
Transforming communicating X-machines into P systems

Petros Kefalas Æ Ioanna Stamatopoulou Æ Ilias Sakellariou Æ
George Eleftherakis

Published online: 1 October 2008
� Springer Science+Business Media B.V. 2008

Abstract Tissue P systems (tPS) represent a class of P systems in which cells are arranged

in a graph rather than a hierarchical structure. On the other hand, communicating X-

machines (XMs) are state-based machines, extended with a memory structure and transition

functions instead of simple inputs, which communicate via message passing. One could use

communicating XMs to create models built out of components in a rather intuitive way.

There are investigations showing how various classes of P systems can be modelled as

communicating XMs. In this paper, we define a set of principles to transform communi-

cating XMs into tPS. We describe the rules that govern such transformations, present an

example to demonstrate the feasibility of this approach and discuss ways to extend it to more

general models, such as population P systems, which involve dynamic structures.

Keywords P systems � X-machines � Nature-inspired computation �
Multi-agent systems for natural phenomena

1 Introduction

In the last years, a nature-inspired computational paradigm, called P systems Păun (2000),

abstracting from the structure and functionality of the living cell has been intensively and

P. Kefalas (&) � I. Stamatopoulou � G. Eleftherakis
Department of Computer Science, CITY College, 13 Tsimiski street, 54624 Thessaloniki, Greece
e-mail: kefalas@city.academic.gr

I. Stamatopoulou
e-mail: istamatopoulou@seerc.org

G. Eleftherakis
e-mail: eleftherakis@city.academic.gr

I. Sakellariou
Department of Applied Informatics, University of Macedonia, 156 Egnatia street,
54006 Thessaloniki, Greece
e-mail: iliass@uom.gr

123

Nat Comput (2009) 8:817–832
DOI 10.1007/s11047-008-9103-y

extensively studied and numerous variants have been considered. They have been inves-

tigated for their computational power and complexity aspects Păun (2002), used to solve

hard problems, model various biological systems and provide solutions to questions in

different areas. Occasionally, some attempts have been made to use P systems towards

modelling swarm-based multi-agent systems (Stamatopoulou et al. 2005a), in order to take

advantage of the structure and reconfiguration features of P systems, such as cell death, cell

division, reconfiguration of structure etc. The main problem which appears in such mod-

elling activity is that the model resulting for the object interaction within a cell is not

always easy to develop. This drawback may be overcome by using state-based models that

provide the necessary ‘‘intuitiveness’’ to describe the behaviour of the system components

or agents. For instance, communicating X-machines (XMs) have been used as a suitable

paradigm of modelling agent based specifications (Kefalas et al. 2003c).

A natural consequence of the above complementary features exhibited by these

models, is to either try to combine both formalisms (Stamatopoulou et al. 2007a, 2007b)

or to transform one formalism to another. The current trend in P system community

research shows more interest in connecting this model with other computational

approaches—Petri nets (Klein and Koutny 2007), process algebra (Ciobanu and Aman

2007), cellular automata (Corne and Frisco 2007) etc. In the past, relationships between

some classes of P systems and communicating XMs have been investigated. Especially

transformations of P systems into communicating XMs have been particularly considered

(Kefalas et al. 2003a). Most of these studies have been focusing in translations between

these models in order to make use of various strengths offered by different formalisms—

model checking for process algebra, invariants for Petri nets, or testing methods for

XMs.

This paper presents some principles for transforming communicating XMs into Tissue P

systems (tPS), a special class of P systems. Section 2 provides the basic background on XM

modelling and communicating XMs accompanied by an example. The definition of tPS and

the computational model associated with it are presented in Sect. 3. In Sect. 4, we dem-

onstrate how a transformation from one model to another is feasible and apply the

guidelines to the particular example introduced. We then discuss in detail the rationale of

using communicating XMs as a starting point as well as how the resulting tPS model could

be enhanced further to take advantage of the dynamic features of another class of P

systems, namely population P systems (PPS). We conclude by discussing the ideas behind

the transformation and the issues that need further consideration.

2 State-based modelling with X-machines

2.1 X-machines

An XM is a state-based computational model introduced by Eilenberg (Eilen-berg 1974). It

is widely accepted as a suitable model to formally specify the components of a system.

Stream X-machine (sXM) models, in particular, were found to be well-suited for

describing reactive systems (Holcombe and Ipate 1998). Since then, valuable findings

regarding the use of this model as a formal notation that contributes toward the specifi-

cation, verification and testing of software systems, have been reported (Kefalas et al.

2003b; Eleftherakis 2003; Holcombe and Ipate 1998). A sXM model consists of a number

of states and also has a memory, which accommodates mathematically defined data

818 P. Kefalas et al.

123

structures. The transitions between states are labelled by functions. More formally, a

deterministic sXM is a tuple (R, C, Q, M, U, F, A, q0, m0) where:

– R and C are the input and output alphabets respectively;

– Q is the finite set of states;

– M is the (possibly) infinite set called memory;

– U is a set of partial functions u, called processing functions, that map an input and a

memory state to an output and a possibly different memory state, u:R 9 M ?C 9 M;

– F is the next state partial function, F: Q 9 U ? Q, which given a state and a function

from the set U determines the next state. F is often described as a state transition
function;

– A, a subset of Q, is the set of final states;

– q0 and m0 are the initial state and initial memory, respectively.

