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Abstract In the area of membrane computing, time-freeness has been defined as the

ability for a timed membrane system to produce always the same result, independently of

the execution times associated to the rules. In this paper, we use a similar idea in the

framework of spiking neural P systems, a model inspired by the structure and the func-

tioning of neural cells. In particular, we introduce stochastic spiking neural P systems

where the time of firing for an enabled spiking rule is probabilistically chosen and we

investigate when, and how, these probabilities can influence the ability of the systems to

simulate, in a reliable way, universal machines, such as register machines.

Keywords Time-freeness � Spiking neural P systems � Stochastic firing time �
Universality � Reliable computations

1 Introduction and motivations

Membrane computing (known also as P systems) is a model of computation inspired by the

structure and the functioning of living cells (a monograph dedicated to the area is Păun

2002, an updated bibliography can be found at the web-page http://ppage.psystems.eu).

Essentially, a P system is a synchronous parallel computing device based on multiset

rewriting in compartments where a global clock is assumed and each rule of the system is

executed in one time step.

Starting from the idea that different reactions may take different times to be executed

(or to be started, when enabled) a timed model of P system was introduced in Cavaliere and

Sburlan (2005), where to each rule of the system is associated a time of execution. The goal

was to understand how time could be used to influence the result produced by the P system

(see, e.g., Cavaliere and Zandron 2006) and, possibly, how to design computational
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powerful time-free systems where the output produced is independent of the timings

associated to the rules, e.g., Cavaliere and Deufemia (2006).

In this paper we use a similar idea in the framework of spiking neural P systems, (in

short, SN P systems), which have been introduced in Ionescu et al. (2006) as computing

devices inspired by the structure and functioning of neural cells (a friendly introduction to

the area is Păun 2007). We investigate how the timing of the spiking rules can influence the

output produced by the systems and in particular can influence the ability of the systems to

simulate universal computing devices.

The main idea of an SN P system is to have several one-membrane cells (called

neurons) which can hold any number of spikes; each neuron fires (we also say, spikes) in

specified conditions (after accumulating a specified number of spikes). In the standard

definition of SN P systems, the functioning of the system is synchronous: a global clock is

assumed and, in each time unit, each neuron that can use a rule does it. The system is

synchronized but the work of the system is sequential: only (at most) one rule is used in

each neuron. One of the neurons is considered to be the output neuron and its spikes are

also sent to the environment. The moments of time when (at least) one spike is emitted by

the output neuron are marked with 1, the other moments are marked with 0. The binary

sequence obtained in this manner is called the spike train of the system—it is infinite if the

computation does not stop.

To a spike train one can associate various numbers, which can be considered as com-
puted (we also say generated) by an SN P system. For instance, in Ionescu et al. (2006)

only the distance between the first two spikes of a spike train was considered, then in Păun

et al. (2006) several extensions were examined: the distance between the first k spikes of a

spike train, or the distances between all consecutive spikes, taking into account all intervals

or only intervals that alternate, all computations or only halting computations, etc.

In Ionescu et al. (2006) it is proved that synchronized SN P systems, with spiking rules

in the standard form (i.e., they produce only one spike) are universal – they can charac-

terize NRE, the family of Turing computable sets of natural numbers; normal forms of

universal SN P systems were presented in Ibarra et al. (2007).

In the proof of these results, the synchronization plays an important role and, in general,

the synchronization is a very powerful feature, useful in controlling the work of a com-

puting device. However implementing synchronization is not always easy or possible and

is (not always) biologically justified, as, for instance, in case of network of spiking neurons

(see, e.g., Gerstner 2000). For these reasons in (Cavaliere et al. 2007a, b) an asynchronous

version of SN P systems, where at each step of the computation a spiking rule can be

applied or skipped, has been considered. There has been shown that removing the syn-

chronization, in some cases, can lead to a decrease of the computational power of the

systems. In the same papers, it is also conjectured that asynchronous spiking neural P

systems using standard rules are not universal.

However, the border between synchronous and asynchronous systems seems to be not

so drastic in natural systems, and in many other artificial systems, e.g., networks of

computers. In many cases we encounter networks of computational units that do not work

in a synchronous way, i.e., they do not use same global clock, but still they do their

operations in an ‘‘enough’’ synchronous way, in such way that the functioning of the entire

system follows the specified goals.

We try to capture such intuition in the framework of SN P systems by considering

stochastic SN P systems (in short, SSN P systems) where to each rule, when enabled, is
associated a probability to fire in a certain time interval. This means that, during the

computation of an SSN P system, an enabled rule may not spike immediately but can
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remain silent for a certain (probabilistic) time interval and then spikes. During such

interval the neuron where the rule is present could receive other spikes from the neigh-

boring neurons or maybe other rules can fire in the same neuron. The computation would

then continue in the new circumstances (maybe different rules are enabled now—the

contents of the neuron has changed). If there is competition between enabled rules for

using the spikes present in the same neuron, the fastest (probabilistically determined) rule

spikes.

The choice of the probability distributions for the firing of the rules clearly influences

the synchrony of the entire system. Because of the results in Cavaliere et al. (2007b), we

can expect that the probability distributions for the firing of the rules influence the ability

for the systems to simulate, in a reliable way, computational universal machines. In this

paper we do not want to provide a formal proof for this statement but rather we want to

present ways to investigate such ‘‘influence’’.

