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Abstract We consider the possibility of using spiking neural P systems for solving

computationally hard problems, under the assumption that some (possibly exponentially

large) pre-computed resources are given in advance. In particular, we propose two uniform

families of spiking neural P systems which can be used to address the NP-complete

problems SAT and 3-SAT, respectively. Each system in the first family is able to solve all the

instances of SAT which can be built using n Boolean variables and m clauses, in a time

which is quadratic in n and linear in m. Similarly, each system of the second family is able

to solve all the instances of 3-SAT that contain n Boolean variables, in a time which is cubic

in n. All the systems here considered are deterministic.

Keywords Membrane computing � Pre-computed resourses � SAT �
3-SAT � Spiking neural P systems

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in (Ionescu et al.

2006b) as a new class of distributed and parallel computing devices, inspired by the

neurophysiological behavior of neurons sending electrical impulses (spikes) along axons to

other neurons. SN P systems can also be viewed as an evolution of P systems (Păun 1999;

Păun 2000; Păun 2002; Păun and Rozenberg 2002; http://ppage.psystems.eu/) corre-

sponding to a shift from cell-like to neural-like architectures. We recall that this biological
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background has already led to several models in the area of neural computation, e.g., see

(Gerstner and Kistler 2002; Maass 2002; Maass and Bishop 1999).

In SN P systems the cells (also called neurons) are placed in the nodes of a directed

graph, called the synapse graph. The contents of each neuron consist of a number of copies

of a single object type, called the spike. Every cell may also contain a number of firing and

forgetting rules. Firing rules allow a neuron to send information to other neurons in the

form of electrical impulses (also called spikes) which are accumulated at the target cells.

The applicability of each rule is determined by checking the contents of the neuron against

a regular set associated with the rule. In each time unit, if a neuron can use some of its rules

then one of such rules must be used. The rule to be applied is non-deterministically chosen.

Thus, the rules are used in a sequential manner in each neuron, but neurons function in

parallel with each other. Observe that, as usually happens in membrane computing, a

global clock is assumed, marking the time for the whole system, hence the functioning of

the system is synchronized. When a cell sends out spikes it becomes ‘‘closed’’ (inactive)

for a specified period of time, that reflects the refractory period of biological neurons.

During this period, the neuron does not accept new inputs and cannot ‘‘fire’’ (that is, emit

spikes). Another important feature of biological neurons is that the length of the axon may

cause a time delay before a spike reaches its target. In SN P systems this delay is modeled

by associating a delay parameter to each rule which occurs in the system. If no firing rule

can be applied in a neuron, there may be the possibility to apply a forgetting rule, that

removes from the neuron a predefined number of spikes.

Formally, a spiking neural membrane system (SN P system, for short) of degree m C1,

as defined in (Ionescu et al. 2006a) in the computing version (i.e., able to take an input and

provide and output), is a construct of the form

P ¼ ðO; r1; r2; . . .; rm; syn; in; outÞ;
where:

1. O = {a} is the singleton alphabet (a is called spike);

2. r1; r2; . . .; rm are neurons, of the form ri ¼ ðni;RiÞ; 1� i�m; where

(a) ni� 0 is the initial number of spikes contained in ri;
(b) Ri is a finite set of rules of the following two forms:

(1) firing (also spiking) rules E=ac!a; d;where E is a regular expression over

a, and c� 1; d� 0 are integer numbers; if E = ac, then it is usually written

in the simplified form: ac!a; d; similarly, if d = 0 then it can be omitted

when writing the rule;

(2) forgetting rules as!k; for s C1, with the restriction that for each rule

E=ac ! a; d of type (1) from Ri, we have as 62 LðEÞ (the regular language

defined by E);

3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg; with ði; iÞ 62 syn for 1� i�m; is the directed

graph of synapses between neurons;

4. in; out 2 f1; 2; . . .;mg indicate the input and the output neurons of P, respectively.