In the example used in this paper A = Q and for this reason A will not be used.

2.2 Example of a sXM: Japanese bees and hornets

The example that we chose to present is a representative case study of modelling natural

phenomena, which exhibit highly dynamic behaviour, as multi-agent systems. Hornets are

the major enemy of bees and can slaughter them in thousands in less than an hour. Japanese

bees have the ability to survive a hornet attack in their hive by employing a unique attack

strategy: they surround the hornet and by moving their bodies increase the temperature of

the environment so that it is intolerable by the hornet. It is interesting that bees can survive

up to 49�C while hornets cannot stand temperature that exceeds 47�C. With such an attack

strategy, the attacking hornet is literally roasted by the bees.

The overall model consists of two sXM models, one for the Japanese bee and one for the

hornet. The states in which a bee can be are:

Q ¼ fwork in hive; approaching hornet; attacking; killedg
A bee can perceive an input stating the actual stimulus (including temperature) and the

position it is coming from in order to trigger functions in U, so:

R ¼fðPercept;PosÞjPercept 2 ffreePos; lethalBite; hornet; hornetInHive;

attackingBee; deadHornetg [Temperatureg

where Temperature 2 Rþ and Pos 2 N0 � N0 . A bee can output messages depending on

the function in U triggered, for instance:

C ¼fworking; saw hornet; learned about hornet; ready to attack; in formation;

dead bee; saw dead hornet; learned about dead hornetg [Temperature

The memory holds the current bee position, whether a hornet is in the hive or not, and

the possible position of the hornet, i.e.

M ¼ fðBeePos;Alert;HornetPosÞjAlert 2 fnoAlert; hiveInDangerg

where BeePos;HornetPos 2 N0 � N0g .

An instance of a bee may have an initial memory m0 = ((10,5),noAlert,(null,null)) and

an initial state q0 = work_in_hive. The set U of the bee sXM model consists of a number

of functions, as for example:

Transforming communicating X-machines into P systems 819

123

perceiveDangerððhornetInHive;HornetPosÞ; ðPos; noAlert; nullÞÞ ¼
ðlearned about hornet; ðPos; hiveInDanger;HornetPosÞÞ;

produceHeatððTemperature;PosÞ; ðCurrentPos; hiveInDanger;HornetPosÞÞ ¼
if Temperature\49 then

ðTemperatureþ 0:1; ðCurrentPos; hiveInDanger;HornetPosÞÞ;
attackedByHornetððlethalBite;PosÞ; ðCurrentPos; hiveInDanger;HornetPosÞÞ ¼
ðdead bee; ðCurrentPos; noAlert;HornetPosÞÞ:

Similarly, the states in which a hornet can be are:

Q ¼ fmoving around; killing bees; dead by heatg
The input and output sets are:

R ¼ fðPercept;PosÞjPercept 2 ffreePos; beeg [Temperatureg
C ¼ fsearching; killed bee; dead hornetg

respectively. The memory holds the current hornet position, i.e.

M ¼ fHornetPosjHornetPos 2 N0 � N0g
An instance of a hornet may have m0 = (20,18) and q0 = moving_around. The set U of

the hornet sXM model consists of a number of functions, as for example:

killBeeððbee;PosÞ;CurrentPosÞ ¼ ðkilled bee;PosÞ;
killedððTemperature;PosÞ;CurrentPosÞ ¼

if Temperature� 47 then ðdead hornet;CurrentPosÞ:

The state transition diagrams of both the bee and the hornet are shown in Fig. 1.

2.3 Communicating X-machines

In addition to having stand-alone sXM models, communication is feasible by exchanging

messages between components’ processing functions. The structure of a communicating

Fig. 1 The transition diagrams F of the sXM models for a bee and a hornet

820 P. Kefalas et al.

123

X-machine system (CXS) is defined as the graph whose nodes are the components

(machines) and edges are the communication channels among them. A CXS is a tuple:

Z ¼ ððCiÞi¼1;...;n; TÞ

where:

– Ci is the ith communicating X-machine component, and

– T is a set of transformation functions Tqi;ui ;qj;uj
; each such function relates to two

components Ci and Cj,

Tqi;ui;qj;uj
: Ri � Ci �Mi ! Rj;

where qi, ui, Ri, Ci, Mi are from Ci and qj, uj, Rj are from Cj, and transforms an input from

Ri, an output from Ci and a memory from Mi produced by ui which is triggered in qi, into

an input from Rj that will be processed by uj starting in qj.

A communicating X-machine component (CXM) can be derived by incorporating into a

sXM information about how it is to communicate with other CXMs that participate in the

system. In order to define the communication interface of a sXM, two things have to be

stated: (a) which of its functions receive their inputs from which machines, and (b) which

of its functions send their outputs to other machines.