We first show that an SSN P system can simulate universal machines when the prob-

ability distributions can be chosen in an arbitrary manner. When such distributions cannot

be arbitrarily chosen but they are given, then, the reliability of an SSN P system (i.e., the

ability for the system to work correctly) depends on the given distributions, and, in some

cases, on the variance associated to the distributions. In general, one has to use statistical

analysis to investigate the reliability of the systems, when, for instance, varying the var-

iance associated to the distributions. In this paper, we provide such an analysis for a

specific example of SSN P system and considering a specific register machine program.

We also show how, using such method of analysis, it is possible to identify the (maximal)

value for the variance that guarantees that the system has a certain chosen reliability.

The functioning of the SSN P system is somehow similar to the one of stochastic Petri

nets, Marsan (1989) where a time of delay for each transition is used. However, motiva-

tions and questions of the two paradigms are clearly different (modeling network of

spiking neurons for computability study in our case, modeling concurrent processes in case

of stochastic Petri nets). This is more evident when considering the control associated to

the single computational unit: regular expressions associated to each neuron in an SSN P

system, presence of tokens in the places in stochastic Petri nets.

Probabilities have been also used in the more general framework of P systems. In

particular, in Obtulowicz and Păun (2003) and Madhu (2003) probabilities have been

associated with the localization of single objects and with rules and universality has been

shown when such probabilities are chosen in a very specific way. However, no explicit

analysis of the reliability of the systems has been presented. A different approach is used in

Muskulus et al. (2007) and Pescini et al. (2005) where sequential membrane systems have

been investigate using Markov chains theory. In these papers however probability distri-

butions are not directly associated to the timing of the rules, but are rather obtained by

starting from chemical reactions and molecular dynamics; the goal of the authors is, in fact,

to provide algorithms to investigate dynamics of molecular systems.

We conclude by mentioning a similar work presented in Maass (1996) in the framework

of network of spiking neurons where each neuron has associated a given threshold that

specifies when a neuron fires. In Maass (1996) the author shows how a network of spiking

neurons, with noisy neurons (i.e., the time of firing is not deterministic) can simulate, in a

reliable way, boolean circuits and finite state automata. In our case, we use more general

and abstract type of neurons and, for this reason, we can investigate more ‘‘complex’’ and

general encodings such as the one of register machines.

The rest of this paper is organized as follows. We recall in Sect. 2 some basic concepts

used throughout the paper, and we formally define in Sect. 3 the class of SSN P systems.
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Section 4 is devoted to the characterization of the computational power of SSN P systems,

for which we prove, under precise conditions, universality. We report in Sect. 5 the results

of a simulation study aiming at evaluating the reliability of SSN P systems computations

under more general conditions than those defined in Sect. 4. Section 6 provides conclusions

and directions for future research.

2 Preliminaries

We introduce in this section a limited amount of concepts and technical notation, assuming

the reader has some familiarity with (basic elements of) language and automata theory,

random variables and register machines. Additional information can be found in standard

books, for instance Salomaa (1973) for languages and automata theory, Trivedi (2001) for

random variables, Minsky (1967) for register machines.

2.1 Languages and regular expressions

For an alphabet V, V� is the free monoid generated by V with respect to the concatenation

operation and the identity k (the empty string); the set of all nonempty strings over V, that

is, V�-{k}, is denoted by V+. When V = {a} is a singleton, then we simply write a� and a+

instead of fVg�, {a}+. The length of a string x 2 V� is denoted by |x|.

A regular expression over an alphabet V is constructed starting from k and the symbols

from V and using the operation of union, concatenation and Kleene +, using parentheses

when necessary for specifying the order of operations. Specifically, (i) k and each a 2 V
are regular expressions, (ii) if E1 and E2 are regular expressions over V, then ðE1Þ [
ðE2Þ; ðE1ÞðE2Þ and (E1)+ are regular expressions over V, and (iii) nothing else is a regular

expression over V. Non-necessary parentheses are omitted when writing a regular

expression and ðEÞþ [ fkg is written in the form ðEÞ�:
To each regular expression E we associate a language L(E) defined in the following

way: (i) L(k) = {k} and L(a) = {a}, for all a 2 V; ðiiÞLððE1Þ [ ðE2ÞÞ ¼ LðE1Þ [
LðE2Þ; LððE1ÞðE2ÞÞ ¼ LðE1ÞLðE2Þ; and LððE1ÞþÞ ¼ LðE1Þþ for all regular expressions E1,

E2 over V.

2.2 Random variables

A random variable is an abstraction for the concept of chance, whose specification requires

the definition of a probability measure over the set of possible values (the domain).

Depending on their domain, random variables can be classified as discrete ones, when the

possible values form a finite or countable set, or continuous ones, when the set of possible

values is uncountable. For the purposes of this paper, we shall restrict ourselves to con-

sidering random variables whose domain is a subset of R+, the set of nonnegative real

numbers. An example of a discrete random variable is the number obtained rolling a die,

which only has 6 possible values. Examples of continuous random variable are the lifetime

of an electric lamp and the air temperature in a room at a given time/day, for which the

domain is a subset of real numbers.

The function that assigns probabilities to the elements of the domain is called the prob-
ability distribution function of the random variable. Being a probability measure, this

function is always non-negative and the sum of its values over the whole domain is equal to 1.