A firing rule E=ac ! a; d 2 Ri can be applied in neuron ri if it contains k Cc spikes,

and ak 2 LðEÞ: The execution of this rule removes c spikes from ri (thus leaving k-c
spikes), and prepares one spike to be delivered to all the neurons rj such that ði; jÞ 2 syn: If

d = 0 then the spike is immediately emitted, otherwise it is emitted after d computation

steps of the system. As stated above, during these d computation steps the neuron is closed,
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and it cannot receive new spikes (if a neuron has a synapse to a closed neuron and tries to

send a spike along it, then that particular spike is lost), and cannot fire (and even select)

rules. A forgetting rule as ! k can be applied in neuron ri if it contains exactlys spikes; the

execution of this rule simply removes all the s spikes from ri.

A common generalization of firing rules was introduced in (Chen et al. 2006c; Păun and

Păun 2007) under the name of extended rules. These rules are of the form E=ac ! ap; d;
where c� 1; p� 1 and d C0 are integer numbers. The semantics of these rules is the same

as above, with the difference that now p spikes are delivered (after d time steps) to all

neighboring neurons.

The initial configuration of the system is described by the numbers n1; n2; . . .; nm of

spikes present in each neuron, with all neurons being open. During the computation, a

configuration is described by both the contents of each neuron and its state, which can be

expressed as the number of steps to wait until it becomes open (zero if the neuron is

already open). Thus, hr1=t1; . . .; rm=tmi is the configuration where neuron ri contains ri� 0

spikes and it will be open after ti� 0 steps, for i ¼ 1; 2; . . .;m; with this notation, the initial

configuration of the system is C0 ¼ hn1=0; . . .; nm=0i:
A computation starts in the initial configuration. In order to compute a function f :

N!N (functions of the kind f : Na ! N
b; for any fixed pair of integers a� 1 and b� 1;

can also be computed by using appropriate bijections from N
a and N

b to NÞ; a positive

integer number is assigned as input to the specified input neuron in. In the original model,

as well as in some early variants, the number is encoded as the number of time steps

elapsed between the insertion of two spikes into the neuron. To pass from a configuration

to another one, for each neuron a rule is chosen among the set of applicable rules, and is

executed. Generally, a computation may not halt. However, in any case the output of the

system is considered to be the time elapsed between the arrival of two spikes in the

designated output cell out. Other possibilities exist to encode input and output numbers, as

discussed in (Ionescu et al. 2006a): as the number of spikes contained in neuron in (resp.,

out) at the beginning (resp., the end) of the computation, as the number of spikes fired in a

given interval of time, etc.

A useful extension to the standard model defined above is to consider several input

neurons, as already done in (Leporati et al. 2008, 2007a), so that the introduction of the

encoding of an instance of the problem to be solved can be done in a faster way, intro-

ducing parts of the code in parallel in various input neurons. Formally, we can define an SN

P system of degree (m, ‘), with m C1 and 0� ‘�m; just like a standard SN P system of

degree m, the only difference being that now there are ‘ input neurons denoted by

in1; . . .; in‘: A valid input for an SN P system of degree ðm; ‘Þ is a set of ‘ binary sequences,

that collectively encode an instance of a problem.

The previous definitions cover many types of systems/behaviors. By neglecting the

output neuron we can define accepting SN P systems, in which the natural number (or the

vector of natural numbers, in the case of systems having ‘[ 1 input neurons) given in

input is accepted if the computation halts. On the other hand, by ignoring the input neuron

(and thus starting from a predefined input configuration) we can define generative SN P

systems. In (Ionescu et al. 2006b) it was shown that generative SN P systems are universal,

that is, can generate any recursively enumerable set of natural numbers. Moreover, a

characterization of semilinear sets was obtained by spiking neural P systems with a

bounded number of spikes in the neurons. These results can be obtained also for some

restricted forms of SN P systems: (Ibarra et al. 2007) shows that one of the following

features can be avoided while keeping universality: time delay greater than 0, forgetting

rules, outdegree of the synapse graph greater than 2, and regular expressions of complex
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form. In (Garcı́a-Arnau et al. 2007) it is shown that universality is kept even if we remove

some combinations of two of the above features. These results are true both for the

generative and the accepting cases. Finally, in (Păun et al. 2007) the behavior of SN P

systems on infinite strings and the generation of infinite sequences of 0 and 1 was

investigated, whereas in (Chen et al. 2006a) SN P systems were studied as language

generators (over the binary alphabet f0; 1gÞ:
Spiking neural P systems can also be used to solve decision problems, both in a semi-

uniform and in a uniform way. When solving a problem Q in the semi–uniform setting, for

each specified instance I of Q we build in a polynomial time (with respect to the size of IÞ
an SN P system PQ;I ; whose structure and initial configuration depend upon I ; that halts