Graphically on the state transition diagram we denote the acceptance of input from

another component by a solid circle along with the name Ci of the CXM that sends it.

Similarly, a solid diamond with the name Ck denotes that output is sent to the CXM Ck. An

abstract example of the communication between two CXMs is depicted in Fig. 2 and their

formal definition can be found in (Stamatopoulou et al. 2007a).

A CXS starts in an initial configuration with each CXM Ci, in its initial state q0,i, with

initial memory value m0,i and having an initial multiset of input values from Ri. We will

consider both that the execution time of every processing function is the same or that they

have different execution times. In the first case we can define a maximal parallelism mode,

where a maximal number of components executes one function at the same time. In the

second case we can define an arbitrary parallelism implying that at each step only an

arbitrary number of components execute one function. In any of the two modes, a com-

putation consists of an arbitrary number of computation steps starting from an initial

configuration and ending when every component has reached a final state or has consumed

all its inputs. The result, the multiset of output symbols, is read from a distinguished

component, Cio . For a CXS Z the multiset computed using maximal and arbitrary par-

allelism is denoted by MSmðZÞ and MSaðZÞ , respectively.

Fig. 2 Abstract example of the communication between two communicating X-machines

Transforming communicating X-machines into P systems 821

123

2.4 Example of CXS: two bees attacking a hornet

Consider the instance of the hive as shown at the bottom left of Fig. 3. There is a hornet

H1, bee B1 is next to the hornet, B2 is next to B1 in the attack formation, B3 is approaching

the attack formation passing by B4 which is informed about the existence of a hornet in the

hive. Annotations show the sXM function triggered at the current state of the world. The

five instances H1 and B1, B2, B3, B4 may form a CXS, part of which is illustrated in Fig. 3.

We omitted the functions and states that are not relevant to the communication for reasons

of clarity in exposition. When a hornet bites a bee the function killBee of H1 sends a

message to B1, through a transformation functions like:

Tmoving around; killBee; attacking; attackedByHornetðkilled bee; ðPosÞÞ ¼ ðlethalBite;PosÞ
Function attackedByHornet in B1 accepts the messages sent by killBee as inputs. The

rest of the functions not annotated with receive or send obtain their input from their

associated multiset of inputs and send their output to the corresponding multiset. Similarly,

when a hornet is dead, functions of B1 send messages to B2, through transformation

functions like:

Tattacking; see dead hornet; attacking;perceive danger over

ðsaw dead hornet; ðBeePos;Alert;HornetPosÞÞ ¼ ðdeadHornet;HornetPosÞ

3 Tissue P systems

The model of Tissue P system (tPS for short) (Păun 2002) has been introduced as a

generalisation of the P system model with the aim of extending the cell-like approach

exhibited by the usual model to the context of tissues and other multicellular organisms. A

Fig. 3 A CXS consisting of two bees B1 and B2 attacking a hornet H1 (not including the communication
between B3 and B4)

822 P. Kefalas et al.

123

tPS is a network of membranes that work in parallel and two arbitrary membranes com-

municate only when a connection exists between them. Formally a tPS is a construct

P ¼ ðV;Vt; g;M1; . . .;Mn;R1; . . .;Rn; i0Þ where:

– V is a finite alphabet of symbols called objects;

– Vt is a subset of V containing terminal objects;

– g is a subset of {1,2,…,n} 9 {1,2,…,n}, specifying the links between membranes;

– Mi, for each 1 B i B n, is a multiset over V defining the initial content of the ith
membrane;

– Ri, for each 1 B i B n, is a finite set of rules associated with membrane i, dealing with

communication, object transformation, etc.;

– i0 defines the membrane where the result is obtained.

The rules of each Ri, 1 B i B n, set are either rewriting rules, x ? y, where x, y are

multisets over V, or communicating rules, x!yðz1Þj1 . . .ðzrÞjr , where x, y, zk, 1 B k B r,

are multisets and zk is sent to membrane jk.
A computation in a tPS consists of a sequence of computation steps; it starts with the

initial multisets and stops when no rule is applicable. The result is represented by the

multiset computed in i0 and is denoted by MðPÞ:

4 Transforming communicating X-machines into P systems

The question we investigate is under what circumstances generic guidelines or principles

for transforming communicating XMs to some classes of P systems exist. We are dealing

with two different methods that possess different characteristics. CXMs provide a

straightforward and rather intuitive way for dealing with a component’s behaviour and,

in general a CXS computation relies on different execution time slots for its components’

functions. P systems’ rules specifying the behaviour of the individual membranes are

simple rewriting mechanisms, which are not always intuitive in modelling in general, but

are very appropriate for specifying certain classes of systems, like chemical interactions,

signalling pathways, etc. Finally, a P system computation follows the maximal paral-

lelism execution mode. In this approach we consider a specific class of P systems,

namely tPS.