More precisely, we distinguish between two forms of the probability distribution function:
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– the probability density function (pdf, hereafter) is the function f(x) that returns, for each

value x of the domain, the probability that the variable takes value x;

– the cumulative density function (cdf, hereafter) is the function F(x) that returns, for

each value x of the domain, the probability that the variable is less or equal than x.

For instance, if X is the discrete random variable that represents the result obtained

when rolling a die, its domain, which we denote by Dom(X), is the set {1,2, … ,6}, its pdf

is the function fXðxÞ ¼ 1=6; x 2 DomðXÞ: The cdf of X is FX(x) defined as FXðxÞ ¼
x=6; x 2 DomðXÞ: The discrete random variable Y whose domain contains only one pos-

sible value ~y is a special case of random variable, called the deterministic random variable.

Its pdf assigns a value 1 to ~y and 0 to any other value. Its cdf is conveniently denoted by the

shifted Heaviside function Hðy� ~yÞ; where the Heaviside function is defined as H(y) = 0

if y \ 0 and H(y) = 1 if y C 0.

The continuous random variable Z representing the lifetime of an electric lamp is

satisfactorily modeled by a negative exponential distribution, whose pdf is defined as

fZðzÞ ¼ ke�kz; z C 0, and its cdf at z C 0 is the integral of the pdf over [0,z], given by

FZðtÞ ¼ 1� e�kz; for z C 0.

The expected value (also called the average value or mean value) of a random variable

X, usually denoted as E[X], is defined as E½X� ¼
P

x2DomðXÞ xfXðxÞ if X is discrete, and as

E½X� ¼
R

x2DomðXÞ xfXðxÞdx if X is continuous. For instance, the expected value of the dis-

crete random variable X representing the value obtained by rolling a die is E[X] = 3.5

(notice it does not belong to Dom(X)), and the expected value of the continuous random

variable Y representing the lifetime of an electric lamp is E[Y] = k-1.

The variance of a random variable X, usually denoted as Var[X], is a non-negative

number defined as Var½X� ¼
P

x2DomðXÞðx� E½X�Þ2fXðxÞ if X is discrete, and as Var½X� ¼R
x2DomðXÞðx� E½X�Þ2fXðxÞdx if X is continuous. Intuitively, the variance of a distribution is

a measure of the spread of the distribution around the expected value. Thus, the variance of

a deterministic random variable is 0, whereas the variance of a negative exponential

distribution as the one modeling the lifetime of an electric lamp is k-2.

An interesting and commonly used random variable is the normal (also called Gaussian)

distribution. Its pdf is defined in terms of two parameters, l and r2 C 0, which are indeed

the expected value and the variance of the distribution itself. For instance, the air tem-

perature in a room at a given time/day can be thought to follow a normal distribution

whose value l is the historical average and r2 is a measure of the variation around the

expected value. A normal distribution of parameters l and r2 is denoted by N(l,r2). The

pdf of a normal random variable U distributed as N(l,r2) is UðuÞ ¼ ðr
ffiffiffiffiffiffi
2p
p
Þ�1e�ðu�lÞ2=2r2

:
The cdf of a normal random variable does not have an analytical form; rather its tabula-

tions are provided in statistical books for the case N(0,1) (called the standard normal

distribution). It is interesting to notice that a variable distributed as Nð~x; 0Þ corresponds to a

deterministic random variable whose only possible value is ~x:

2.3 Register machines

A (non-deterministic) register machine is a construct M = (m,H, l0, lh,I) where m is the

number of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD

instruction), lh is the halt label (assigned to an HALT instruction) and I is the set of

instructions; each label from H labels only one instruction from I, thus precisely identifying

it. The instructions are of the following general forms:
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– li : ðADDðrÞ; lj; lkÞ; adds 1 to register r and then goes non-deterministically to one of the

instructions with labels lj,lk;
– li : ðSUBðrÞ; lj; lkÞ; if register r is non-empty, then subtracts 1 from it and goes the

instruction with label lj, else goes to the instruction with label lk;
– lh : ðHALTÞ; is the halt instruction.

A computation of a register machine M is defined in the following way. The machine

starts with all empty registers (i.e., storing the number zero). Initially, the instruction with

label l0 is executed. The computation proceeds by applying the instructions as indicated by

the labels (and made possible by the contents of the registers); if the halt instruction is

reached, the computation halts and the number n stored at that time in the first register

(output register) is the output of the computation. Because of the non-determinism present

in the ADD instruction, a machine M may have multiple halting computations. Without loss

of generality, we can assume that, for any instruction as above, lj and lk are different from li.
We denote by CM the set of halting computations of M, and by Out(c), the output

produced by a computation c 2 CM: Then NðMÞ ¼ fOutðcÞ; c 2 CMg is the set of all

natural numbers computed by machine M. We denote by RMNDET the class of

non-deterministic register machines. It is known (see, e.g., Minsky 1967) that RMNDET

computes all sets of numbers which can be computed by a Turing machine, hence

characterizes NRE.

3 Stochastic spiking neural P systems

We introduce here a class of SN P system, called stochastic spiking neural P systems (in

short, SSN P systems). SSN P systems are obtained from SN P systems by associating to

each spiking rule a firing time that indicates how long an enabled rule waits before it is

executed. Such firing times are random variables whose probability distribution functions

have domain contained in R+.