(or emits a specified number of spikes in a given interval of time) if and only if I is a

positive instance of Q. On the other hand, a uniform solution of Q consists in a family

fPQðnÞgn2N of SN P systems such that, when having an instance I 2 Q of size n, we

introduce a polynomial (in n) number of spikes in a designated (set of) input neuron(s) of

PQðnÞ and the computation halts (or, alternatively, a specified number of spikes is emitted

in a given interval of time) if and only if I is a positive instance. The preference for

uniform solutions over semi-uniform ones is given by the fact that they are more strictly

related to the structure of the problem, rather than to specific instances. Indeed, in the semi-

uniform setting we do not even need any input neuron, as the instance of the problem is

embedded into the structure (number of spikes, graph of neurons, rules) from the very

beginning. If the instances of a problem Q depend upon two parameters (as is the case of

SAT, the satisfiability of propositional formulas expressed in the conjunctive normal form,

where n is the number of variables and m the number of clauses in a given formula), then

we will denote the family of SN P systems that solves Q by fPQðhn;miÞgn;m2N; where

hn;mi indicates the positive integer number obtained by applying an appropriate bijection

(for example, Cantor’s pairing) from N
2 to N:

The present paper considers SN P systems for solving decision problems, continuing the

papers (Leporati et al. 2007a, 2007b, 2008), where one deals with the NP-complete

decision problems SUBSET SUM, SAT and 3-SAT. For all these problems, constant time and

polynomial time solutions were provided by using SN P systems constructed in the semi-

uniform setting, working in a non-deterministic way, and also using a series of ingredients

added to SN P systems of the standard form: extended rules, the possibility to have a

choice between spiking rules and forgetting rules, etc. Here we consider a different situ-

ation: we provide uniform constructions for SAT and 3-SAT (two uniform constructions for

solving SAT were also presented in (Leporati et al. 2008, 2007b), but the idea of the

construction given here is different), assuming that a pre-computed SN P system, possibly

having an exponential size with respect to the size of the instances of the problem we want

to solve, is given in advance. All the systems we will propose work in a deterministic way.

We will not specify how our pre-computed resources could be built. However, we

require that such pre-computed systems have a structure which is as regular as possible,

and that they do not contain neither ‘‘hidden information’’ that simplify the solution of

specific instances, nor an encoding of all possible solutions (that is, an exponential amount

of information that allows to cheat while solving the instances of the problem). These

requirements were inspired by open problem Q27 in (Păun 2002). Let us note in passing

that the regularity of the structure of the system is related to the concept of uniformity, that

in some sense measures the difficulty of constructing the system. For example, when

considering families fCðnÞgn2N of Boolean circuits, or other computing devices whose

number of inputs depends upon an integer parameter n C 1, it is required that for each

n 2 N a ‘‘reasonable’’ description (see Balcázar et al. 1988–1990) for further discussion on
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this topic) of C(n), the circuit of the family which has n inputs, can be derived in poly-

nomial time and logarithmic space (with respect to n) by a deterministic Turing machine

whose input is 1n, the unary representation of n. In this paper we will not delve further into

the details concerning uniformity; we just rely on reader’s intuition, by stating that it

should be possible to build the entire structure of the system using only a polynomial

amount of information and a controlled replication mechanism, as it already happens in P

systems with cell division.

The rest of the paper is organized as follows. In Sect. 2 we present a uniform family

fPSATðhn;miÞgn;m2N of SN P systems, where for each n;m 2 N the system PSATðhn;miÞ
solves all the instances of SAT which are composed by m clauses, built using n Boolean

variables. Section 3 illustrates a uniform family fP3SATðnÞgn2N of SN P systems such that

every P3SATðnÞ solves all the instances of 3-SAT which can be built using n Boolean

variables. Section 4 concludes the paper and gives some directions for future research.

2 Solving SAT

Let us consider the NP-complete decision problem SAT (Garey and Johnson 1979, p. 39).