The rationale behind such transformation is to automatically or semi-automatically

produce tPS models. This will have the advantage of using existing CXS models whose

components have been thoroughly verified and tested. The resulting tPS model will have

cells, objects, various rules (transformation and communication rules as it will be seen

latter on). The model can then be simulated using in-house produced tools and enriched

with other aspects like cell differentiation, death, birth and bond-making rules (see Sect. 5)

and transformed into other more suitable classes of P systems, like PPS (Bernardini and

Gheorghe 2004). The transformation process will be addressed in stages and special sec-

tions will be allocated in this respect.

4.1 CXM components and tPS membranes

Every CXM component, Ci, will be associated with a membrane, i, with objects, trans-

formation and communication rules. We will refer to these membranes in the next sections.

Transforming communicating X-machines into P systems 823

123

4.2 Objects in membranes

We consider that all the objects that are used inside the tPS membranes are of the form

(tag: value), where tag is a descriptor that gives the type of the object and is introduced to

help identifying various objects in further steps, whereas value defines an element of this

type. The following objects are defined:

– the states in Q generate objects of the form (state : q), where q [Q;

– the memory values in M yield objects of the form (memory : m), where m [M;

– the inputs from R produce objects of the form (input : r), where r [R;

– objects of the form (output : c), where c [C, correspond to the outputs of the CXM

component.

4.3 Initial multisets

For every CXM, Ci, an initial multiset of input symbols, r1...rp, is available; thus the

corresponding membrane, i, will consists of the following initial multiset:

ðstate : q0;iÞðmemory : m0;iÞðinput : r1Þ. . .ðinput : rpÞ

where q0,i, m0,i are the initial state and initial memory value of Ci.

There is one issue that arises by the fact that we derive multisets for the input objects of

the tPS, as this is how they are defined, considering that sXMs are defined to accept their

input from a stream instead. Note that the computation of a sXM is deterministic in

contrast to that of a tPS. Indeed, by considering multisets of input objects, the transfor-

mation results in a tPS with many possible computations (depending on the order in which

the input symbols are consumed) one of which will be equivalent to the computation of the

original sXM model. This issue is further discussed in Sect. 5.4.

4.4 Transformation rules for processing functions

For every CXM, Ci and for every function ui : Ri �Mi ! Ci �Mi , which is not involved

in any communication, such that ui(ri, mi
1) = (ci, mi

2), where mi
1, mi

2 [Mi, ri [Ri, ci [Ci,

and for every qi
1, qi

2 [Qi such that Fi(qi
1,ui) = qi

2, a rule is created in membrane i:

ðstate : q1
i Þðmemory : m1

i Þðinput : riÞ ! ðstate : q2
i Þðmemory : m2

i Þðoutput : CiÞ

4.5 Transformation and communication rules for processing functions

For every CXM, Ci, and

– every function ui:Ri 9 Mi ? Ci 9 Mi which is involved in a communication with

uj:Rj 9 Mj ? Cj 9 Mj of CXM Cj, such that

– ui(ri, mi
1) = (ci, mi

2), where mi
1, mi

2 [Mi, ri [Ri, ci [Ci

– uj(rj, mj
1) = (cj,mj

2), where mj
1, mj

2 [Mj, rj [Rj, cj [Cj

– every qi
1, qi

2 [Qi such that Fi(qi
1, ui) = qi

2

– every qj
1, qj

2 [Qj such that Fj(qj
1, uj) = qj

2

– a transformation Tqi, ui, qj, uj(ci, m2
i) = rj

824 P. Kefalas et al.

123

a rule which rewrites (state:qi
1)(memory:mi

1)(input:ri) by (state:qi
2)(memory:mi

2)

(output:ci) in membrane i and sends (input:rj) to membrane j, is constructed:

ðstate : q1
i Þðmemory : m1

i Þðinput : riÞ !
ðstate : q2

i Þðmemory : m2
i Þðoutput : CiÞðinput : rjÞj

4.6 Main Result

Given the constructions described in Sects. 4.1–4.5, we can now formulate the following

result:

Theorem 1 For any communicating X-machine system, Z; having all the memory
components as finite sets, there are tissue P systems, P1;P2; such that MSmðZÞ ¼ MðP1Þ;
MSaðZÞ ¼ MðP2Þ:

Proof Let the CXS

Z ¼ ððCiÞi¼1;...;n; TÞ

with the sXM components

Ci ¼ ðUpsigmai;Ci;Qi;Mi;Ui;Fi;Ai; q0;i;m0;iÞ; 1� i� n;

and MSmðZÞ and MSaðZÞ , the multisets computed using maximal parallel mode and

arbitrary parallel mode, respectively, in component i0. The following tPSs are considered:

Pj ¼ ðVj;Vt;j; g;M1;j; . . .;Mn;j;R1;j; . . .;Rn;j; i0Þ; 1� j� 2:

Each Pj; j ¼ 1; 2; has n membranes that are built according to the construction in

Sect. 4.1. The set g is the same for both tPSs and a tuple (i, k) belongs to g if and only if

there is a message sent from a processing function in Ci to a function in Ck. The sets V1, V2

contain the union of all the objects mentioned in Sect. 4.2 for all the CXM components and

Vt,1,Vt,2 contain the objects obtained from output symbols, (output:out),out [Ci.