Informally, an SSN P system is an asynchronous SN P system (Cavaliere et al. 2007b)

where the firing of the rules (hence, the asynchrony present in the system) is stochastically

regulated. Formally, an SSN P system is a quadruple

P ¼ ðO;R; syn; ioÞ

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. R = {r1,r2, … ,rm} are neurons, of the form

ri ¼ ðni;RiÞ; 1� i�m;

where:

– ni C 0 is the initial number of spikes contained by the neuron;

– Ri is a finite set of rules, of the following two forms:

(a) E=ar ! a; F0 where E is a regular expression over O, r C 1, and F0 is a

probability distribution function with domain in R+;

(b) as ! k; F00 for some s C 1, with the restriction that as 62 LðEÞ for any rule of

type (a) in Ri, and F00 is a probability distribution with domain in R+;
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3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with ði; iÞ 62 syn for 1 B i B m is a set of synapses
among the neurons;

4. io [R is the output neuron.

A rule of type E=ar ! a; F0 present in neuron i, for i 2 f1; 2; . . .;mg; is a firing (also

called spiking) rule: provided that the contents of neuron i (i.e., the number of spikes

present in it) is described by the regular expression E, then the rule is enabled and can fire
(spike). When the rule fires, r spikes are consumed in neuron i and exactly 1 spike is sent to

all the neurons to which neuron i is linked through the synapses. A rule of type as ! k; F00

is a forgetting rule, and it functions in a similar way. The only difference with respect to

the firing rule is that, when the forgetting rule fires, s spikes are consumed in neuron i and

no spike is sent out.

From the moment in which a rule is enabled up to the moment when the rule fires, a
random amount of time elapses, whose probability distribution is specified by the function
F associated to the rule (different rules may have associated different distributions).

Therefore, if a rule is enabled in neuron i and before the rule fires the neuron receives

new spikes or another rule in neuron i fires, it may happen that the rule is not enabled

anymore because the contents of neuron i has changed.

We suppose, that once the rule fires, the update of the number of spikes in the neuron,
the emission of spikes and the update of spikes in the receiving neurons are all simulta-
neous and instantaneous events. Multiple rules may be simultaneously enabled in the same

neuron. Whenever multiple enabled rules in a neuron draw the same random firing time,

the order with which those rule fire is randomly chosen, with a uniform probability dis-

tribution across the set of possible firing orders.

A configuration of an SSN P system P is composed by the neurons with their associated

contents. Using the rules in the way described above, in each neuron, the system P passes

from a configuration to another configuration: such a step is called transition. Notice that,

because of the way the firing of the rules has been defined, in general there is no upper

bound on how many rules fire for each transition.

A sequence of transitions, starting in the initial configuration, is called computation. A

halting computation is a computation that reaches a halting configuration, i.e., one in

which no rule is enabled. We denote by CP the set of all halting computations of an SSN P

system P. For an halting computation c 2 CP; Out(c), the output produced by c, is defined

as the contents of the output neuron in the halting configuration and NðPÞ ¼ fOutðcÞ; c 2
CPg is the set of natural numbers generated by P.

In what follows, we will use the usual convention to simplify spiking systems rule

syntax, writing ar ! a; F when the regular expression of the rule is ar.

4 Computational Power of SSN P Systems

In this section we discuss the computational power of SSN P systems, by relating their

capabilities to those of register machines. In particular, we construct specific SSN P

systems modules that can simulate the instructions of a register machine. We show that an

SSN P system can ‘‘simulate’’ an (synchronous) SN P system, hence a register machine,

provided that the distributions associated to the spiking rules are appropriately chosen.

However, notice that ‘‘standard’’ SN P systems (i.e, non stochastic), as usually considered

in literature, cannot be directly seen as a special case of SSN P systems (in fact, SSN P

systems do not include a closed state of neurons). In the proof of the following theorem, we
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combine normals forms of SN P systems presented in Ibarra et al. (2007) and Ionescu et al.

(2006).

Theorem 1 For every M 2 RMNDET there exists an SSN P system P such that
N(M) = N(P).

Proof Let r1,r2, … ,rm be the registers of M, with r1 being the output register, and

H = {l0, l1, … ,ln, lh} the set of labels for the instructions I of M. Without any loss of

generality, we may assume that in the halting configuration, all registers of M different

from r1 are empty, and that the output register is never decremented during the compu-

tation, we only add to its contents. h

We construct the SSN P system P ¼ ðO ¼ fag;R; syn; ioÞ that simulates the register

machine M. In particular, we only present separate types of modules that can be used to

compose the SSN P system P. Each module simulates an instruction of the register

machine M (we distinguish between a deterministic and non-deterministic version of the

ADD).

1. A deterministic add instruction li : ðADDðrpÞ; lj; ljÞ; for some p 2 f2; . . .;mg and i;
j 2 f0; 1; . . .; ng [ fhg; is simulated by the module presented in Fig. 1.

2. A deterministic add instruction to register r1; li : ðADDðr1Þ; lj; ljÞ; for some i; j 2
f0; 1; . . .; ng [ fhg is simulated by a module as the one shown in Fig. 1, where neuron

li
1 is removed and neuron nr1 has no rules.

3. A non-deterministic add instruction, li : ðADDðrpÞ; lj; lkÞ; for some p 2 f2; . . .;mg and

i; j; k 2 f0; 1; . . .; ng [ fhg is simulated by the module shown in Fig. 2; Again, as in

the deterministic case, li : ðADDðr1Þ; lj; lkÞ (i.e., a non-deterministic add instruction to

register 1) is simulated by a module as the one in Fig. 2, but in which neuron li
1 is

removed and neuron nr1 has no rules inside.