The instances of SAT depend upon two parameters: the number n of variables, and the

number m of clauses. We recall that a clause is a disjunction of literals, occurrences of xi or

:xi; built on a given set X ¼ fx1; x2; . . .; xng of Boolean variables. Without loss of gen-

erality, we can avoid the clauses in which the same literal is repeated or both the literals xi

and :xi; for any 1� i� n; occur. In this way, a clause can be seen as a set of at most n
literals. An assignment of the variables x1; x2; . . .; xn is a mapping a : X ! f0; 1g that

associates to each variable a truth value. The number of all possible assignments to the

variables of X is 2n. We say that an assignment satisfies the clause C if, assigned the truth

values to all the variables which occur in C, the evaluation of C (considered as a Boolean

formula) gives 1 (true) as a result.

We can now formally state the SAT problem as follows.

Problem 1. NAME: SAT.

– INSTANCE: a set C ¼ fC1;C2; . . .;Cmg of clauses, built on a finite set fx1; x2; . . .; xng of

Boolean variables.

– QUESTION: is there an assignment of the variables x1; x2; . . .; xn that satisfies all the

clauses in C?

Equivalently, we can say that an instance of SAT is a propositional formula cn ¼
C1 ^ C2 ^ . . . ^ Cm; expressed in the conjunctive normal form as a conjunction of m
clauses, where each clause is a disjunction of literals built using the Boolean variables

x1; x2; . . .; xn: With a little abuse of notation, from now on we will denote by SAT(n,m) the

set of instances of SAT which have n variables and m clauses.

Let us build a uniform family fPSATðhn;miÞgn;m2N of SN P systems such that for all

n;m 2 N the system PSATðhn;miÞ solves all the instances of SAT (n,m) in a number of steps

which is quadratic in n and linear in m. All the systems PSATðhn;miÞ will work in a

deterministic way.

Because the construction is uniform, we need a way to encode any given instance cn of

SAT(n, m). As stated above, each clause Ci of cn can be seen as a disjunction of at most n
literals, and thus for each j 2 f1; 2; . . .;mg either xj occurs in Ci, or :xj occurs, or none of

them occurs. In order to distinguish these three situations we define the spike variables aij,
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for 1� i�m and 1� j� n; as variables whose values are amounts of spikes, and we assign

to them the following values:

aij ¼
a if xj occurs in Ci

a2 if :xj occurs in Ci

k otherwise:

8
<

:
ð1Þ

In this way, clause Ci will be represented by the sequence ai1ai2. . .ain of spike variables;

in order to represent the entire formula cn we just concatenate the representations of the

single clauses, thus obtaining the sequence a11a12. . .a1na21a22. . .a2n. . .am1am2. . .amn: As an

example, the representation of c3 ¼ ðx1 _ :x2Þ ^ ðx1 _ x3Þ is the sequence aa2kaka:
The (pre-computed) SN P system that solves all the possible instances of SAT (n, m) is

depicted in a schematic way in Fig. 1. The system is composed by n + 5 layers. The first

layer (numbered by 0) is composed by a single input neuron, that we use to insert the

representation of the instance cn 2SAT(n, m) to be solved. At each computation step we

insert 0, 1 or 2 spikes into the system, according to the value of the spike variable aij we are

considering in the representation of cn. Let us note that in this way we are simulating the

insertion of a string whose symbols are taken from a ternary alphabet (where each symbol

is used to distinguish one of the three possible situations mentioned in (1)) by using the

multiplicity of a single symbol, the spike. However this may be perceived as a betrayal of

the original spirit underlying SN P systems, stating that a single symbol should be used;

indeed, to the best knowledge of the authors this trick has never been used before in the

literature concerning SN P systems. Hence, an alternative approach consists in using two

input neurons, as depicted in Fig. 2; in this way, at each step we are able to insert 0,1 or 2

spikes in the system by using two spike trains, each containing 0 or 1 spikes in each

position, as usually done in the literature. Going back to Fig. 1, the input is duplicated

when going from layer 0 to layer 1. Note that layer 1, as well as the subsequent n-1 layers,

is composed by a sequence of n neurons, so that the layer can contain the representation of

one clause of the instance. When layer 1 has acquired an entire clause, it starts to duplicate

it while sending it to layer 2; after n computation steps the duplication is complete. The

computation proceeds towards layer 3, where the clause is further duplicated, and so on,

until we obtain 2n copies of the clause in layer n. Each subsystem contained in this layer is

bijectively associated to one possible assignment to variables x1; x2; . . .; xn: Thus, all

possible assignments are tested in parallel against the clause; those assignments that satisfy

the clause produce a number of spikes which are elaborated by the corresponding neuron 1