The multisets Mi,1, Mi,2, 1 B i B n, contain the objects introduced in Sect. 4.3 and

obtained from the input symbols of Ci, initial state and initial memory value.

The sets Ri,1, Ri,2, 1 B i B n, contain the rules defined in Sects. 4.4 and 4.5. If qi used in

these rules, represents a final state then a rule similar to that in Section 4.4 or 4.5 is added

to both sets, but the object (state:qi) is removed from the right hand side.

From the above construction it follows that if maximal parallelism is used then when a

final state, qf, is reached by the CXS components, then P1 will not allow any rule to be

further applied, as objects (state:qf) are removed from the cells, and consequently Z is

simulated by P1: In order to allow P2 to simulate Z using an arbitrary parallel mode, rules

ðstate : qÞ ! ðstate : qÞ; q 2 Q; will be inserted in every cell. Consequently, MSaðZÞ ¼
MðP2Þ:

4.7 Example transformation

The above example of a CXS consisting of a hornet H1 and two attacking bees B1 and B2

can be transformed according to the above principles as follows; there will be three cells,

namely CH1 with the initial multiset wH1,CB1 and CB2 with the initial multisets wB1 and wB2

respectively. The objects which appear during computation in cell CH1 will be:

Transforming communicating X-machines into P systems 825

123

– (state: q), q [{moving_around, killing_bees, dead_by_heat},

– ðmemory : PosÞ;Pos 2 N0 � N0;
– (input: inp), inp [{(Percept,Pos) | Percept [{freePos, bee} [Temperature},

– (output: out), out [{searching, killed_bee, dead_hornet}.

Initially the objects wH1 are:

ðstate : moving aroundÞðmemory : ð20; 18ÞÞðinput : inp1Þ. . .ðinput : inptÞ

corresponding to the initial state, initial memory values and initial input to this machine.

The transformation rules for non-communicating functions are indicatively as follows:

ðstate : moving aroundÞðmemory : PosÞðinput : ðfreePos;NewPosÞÞ !
ðstate : moving aroundÞðmemory : NewPosÞðoutput : searchingÞ

as a rule associated with keep_moving function.

The objects which appear during computation in cells CB1 and CB2 will be:

– (state: q), where q [{work_in_hive, approaching _hornet, attacking, killed};

– (memory: (BeePos,Alert,HornetPos))

– (input: inp), where inp 2 fðPercept;PosÞjPercept 2 ffreePos; lethalBite; hornet; hornet
InHive; attackingBee; deadHornetg [Temperature; Temperature 2 Rþ and Pos 2 N0

�N0g
– (output:out), where out [{working, saw _hornet, learned_about_hornet,ready_

to_attack, in_formation,dead_bee, saw_dead_hornet,learned_about_dead_hornet}
[Temperature.

Initially the objects wB1 and wB2 are:

ðstate : attackingÞðmemory : ðð20; 17Þ; hive in danger; ð20; 18ÞÞÞ
ðinput : inp1Þ. . .ðinput : inptÞ; and

ðstate : attackingÞðmemory : ðð20; 16Þ; hive in danger; ð20; 18ÞÞÞ
ðinput : inp1Þ. . .ðinput : inptÞ; respectively:

A transformation rule associated with the produceHeat non-communicating function of

a bee is:

ðstate : attackingÞðmemory : ðCurrentPos; hiveInDanger;HornetPosÞÞ
ðinput : ðTemperature;PosÞÞ !

ðstate : attackingÞðmemory : ðCurrentPos; hiveInDanger;HornetPosÞÞ
ðoutput : Temperatureþ 0:1Þ;

if Temperature\49

As far as communication is concerned, in the cells CH1 and CB1 there will be some

transformation rules that correspond to the communicating functions. For example in CH1:

ððstate : killing beesÞðmemory : PosÞðinput : ðbee;BeePosÞÞ !
ðstate : killing beesÞðmemory : BeePosÞðinput : ðlethalBite;PosÞÞðoutput : killed beeÞÞCB1

associated with kill_bee function in H1 machine.

826 P. Kefalas et al.

123

5 Discussion

5.1 Modelling with sXM and tPS

So far, a set of guidelines have been presented to transform a CXS model to a tPS model and

a result showing the equivalent behaviour of the two mechanisms has been proved. CXS

provide the necessary modelling message passing means and computation that demonstrate

the feasibility of scaling up models. However, as in tPS models, they do suffer from a major

drawback: the organisational structure of the composed system is predefined and remains

static throughout the computation. Although for some systems this is a virtue, for some

others, such as multi-agent systems modelling natural phenomena, reorganisation (change

in the network of communication between agents and change in the number of agents that

participate in the system) is an important feature that should be addressed in a model.

The current result is established for P systems using rewriting and communication rules,

but other types of P systems may be considered where different communication rules, like

symport/antiport, may be used. Of particular interest to modelling highly dynamic systems

is a type of P systems, namely PPS, in which there exist rules for cell death, cell division

and differentiation as well as bond-making rules. A brief comparison between CXS, tPS

and PPS is shown in Table 1. Their complementarity has led to the current investigation of

transformation of CXS to tPS and eventually to PPS.