4. A sub instruction, li : ðSUBðrpÞ; lv; lwÞ; for some p 2 f2; . . .;mg and i; j; k 2
f0; 1; . . .; ng [ fhg is simulated by the module shown in Fig. 3.

Fig. 1 Module for the deterministic ADD instruction
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Neuron nrj, for each j 2 f1; . . .;mg; corresponds to the register rj of M. Neuron nlj, for

each j 2 f0; 1; . . .; ng [ fhg; corresponds to the (starting point of) instruction lj in the set I.
In the initial configuration of P all neurons are empty, except the neuron nl0 corresponding

to the initial instruction of M that has 1 spike. The output neuron of P is defined to be nr1

corresponding to register r1 of M (we recall that such register is only subject to add

instructions).

Finally, to complete the specification of the modules, we select the probability distri-

bution functions associated to the rules as follows:

– F1(x) is defined as the Gaussian normal distribution with average l1 and variance r2,

which we shortly denote as N(l,r2), where we set l1 = 1 and r2 = 0 so that

F1(x) = H(x-1);

– F2(x) is defined to be N(l2,r2), with l2 = 2 and r2 = 0;

– F3(x) is defined to be 0.5H(x-1) + 0.5H(x-2), i.e., F3(x) is the discrete uniform

distribution in {1,2});

– F4(x) is defined to be N(l4,r2), with l4 = 0.5 and r2 = 0.

We now show how, because of the selected distributions of firing rules, each instruction

of the register machine can be correctly simulated by the corresponding presented module.

Let us suppose that, at an arbitrary time t, the register machine M is in a given con-

figuration, in which it is to execute the instruction at label li with a given state of r1,

r2, … ,rm registers, and suppose that the SSN P system P is in a configuration that

corresponds to that of M, that means:

Fig. 2 Module for the non-deterministic ADD instruction
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– neuron nri contains a number of spikes that is twice the contents of register ri, for

i = 2,3, … ,m;

– neuron nr1 contains a number of spikes equal to the contents of register r1;

– all other neurons are empty except neuron nli that contains exactly 1 spike.

Notice that, by construction, the initial configuration of P corresponds to the initial one

of M. Consider now the various possible cases for the instruction li that M starts executing

at time t.

– li : ðADDðrpÞ; lj; ljÞ (deterministic add)—module shown in Fig. 1. Suppose first that

p=1. Then, the execution of instruction li is simulated in P in the following way. At

time t + 1 neuron nli fires (with probability 1, because of the chosen distributions), one

spike is introduced (at time t + 1, hence instantaneously) in neurons li
1 and li

2. At time

t + 2 neurons li
1 and li

2 fire with probability 1 and two spikes are added to neuron nrp.

Also, at time t + 2, one spike is added to neuron nlj. Except the ones mentioned, no

other rule can fire in neurons li
1,li

2 and nrp. Then, P reaches, starting from the supposed

configuration, and with probability 1, a configuration that corresponds to the state of M
after the execution of instruction li. If p = 1, the execution of instruction li is simulated

in a similar way, the only difference being that only 1 spike is deposited in neuron nr1

at time t + 2. Thus, again P reaches with probability 1 a configuration that

corresponds to the state of M after the execution of instruction li.

Fig. 3 Module for the SUB instruction
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– li : ðADDðrpÞ; lj; lkÞ (non-deterministic add)—module shown in Fig. 2. In this case, the

execution of the instruction li is simulated in P as follows. We only describe the case

when p=1, the non-deterministic add to register r1 is similar. At time t + 1, neuron nli
fires with probability 1, and at the same time one spike is introduced in neuron li

1 and li
2.

At time t + 2, neurons li
1 and li

2 fire with probability 1, two spikes are then added to the

neuron nrp and one spike is added to neurons li
3, li

4 and li
5. Neurons li

4 and li
5 fire, with

probability 1, at time t + 3 and t + 4, respectively, emitting one spike to neuron li
6 and

li
7. In neuron li

3, the rule a! a; F3ðxÞ fires at a time that is either t + 3 or t + 4, with

equal probability 2-1, and li
3 emits one spike to neurons li

6 and li
7: this probabilistic

choice of the firing time in li
3 simulates the non-deterministic choice of the ADD

instruction.

In fact, if neuron li
3 fires at time t + 3, then one spike is sent to both neurons li

6 and

li
7. The rule a2 ! a; F1ðxÞ fires with probability 1 in neuron li

6 at time t + 4, sending
one spike to neuron nlj. The forgetting rule in neuron li

7 fires with probability 1 at time

t + 3.5. At time t + 4, the spike emitted by neuron li
5 also reaches neuron li

7, the

forgetting rule is enabled and it fires, with probability 1, at time t + 4.5.

If neuron li
3 fires at time at time t + 4, the spike that was deposited in neuron li

6 by

the firing of li
4 at time t + 3 gets consumed, with probability 1, by using the forgetting

rule at time t + 3.5. Then, the spike deposited at time t + 4 in li
6 by the firing of neuron

li
3 enables again the forgetting rule of neuron li

6, and the spike present in li
6 is consumed,

with probability 1, at time t + 4.5. Also, at time t + 4, 2 spikes are deposited in neuron

li
7 (coming from neurons li

5 and li
3). This allows the rule a2 ! a; F1ðxÞ in neuron li

7 to

fire at time t + 5 with probability 1 and to send 1 spike in neuron nlk. In both

considered cases, when 1 spike reaches either neuron nlj or nlk, no rule can fire

anymore in neurons li
1, li

2, … , li
7 and nrp.