(that occurs in the same row, in layer n + 1), so that a single spike reaches the subsequent

neuron 2 and is accumulated in the associated neuron 3, that operates like a counter. When

the first clause of cn has been processed, the second starts to enter in the subsystems

contained in layer n. After n steps the second clause is entirely contained in these sub-

systems, and all possible assignments are tested. Those which satisfy the clause produce a

single spike in the corresponding neuron 2, which is once again accumulated in the

associated neuron 3. When all the m clauses of cn have been processed, neurons 3 in layer

n + 3 contain each the number of clauses which are satisfied by the corresponding

assignment. The neurons that contain m spikes fire, sending one spike to neuron out, thus

signalling that their corresponding assignment satisfies all the clauses of the instance.

Neuron out operates like an OR gate: it fires if and only if it contains at least one spike, that

is, if and only if at least one of the assignments satisfies all the clauses of cn. Hence, the

instance given in input is positive if and only if one spike is emitted to the environment

after exactly n2 þ nmþ 4 steps.
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Note the important fact that introducing the input takes nm steps, hence the computation

cannot last less than nm steps (and, for the given construction, we cannot separate the

introduction of the data from the actual computation). It should also be noted that the

number of neurons of the system constructed above is exponential in n.

As we will see, some technicalities are needed to make the system produce exactly one

spike in one of the neurons labelled with 2 when the corresponding assignment satisfies the

clause. The core of the system is composed by the subsystems that occur in layer n, together

with the so called generator (see Fig. 1), that produces the spikes needed to check what

assignments satisfy the clause under consideration. To see how this core works, consider the

system depicted in Fig. 3, which is a more detailed version of the system illustrated in Fig. 1

for instances built with two Boolean variables. Layer 2 is composed by four subsystems,

corresponding to all possible assignments of truth values to the Boolean variables x1 and x2;

each subsystem is composed by n = 2 neurons, one for each Boolean variable.

In Fig. 3 only the subsystem that corresponds to the assignment x1 = FALSE and x2 = TRUE

is detailed, together with the details of the corresponding neurons in the subsequent layers,

and of the generator. As we can see in the figure, the generator is composed by two

neurons, labelled with + and -, that produce one spike every n steps. This spike is

Fig. 1 The structure of the SN P system PSATðhn;miÞ that uniformly solves all the instances of SAT(n,m)

Fig. 2 An alternative way to
insert the instance of SATðhn;miÞ
into the system
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quadruplicated by the neurons labelled by e, that on their turn send their spikes to the

neurons that compose the subsystems in layer n. These last neurons are of two types: f and

t; the types indicate that the corresponding Boolean variable is assigned with the Boolean

value TRUE or FALSE, respectively. The assignment is performed by sending 3 spikes to all

the neurons labelled with t, and 4 spikes to all the neurons labelled with f. This means that

neurons e in the generator will have three synapses going to neurons t and four synapses

towards neurons f. All these spikes arrive every n computation steps, when the spikes

indicated by the spike variables aij that correspond to a clause of cn are contained into the

subsystems of layer n. This process is started by putting one spike in neuron s at the

beginning of the computation. The delay associated with the rule contained in neuron s
allows to send the first spikes from neurons e to neurons t and f exactly when the first

clause is contained in layer n.

Recall our encoding of literals in the clauses (1): we have 0 spikes if the variable does

not occur in the clause, 1 spike if it occurs non-negated, and 2 spikes if it occurs negated.

These spikes are added with those representing the assignments, and the possible results

are illustrated in Table 1. From this table we can see that if a neuron labelled with t
receives a total number of 4 spikes then the corresponding variable occurs non-negated in

the clause and is assigned the truth value TRUE; we can immediately conclude that the

clause is satisfied, and thus the neuron sends one spike towards the next layer. Similarly, if

a neuron labelled with f receives 6 spikes then the corresponding variable occurs negated in

the clause and is assigned the truth value FALSE; also in this case we can immediately

conclude that the clause is satisfied, and the neuron signals this event by sending one spike

towards the next layer. In all the other cases we cannot conclude anything on the truth

value of the clause, and thus no spike is emitted.