5.2 Verification of sXM and CXS models

Another important issue which outlines the rationale behind transformation from CXS to P

systems is that modellers rarely use P systems for modelling the behaviour and commu-

nication between agents. The main reason for that would be the lack of expressive power,

as sXM serve this need in a far better way. One of the challenges that emerge in modelling

biological systems is to develop models that behave correctly. In this respect, sXM are

coupled with techniques for formal verification and testing, reassuring correctness of

implementation with respect to their models (Holcombe and Ipate 1998; Eleftherakis

2003). The model needs to meet the requirements and satisfy any necessary properties

which are part of its design objectives. If a formal approach, like sXM, is used then all

Table 1 Comparison of features of CXS, tPS and PPS with respect to modelling

Modelling feature CXS tPS PPS

Agent internal state representation H

Complex data structures for knowledge, messages, stimuli etc. H

Direct communication / Message exchange H H

Non-deterministic communication H H

Dynamic addition and removal of agent instances H

Dynamic communications network restructuring H

Maximal parallelism H H H

Arbitrary parallelism H H H

Formal verification of individual components H

Test cases generation for individual components H

Tool support H H

Transforming communicating X-machines into P systems 827

123

static and dynamic analysis techniques as well as tools can be exploited in the context of

biological models, thus improving the confidence of the correctness of the final model.

Model Checking is a formal verification technique which is based on the exhaustive

exploration of a given state space trying to determine whether a given property is satisfied

by a system. It has been very successful over the last years verifying hardware and software

systems (Dwyer et al. 2007). A model checker takes a model and a property as inputs and

outputs either a claim that the property is true or a counterexample falsifying the property.

In sXM, checking whether a property p is valid in some states of the sXM means deter-

mining whether there are some states in which some memory values satisfy the property p.

An extended logic, XmCTL, can verify models expressed as sXM against the requirements,

since it can prove that certain properties, which implicitly reside on the memory of sXM,

are true (Eleftherakis and Kefalas 2008). The temporal operators used in XmCTL are the

usual operators of CTL with the addition of two new memory quantifiers, namely Mx and

mx:

– Mx (for all memory instances) requires that a property holds at all possible memory

instances of a sXM state.

– Mx (there exists a memory instance) requires that a property holds at some memory

instances of a sXM state.

For example the property ‘‘a bee might eventually be killed’’ can be expressed as an

XmCTL formula as EFMx(xstate = killed). Another example of an important property

might be ‘‘a bee should always be working until danger is detected’’. This is expressed as

AMx(xstate = work_in_hive) Umx(Alert = hiveInDanger).

However, as the complexity increases applying formal verification to complex bio-

logical models is not possible in some cases. Furthermore, while formal verification may

be possible it requires too much time and effort which makes it completely impractical. An

alternative would be to utilise formal modelling and verification in the early stages of the

development coupled with informal verification steps provided through simulation (ani-

mation) to discover any undiscovered flaws in later stages. The simulation is needed in

order to informally verify complex models with dynamic communication which, with

current techniques, cannot be formally verified. However at the same time the animation of

the model is a step which provides immediate feedback to the development team and

facilitates effective communication of the formal experts and the people (biologists) with

no formal background. All these features make this alternative a practical approach.

In most of the biological systems a visual animation of the model offers an intuitive way

of studying the model. NetLogo (Wilensky 1999) is a modelling environment targeted for

simulation of multi-agent systems that consist of a large number of agents. NetLogo offers

a simple functional language, in which behaviours of agents can be encoded, and a pro-

gramming environment that allows the easy creation of a GUI for a simulation supporting a

great number of parameters. The environment is a suitable tool for rapid prototyping. By

executing simulation scenarios and comparing the outcome with the expected behaviour of

the system we are able to get immediate feedback indicating the ‘‘correctness’’ of the

model. Taking this into account further iterations may be needed to improve the model.

Our experience so far shows that there is a way to directly map CXS models to NetLogo

code and we are currently investigating how this can be done semi-automatically.

In a previous work (Stamatopoulou et al. 2008; Jackson et al. 2005) we have demon-

strated how a communicating X-machine specification, written in the X-machine

Description Language (XMDL) (Kapeti and Kefalas 2000) can be directly ported in

NetLogo and how dynamic reconfiguration rules can be implemented on top of that. The

828 P. Kefalas et al.

123

NetLogo XMDL interpreter allows to transform effortlessly the XMDL specification to

Netlogo programming structures, i.e. functions and procedures, and provide a rather

accurate simulation of the specified system, under study.

The Japanese bee colony under attack by a hornet has produced a simulation shown in

Fig. 4. Figure 5 shows three phases of the simulation depicting (a) bees moving towards an

attack formation, (b) bees forming an attack formation, and (c) bees in full attack formation

increasing the temperature and in consequence killing the hornet.