The system P can only execute, when starts from the supposed configuration, with

probability 1, the above described transitions. Therefore, P reaches, with probability 1,

the configuration that corresponds to the state of M after the instruction li has been

executed.

– li : ðSUBðrpÞ; lj; lkÞ (non-deterministic sub)—module shown in Fig. 3. The execution of

instruction li is simulated in P in the following way. At time t + 1, neuron nli fires with

probability 1 and one spike is added to neuron nrp and one spike is added to both

neurons li
1 and li

2. Neuron li
1 fires at time t + 2 with probability 1 and deposits one spike

in neuron li
3. Also, neuron li

2 fires, with probability 1, at time t + 2 and deposits one

spike in neuron li
4. Which rules fires in neuron nrp and at which time depends on the

contents of the neuron at time t. There are the two possible cases.

(i) The number of spikes in neuron nrp at time t is 0. Then, the forgetting rule

a! k; F1ðxÞ consumes the single spike present in the neuron, at time t + 2, with

probability 1.

(ii) The number of spikes in neuron nrp at time t is 2k with k [ 0. Then, the rule

aðaaÞþ ! a; F1ðxÞ fires at time t + 2 with probability 1, depositing one spike in

neuron li
3.

Notice that both rules present in neuron nrp consume an odd number of spikes and

then, once a rule is applied, no other rule in such neuron is enabled anymore.

In the case (i) only one spike reaches neuron li
3 at time t + 2, and this spike is

consumed, with probability 1, by using the forgetting rules, at time t + 3. Also,

only one spike is deposited in neuron li
5 at time t + 3, which fires, with

probability 1, at time t + 4 depositing one spike in neuron nlk.
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In the case (ii), two spikes are deposited in neuron li
3 at time t + 2, which enable

the rule a2 ! a; F1ðxÞ: Neuron li
3 then fires, with probability 1, at time t + 3,

depositing one spike in neuron nlj and one spike in neuron li
5. Neuron li

5 has two

spikes at time t + 3 which are consumed, with probability 1, by the forgetting

rule a2 ! k; F1ðxÞ at time t + 4.

Starting from the supposed configuration P can only execute, with probability

1, the above described transitions. Therefore, P reaches, with probability 1, the

configuration that corresponds to the state of M after the instruction li has been

executed.

The execution of an instruction (ADD or SUB) in M followed by the HALT instruction is

simulated in P by simulating the corresponding instruction (ADD or SUB) as described

above and then sending 1 spike to the neuron nlh. By construction, neuron nlh does not have

any outgoing synapse to other neurons. Hence, the firing of its rule a! a; F1ðxÞ consumes

the spike without sending any. Thus, also in this case P halts in a configuration that

correspond to the situation of M when the register machine halts.

From the above description, it is clear that P can be composed using the presented

modules in such a way that can simulate each computation of M and each computation in

P can be simulated in M. Therefore, the Theorem follows.

A remark concerns the dashed neurons shown in Figs. 1–3. They represent the neurons

shared among the modules. In particular, this is true for the neurons corresponding to the

registers of M. Each neuron nrp, with p 2 f2; 3; . . .;mg subject of a SUB instruction sends a

spike to several, possibly to all, neurons li
3, i = 0,1, … ,n, but only one of these also

receives at same time a spike from the corresponding neuron li
1. In all other cases, the other

neurons forget the unique received spike.

A last comment closes the proof—it concerns the probabilities of the computations in

P. Each numbers x 2 NðPÞ is obtained with a probability p(x) greater than zero. However

not all the numbers in N(P) are obtained in P with the same probability. Indeed, for every

computation c in M such that Out(c) = x, there is a probability 2�uc that P simulates

exactly such computation where uc is the number of non-deterministic ADD instructions

executed in c. Therefore, the overall probability px is given by
P

c2MjOutðcÞ¼x 2�uc :

5 Experiments on the reliability of SSN P systems

The SSN P system P constructed in the proof of Theorem 1 works correctly because of the

appropriate choice of the probability distributions for the firing times associated to the rules

in the neurons. In fact, the chosen distributions constrain the possible computations of P in a

way that the register machine M is able to simulate all the computations of P and vice versa.

It was crucial in Theorem 1 that some of the chosen probability distributions had zero

variance. It is interesting to understand what happens to the correctness of the computation

when this is not true anymore. In other words, what happens if we use the modules defined

in Theorem 1 but we select, for all of them, a value of r2 [ 0? In informal words, this

corresponds to increase the degree of non-synchronization in the constructed SSN P sys-

tem: more variance is admitted for the distributions, more non-synchronous is the obtained

system. As mentioned in the Introduction, in some cases asynchronous spiking neural P

systems are not universal (Cavaliere et al. 2007b), so we conjecture that having distribu-

tions with non-zero variance makes more difficult (if not impossible) to simulate a register

machine, with good ‘‘reliability’’.

464 M. Cavaliere, I. Mura

123



Therefore, from a computational point of view it is interesting to understand how the

asynchrony present in the system influences its ability to correctly simulate a register

machine. Moreover, considering distributions with non-zero variance is interesting also

from a biological point of view: spiking in neurons is the result of biochemical reactions,

which are inherently stochastic processes, hence they generally have a non-zero variance

associated to their distributions.

