14 84.30 1.7

201pr1002 34.83 464.36 63.04 13.3 1.8

207si1032 36.76 242.37 34.99 6.6 1.0

212u1060 44.76 594.64 65.81 13.3 1.5

217vm1084 59.82 562.04 87.38 9.4 1.5

Full IS total 321.0

Sym. IS total/average 314.0 516.4 2.9

SG IS total/average 237.1 2600.6 385.5 11.6 3.0

TSP IS total/average 7.2 92.1 23.8 88.1 12.2 3.9 10.5
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Table 3 GK experiments details

Name Opt. Value Error (%) Opt. (%) Time (s) # gen.

40d198 10557 10557.0 0.00 100 0.14 9.1

40kroa200 13406 13406.0 0.00 100 0.14 9.0

40krob200 13111 13111.0 0.00 100 0.16 10.3

41gr202 23301 23301.0 0.00 100 0.21 9.8

45ts225 68340 68340.0 0.00 100 0.24 12.7

45tsp225 1612 1612.0 0.00 100 0.19 10.4

46pr226 64007 64007.0 0.00 100 0.10 9.0

46gr229 71972 71972.0 0.00 100 0.25 9.6

53gil262 1013 1013.0 0.00 100 0.31 12.2

53pr264 29549 29549.0 0.00 100 0.24 9.1

56a280 1079 1079.0 0.00 100 0.38 13.1

60pr299 22615 22615.0 0.00 100 0.42 11.9

64lin318 20765 20765.0 0.00 100 0.45 12.8

65rbg323 (asym.) 471 471.0 0.00 100 1.14 27.8

72rbg358 (asym.) 693 693.0 0.00 100 1.26 24.4

80rd400 6361 6361.0 0.00 100 1.07 15.0

81rbg403 (asym.) 1170 1170.0 0.00 100 0.98 16.1

84fl417 9651 9651.0 0.00 100 0.73 11.5

87gr431 101946 101946.0 0.00 100 2.01 17.7

88pr439 60099 60099.0 0.00 100 1.48 16.3

89pcb442 21657 21657.0 0.00 100 1.72 21.2

89rbg443 (asym.) 632 632.8 0.13 50 3.69 38.8

99d493 20023 20044.8 0.11 10 4.17 27.3

107ali535 128639 128639.0 0.00 100 5.82 25.1

107att532 13464 13464.8 0.01 80 3.45 22.2

107si535 13502 13502.0 0.00 100 1.88 19.5

113pa561 1038 1038.0 0.00 100 3.22 22.2

115u574 16689 16691.8 0.02 80 3.76 25.3

115rat575 2388 2392.7 0.20 90 4.12 25.7

131p654 27428 27428.0 0.00 100 2.82 15.3

132d657 22498 22532.8 0.15 30 6.82 30.3

134gr666 163028 163210.7 0.11 70 14.46 41.0

145u724 17272 17296.8 0.14 50 11.61 38.9

157rat783 3262 3265.7 0.11 20 15.30 40.1

200dsj1000 9187884 9198846.6 0.12 30 50.14 49.1

201pr1002 114311 114466.2 0.14 30 34.83 46.8

207si1032 22306 22312.0 0.03 20 38.40 45.0

212u1060 106007 106290.1 0.27 30 44.76 50.4

217vm1084 130704 130954.2 0.19 60 59.82 50.5

Average 0.04 81 23.1
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the algorithm after 150 idle generations. Our heuristic does not require a lot of generations

because of the powerful local search procedure and large population sizes.

5 Conclusion

We have developed a new memetic algorithm for GTSP that dominates all known GTSP

heuristics with respect to both solution quality and the running time. Unlike other memetic

algorithms introduced in the literature, our heuristic is able to solve both symmetric and

asymmetric instances of GTSP. The improvement is achieved due to the powerful local

search, well-fitted genetic operators and new efficient termination condition.

Our local search (LS) procedure consists of several LS heuristics of different power and

type. Due to their diversity, our algorithm is capable of successfully solving various

instances. Our LS heuristics are either known variations of GTSP heuristics from the

literature (2-opt, Inserts, Cluster Optimization) or new ones inspired by the appropriate

TSP heuristics (Swaps, k-Neighbor Swap, Direct 2-opt). Note that our computational

experiments demonstrated that the order in which LS heuristics are used is of importance.

Further research may find some better LS algorithms including more sophisticated based

on, e.g., Tabu search or Simulated Annealing.

While crossover operator used in our algorithm is the same as in Silberholz and Golden

(2007), the mutation operator is new. The termination condition is also new. The choices of

the operators and the termination condition influence significantly the performance of the

algorithm.
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