The simulation showed that the original model produced in sXM suffered from two

shortcomings: (a) an extra transition (function attackedByHornet) was required from state

approaching_hornet to state killed, and (b) the functions of the bee produceHeat and

maintainTemperature should allow the bee to move to a new position closer to the hornet.

Fig. 4 A simulation developed in NetLogo based on CXS models for the bee colony

Fig. 5 Three phases of the simulation

Transforming communicating X-machines into P systems 829

123

These shortcomings could only become apparent through simulation and not through

model checking.

5.3 Enhancing the model

In the core of this paper, we dealt only with communicating models that represent a (static)

instance of a system, as the one depicted in Fig. 3. However, the model may be further

enhanced with features that deal with a potential dynamic structure of the system, by

considering PPS. For example, the following simple scenarios may be considered:

– if a bee is bitten by a hornet it should be removed from the PPS model,

– if a hornet is dead by heat it should also be removed from the PPS model,

– if another hornet arrives in the hive, a new cell should be generated,

– while bees are moving they should be able to communicate with other bees in the

immediate neighbourhood, etc.

All the above issues can be dealt with by features of PPS, such as cell death, bond-making

rules, cell division etc. In the first case, a cell death rule in CH1, such as ððstate :
dead by heatÞÞ ! y will model it. In the second case, the corresponding death rule is

ððstate : killedÞÞ ! y .

A bond-making rule such as:

ðCBi
; ðmemory : ðPosBeei; ; ÞÞ; ðmemory : ðPosBeej; ; ÞÞ;CBj

Þ
if nextðPosBeei;PosBeejÞ

will produce a bond between two neighbouring bees.

5.4 Representing the input stream

In Sect. 4.3 it has been identified that there is an issue to consider when representing the

input stream of sXM as a multiset of input objects inside the corresponding tPS membrane.

Besides the approach followed above, other ways to resolve the issue also exist.

One would be to have an object of the form ðinputs : r :: 1Þ inside each tPS membrane

where r :: 1 is a sequence of sXM input symbols corresponding to the sXM stream. If this

is the case, we must consider that an additional tPS rewriting rule ðinputs : r :: 1Þ !
ðinput : rÞðinputs : 1Þ is required and applied in every computation cycle to extract the

next input (the first in the sequence) to be consumed.

A second option is to consider there is an additional membrane for generating the input

symbols so that they are communicated one at a time to the corresponding receiver

membranes. Note, at this point, that this is similar to the approach taken in practice for the

implementation of the tool that transforms XMDL to PPSDL models (see next section)

whereby during the animation of the model the inputs are entered one by one for each of

the cells at each computation cycle.

5.5 Tools for transformation

There exist several tools that facilitate modelling with sXM, CXS as well as the testing

and verification of models (Kapeti and Kefalas 2000; Thomson and Holcombe 2005).

Also, there is a PPS modelling language accompanied with an animator which enables

830 P. Kefalas et al.

123

modelling directly to PPS (Stamatopoulou et al. 2005b). Bearing in mind the principles

presented in this paper, an automatic transformation tool from CXS into PPS is devel-

oped (Kefalas et al. 2008). The benefit from such transformation of any CXS model to

an equivalent PPS model is that we take advantage of existing CXS models that have

been verified in order to enhance them with features that refer to the dynamic recon-

figuration of their structure. Once the CXS model is compiled into a PPS model, one can

add more PPS rules that deal with division, differentiation and death of cells as described

above. The resulting model can be successfully animated, thus simulating the compu-

tation that takes place.

6 Conclusions

We presented a set of principles that guide the transformation of communicating X-

machine models into different classes of P systems. One of the motives behind this attempt

lies in the fact that the resulting P system model can be further enriched with various

features like, removing or instantiating components, restructuring the links between them,

etc. Thus, taking CXS models, which consists of sXM that can be individually verified, and

transforming them into tPS and furthermore to population P system models, we could use

more rules to extend the model with dynamic features. Practically, this means that not only

we surpass the shortcomings of P systems in modelling agent behaviours, but we also feel

quite confident (depending on a formal proof that the transformation is correct) that the

resulting PPS model meets at least some quality requirements.

Acknowledgements The authors would like to thank Prof. Mike Holcombe for his inspiring ideas on
X-machines. His support and contribution encouraged our research motivation for more than a decade.

References

Bernardini F, Gheorghe M (2004) Population P systems. J Univers Comput Sci 10(5):509–539
Ciobanu G, Aman B (2007) On the relationship between membranes and ambients. BioSystems 91(3):

515–530
Corne D, Frisco P (2007) Dynamics of HIV infection studied with cellular automata and conformon-P

systems. BioSystems 91(3):531–544
Dwyer MB, Hatcliff J, Robby R, Pasareanu CS, Visser W (2007) Formal software analysis emerging trends

in software model checking. In: Future of software engineering (FOSE’07), Washington, DC. IEEE
Computer Society, pp 120–136