As it has been shown in Theorem 1, by using r2 = 0, each of the considered SSN P

modules simulates the corresponding register machine instruction. When r2 [ 0 such an

equivalence may not exists anymore, since the synchronization of the neurons in the

modules is crucial. For example, consider the following transitions of the module corre-

sponding to the deterministic ADD instruction, as shown in Fig. 1. Neurons li
1 and li

2

simultaneously receive 1 spike, but it may happen that the rule in li
1 neuron fires at time t

and the one in neuron li
2 fires at time t + d, where d depends on r2 and may be large

enough to make the two spikes in neuron nrp to be consumed, one after the other, without

actually increasing the number of spikes in neuron nrp as it should be done for a proper

simulation of the ADD instruction.

For an SSN P systems P constructed as described in Theorem 1 we define the notion of

correct simulation of a single instruction of the register machine M. We say that P
simulates correctly the instruction with label li of M (suppose that li is followed by the

instruction with label lj) when the following thing is true. If P starts from the configuration

that corresponds to the configuration of M when instruction li is started, then P executes a

sequence of transitions that leads to the configuration of P that corresponds to that of M
after the instruction li has been executed and, during these transitions, the contents of all

the neurons of P, except nli and nlj, have not been modified.

Let pADD, pADD–ND and pSUB be the probability that P simulates correctly a deter-

ministic ADD instruction, a non-deterministic ADD instruction and the SUB instruction of M,

respectively. Theorem 1 shows that, when r2 = 0 is used, we have that pADD, pADD–ND and

pSUB are all equal to 1. When r2 [ 0, this is not true anymore. To quantitatively evaluate

the effect of the variance r2 we have developed a simulator of SSN P systems, based on the

Möbius modeling framework (Clark et al. 2001).

We report the outcome of simulation experiments conducted to evaluate probabilities

pADD, pADD–ND and pSUB when varying the variance r2 [ 0. We present in Fig. 4 the

obtained results for pADD, pADD–ND and pSUB when r2 is varied in the range [0.01,0.1].

These probabilities have been computed with 10000 simulation batches for every value of

r2, with confidence level of 95%. The width of the confidence intervals for the simulation

results is in each case below 0.1%, too narrow to be shown in Fig. 4.

To give a quantitative feeling to the reader, we underline this well-known fact: the

probability that a random sample of a random variable distributed as N(l,r2) is far from l

Fig. 4 Probabilities pADD, pADD–ND and pSUB for values of r2 in [0.01,0.1]
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more than r is about 0.3, more than 2r is about 0.05 and more than 3r is about 0.003. For

instance, when r2 = 0.1, a random sample drawn from distribution F1(x) will have

probability 0.3 of being outside interval [0.7,1.3] and probability 0.05 of being outside

interval [0.4,1.6]. Such variability brings asynchrony in the considered instruction modules

and this makes possible many transitions, which would not occur if r2 = 0. Therefore, it is

not surprising that probabilities pADD, pADD–ND and pSUB decrease as r2 increases (as Fig. 4

shows).

From Fig. 4 it is also possible to observe that probabilities pADD, pADD–ND and pSUB are

close to 1 (i.e., the corresponding instructions are simulated correctly) when r2 takes

values in the lower part of the considered range of variation. This result supports the idea

that P is able to simulate correctly, with high probability, long computations of the register

machine M even for values of r2 [ 0.

To understand more precisely how P can simulate M in a reliable way, when a non-

negative variance r2 is considered, we define a probability metric called the reliability of

P, which we use to characterize the ability of P to compute correctly a number in Out(M).

The reliability of a system is defined as a function R(t), t C 0, which expresses the

probability that in the interval of time [0,t] the system has been working correctly, sup-

posing that the system was working correctly at time t = 0 (this follows the standard

definition of reliability. See, e.g., Laprie 1995). The definition of the correct behavior of the

system has to be given with reference to a specification of the system, or alternatively can

be given with respect to another system, which is assumed to be always correct. We choose

the second approach: In what follows, we shall evaluate the reliability of the SSN P system

P (when varying r2) by comparing the sequences of transitions performed by P against

the ones that are performed by a register machine M.

Precisely, we define the reliability RP
M(n) as the probability that P simulates correctly a

sequence of n instructions executed by M, when M starts from the initial configuration and

P starts from the corresponding one.

In what follows we experiment on a particular SSN P system (and on a particular

computed set of numbers) how the variance of firing rules distribution times systems

affects the reliability. For this purpose we consider the set of natural numbers Pow2 ¼
fnjn ¼ 2m;m� 0g that is the set of natural numbers that are power of 2 (actually, Pow2 is

also a non-semilinear set of natural numbers). The set Pow2 can be computed, for instance,

by the register machine M0 ¼ ð2; fl0; l1; . . .; l8; lhg; l0; lh; IÞ; which moves the contents of

register 1 to register 2 and back, and, in this latter steps, doubles the contents; ADD with

label l1 is a ‘‘dummy’’ instruction, used only for the non-deterministic choice between

continuation of the computation or halting: the object added is, in fact, subtracted again in

the SUB; at l2 or l8.Instructions I are the following ones:

l0: ðADDðr1Þ; l1; l1Þ
l2: ðSUBðr1Þ; l3; l3Þ
l4: ðADDðr2Þ; l3; l3Þ
l5: ðSUBðr2Þ; l6; l1Þ
l6: ðADDðr1Þ; l7; l7Þ
l7: ðADDðr1Þ; l5; l5Þ
l8: ðSUBðr1Þ; lh; lhÞ
lh: ðHALTÞ
Let P be the SSN P system that corresponds to M, built as described in Theorem 1,

using the modules presented in Figs. 1–3 and having r2 [ 0.
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We evaluate the function RM0
P ðnÞ by using simulations for values of r2 close to 0.01. We

show in Fig. 5 the simulation results, which were computed with 100000 batches

of simulation for each considered value of r2, with a confidence level of 95%. The width

of confidence intervals is within 5% of the estimated values (they are not shown in Fig. 5

for the sake of clarity).