Eilenberg S (1974) Automata, languages and machines. Academic Press, London
Eleftherakis G (2003) Formal verification of X-machine models: towards formal development of computer-

based systems. PhD thesis, Department of Computer Science, University of Sheffield
Eleftherakis G, Kefalas P (2008) Formal verification of generalised state machines. In: 12th Panhellenic

conference in informatics (PCI’08), Samos Island, Greece, 28–30 August
Holcombe M, Ipate F (1998) Correct systems: building a business process solution. Springer, London
Jackson D, Holcombe M, Stamatopoulou I, Sakellariou I, Eleftherakis G, Kefalas P, Gheorghe M (2005)

Modelling self-organisation in ant colonies. In: Special session on systems self-assembly at the 7th
international conference on artificial evolution (EA’05), Lille, France, 26–28 October

Kapeti E, Kefalas P (2000) A design language and tool for X-machines specification. In: Fotiadis DI,
Spyropoulos SD (eds) Advances in informatics. World Scientific Publishing Company, Singapore, pp
134–145

Kefalas P, Eleftherakis G, Holcombe M, Gheorghe M (2003a) Simulation and verification of P systems
through communicating X-machines. BioSystems 70(2):135–148

Transforming communicating X-machines into P systems 831

123

Kefalas P, Eleftherakis G, Kehris E (2003b) Communicating X-machines: a practical approach for formal
and modular specification of large systems. J Inf Softw Technol 45(5):269–280

Kefalas P, Holcombe M, Eleftherakis G, Gheorghe M (2003c) A formal method for the development of
agent-based systems. In: Plekhanova V (ed) Intelligent agent software engineering. Idea Publishing
Group Co., Miami, FL, pp 68–98

Kefalas P, Stamatopoulou I, Eleftherakis G, Gheorghe M (2008) Transforming state-based models to P
systems models in practice. In: Membrane computing: 9th international workshop, Edinburgh, UK,
pp 247–264

Klein J, Koutny M (2007) Synchrony and asynchrony in membrane systems. In: Hoogeboom HJ, Paun G,
Rozenberg G, Salomaa A (eds) Membrane computing: 7th international workshop, Leiden, Nether-
lands. Lecture notes in computer science, vol 4361. Springer, pp 66–85

Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143, also circulated as a TUCS
report since 1998.

Păun G (2002) Membrane computing: an introduction. Springer, Berlin
Stamatopoulou I, Gheorghe M, Kefalas P (2005a) Modelling dynamic configuration of biology-inspired

multi-agent systems with communicating X-machines and population P systems. In: Mauri G, Păun G,
Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds) Membrane computing: 5th international workshop,
Milan, Italy. Lecture notes in computer science, vol 3365. Springer, pp 389–401

Stamatopoulou I, Kefalas P, Eleftherakis G, Gheorghe M (2005b) A modelling language and tool for
population p Systems. In: Proceedings of the 10th Panhellenic conference in informatics (PCI’05),
Volas, Greece, pp 142–152

Stamatopoulou I, Kefalas P, Gheorghe M (2007a) OPERAS for space: Formal modelling of autonomous
spacecrafts. In: Papatheodorou T, Christodoulakis D, Karanikolas N (eds) Current trends in infor-
matics, Proceedings of the 11th Panhellenic conference in Informatics (PCI’07), Patras, Greece, vol B,
pp 69–78

Stamatopoulou I, Kefalas P, Gheorghe M (2007b) OPERASCC: an instance of a formal framework for MAS
modelling based on population P systems. In: Eleftherakis G, Kefalas P, Paun G (eds) Proceedings of
the 8th workshop on membrane computing (WMC’07), Thessaloniki, South-East European Research
Centre, pp 551–566

Stamatopoulou I, Sakellariou I, Kefalas P, Eleftherakis G (2008) OPERAS for social insects: formal
modelling and prototype simulation. In: Gheorghe M, Ipate F (eds) Special issue of Romanian Journal
of Information Science and Technology (ROMJIST) on Natural Computing—from biology to com-
puter science and back to applications, vol 11, No. 3, pp 267–280

Thomson C, Holcombe M (2005) Using a formal method to model software design in XP projects. In:
Eleftherakis G (ed) Proceedings of the 2nd south-east European workshop on formal methods, Ohrid,
18–19 November, South-East European Research Centre, pp 74–88

Wilensky U (1999) Netlogo. http://ccl.northwestern.edu/netlogo. Center for connected learning and com-
puter-based modelling. Northwestern University, Evanston, IL

832 P. Kefalas et al.

123

http://ccl.northwestern.edu/netlogo

	Transforming communicating X-machines into P systems
	Abstract
	Introduction
	State-based modelling with X-machines
	X-machines
	Example of a sXM: Japanese bees and hornets
	Communicating X-machines
	Example of CXS: two bees attacking a hornet

	Tissue P systems
	Transforming communicating X-machines into P systems
	CXM components and tPS membranes
	Objects in membranes
	Initial multisets
	Transformation rules for processing functions
	Transformation and communication rules for processing functions
	Main Result
	Example transformation

	Discussion
	Modelling with sXM and tPS
	Verification of sXM and CXS models
	Enhancing the model
	Representing the input stream
	Tools for transformation

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