The reliability functions plotted in Fig. 5 show that, as r2 increases, P has higher and

higher probability of performing incorrect simulations. However, for r2 = 0.01, the

probability that P is able to simulate correctly computations of M0 composed by 15.000

instructions is still quite high, 0.9. For such value of r2, the value of the reliability function

at n = 1000 is of about 0.996. This means that, if we restrict our attention to the com-

putations of M0 that are composed by less than 1000 instructions and consider r2 = 0.01,

then we observe that P can simulate correctly these computations with probability 0.996.

We can also use the above described procedure to design systems with arbitrary reli-

ability. In fact, constructing an opportune Fig. 5, one can identify, for an arbitrary register

machine M, the maximal value of r2 for which is possible to construct, using the approach

given in Theorem 1, an SSN P system P with a reliability RM
P(n) that is at least k, with k

an arbitrarily chosen constant 0 B k B 1.

Finally, it is important to mention that, for a given register machine M, several

equivalent SSN P systems can be constructed, using different constructions (Theorem 1

shows only one of them). These SSN P systems, even equivalent from a computational

point of view, can have very different reliability. A way to get different SSN P systems,

with different reliability, is, for instance, to construct different modules to simulate the

register machine instructions.

For instance, consider the module shown in Fig. 6, for which we define

F1(x) = N(1,r2). It is easy to check that, when r2 = 0, the module shown in Fig. 6 (we call

it ADD2) is equivalent to the module shown in Fig. 1 (we call it ADD). In fact, both of

them, for r2 = 0, simulate correctly the (deterministic) ADD instruction of the register

machine.

Fig. 5 Reliability function RM0

P ðnÞ for different values of r2
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However, having an intermediate neuron makes the module in Fig. 6 more reliable than

the module in Fig. 1. We can check that by calculating, using the above described pro-

cedure, pADD2. This is clear from the comparison between pADD and pADD2 presented in

Fig. 7.

6 Perspectives

Constructing reliable and powerful computational devices by combining several simple

(bio-inpired) units has been studied intensively in computer science, starting from classical

cellular automata. Recently, several researchers are investigating the possibility of con-

structing fault-tolerant systems, especially computer architectures and software by using

ideas coming from nanotechnology and from biological processes (see, e.g., Heath et al.

1998).

In our case, we have investigated, in the framework of SN P systems, a kind of fault-

tolerance that concerns the possibility to obtain powerful (universal) computing devices,

when using computational units that are simple and non-synchronized. We have defined a

stochastic version of SN P systems (SSN P system) where to each rule is associated a

stochastic ‘‘waiting’’ time and we have presented a preliminary study that shows how the

degree of asynchrony (expressed as variance) among the neurons can influence the ability

of an SSN P systems to simulate/execute in a reliable way the program of a register

machine.

The topic is very general and several lines of research can be followed. The most

interesting one concerns the possibility to implement powerful computing devices (pos-

sibly, universal) using SSN P systems having a high degree of asynchrony, i.e., with

Fig. 6 An alternative SSN P module li : ðADDðrpÞ; lj; ljÞ
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distributions associated to the firing times with an high variance. When is this possible?

What is the price to pay for that? An important question that we have not answered in the

paper is the following one. Can the topology of the network influence the reliability of

the constructed system? (in this case one may find motivations and inspirations from the

topology of the real networks of neurons). Another relevant question: Can the redundancy

(i.e., number of neurons and connections) help in obtaining more reliable systems? This

appears to be true, at least in view of the better reliability (Fig. 7) of the module presented

in Fig. 6 compared to that of the module shown in Fig. 1. How much redundancy can help

and what is the best way to use redundancy? In this respect we expect to find classes of

SSN P systems, with large asynchrony, where it is possible to encode arbitrarily long

computations, with arbitrarily small error, by using an unbounded number of neurons (for

instance, by following the approaches proposed in Soloveichik et al. (2008), Zavattaro and

Cardelli (2008) where reliable computations have been encoded using chemistry).

Another line of research concerns the study of class of SSN P system where reliability

can be analytically investigated. For instance, in case of exponential distributions, one

should be able to construct an equivalent Markov chain and then studying in an analytical

manner the reliability of the system. Are there other cases where this is possible? In

general, as seen in Sect. 5, there is a link between the type of transitions executed and the

reliability of the system (not all transitions are equally relevant/dangerous for the reliability

of an SSN P system). Is there a possibility to limit the number of certain type of transi-

tions? (this is, of course, very much linked to the number of minimal instructions of a

certain type that one has to use in a register machine program—hence one may find links

between reliability and Kolmogorov complexity).
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