All the spikes which are emitted by neurons t and f are propagated through the neurons

that compose layer n, until they reach the corresponding neuron 1. Such a neuron is

designed in order to retain only one spike from those received by layer n; indeed, when a

second spike arrives, the rule a2=a!a; 0 sends it to neuron 2, where it is deleted. When the

last spike coming from layer n (concerning the clause under consideration) reaches neuron

Fig. 3 Excerpt of the structure of the SN P system PSATðh2;miÞ: All delays equal to 0 in firing rules have
been omitted in order to limit the size of the figure
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1, also 3 spikes come from neurons b, thus producing a total of 3, 4 or 5 spikes in neuron 1.

If the total number of spikes is 3, then no spike was present in neuron 1 during the last

computation step, and no spike arrived from layer n; this means that the 3 spikes come only

from the neurons labelled with b, and thus they are removed by applying the forgetting rule

a3 ! k: On the other hand, if one spike was present in neuron 1 during the last compu-

tation step and no spike arrives from layer n (or, alternatively, no spike was present and one

spike arrives) then the total number of spikes that occur in neuron 1 is 4, and the neuron

fires one spike to neuron 2 to signal the fact that the clause is satisfied by the assignment.

This firing occurs simultaneously with the emission of one spike from c, so that during the

next computation step neuron 2 also fires, confirming to neuron 3 that the clause was

satisfied. Finally, if one spike was already present in neuron 1 and a new spike arrives from

layer n then the total number of spikes is 5 and neuron 1 fires towards neuron 2, that once

again will confirm the satisfiability of the clause by emitting one spike towards neuron 3

during the next computation step. In the meantime, another clause will have reached layer

n and a new check with all the possible assignments will have started. As stated above,

each time a clause is satisfied by a given assignment a new spike is deposited in the

corresponding neuron 3. When one of these neurons contain m spikes, it fires; hence, the

number of spikes that will reach neuron out is equal to the number of assignments that

satisfy all the clauses of cn:
As a final note on the functioning of the system, we observe that the last neurons that

compose the subsystems in layer n are labelled with t0 and f0, rather than with t and f. The

difference between these two kinds of neurons lies in the rule that processes two spikes: in

neurons t and f these spikes are simply propagated by the rule a2!a2; 0: whereas in

neurons t0 and f0 only one spike is propagated (whereas the other one is removed from the

system) by the rule a2 ! a; 0; so that neuron 1 always receives at most one spike from

layer n, during each computation step.

From the description given above we can see that the structure of the system is very

regular, and does not contain ‘‘hidden information’’ that would simplify the solution of the

problem for some pre-selected instances. Any possible instance cn of SAT(n,m) can be

processed; it is completely read by the system in nm computation steps, and the solution

(one spike if cn is satisfiable, zero spikes otherwise) is produced after n2 þ nmþ 4 com-

putation steps.

Someone could find an annoying problem the fact that, after computing the solution of

the instance given in input the computation does not halt, since the generator continues to

produce its spikes every n-th computation step, that are subsequently removed from the

system by neurons 1. Moreover, neuron out fires as many times as the number of

assignments that satisfy all the clauses of the instance. However, it is possible to modify

the system in such a way that it delivers to the environment at most one spike (if desired,

Table 1 Number of spikes
resulting from the assignment
in the neurons of layer n, and its
effect on the truth value of the
clause

Assign. to xj Literal No. of spikes Truth value of Ci

Neuron t True xj 62 Ci 3 + 0 = 3 ?

True xj 2 Ci 3 + 1 = 4 True

True :xj 2 Ci 3 + 2 = 5 ?

Neuron f False xj 62 Ci 4 + 0 = 4 ?

False xj 2 Ci 4 + 1 = 5 ?

False :xj 2 Ci 4 + 2 = 6 True
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the spike that would eventually be delivered to the environment can be sent to a predefined

output neuron instead), and then the computation halts after a polynomial number of steps.

The proposed modifications are simple: we just add two intermediate neurons with a rule of

type a!a; 0 in between each neuron 3 and neuron out. In this way we add a total of 2 � 2n

neurons to the system, and neuron out always receives an even number of spikes. The rule

of neuron out is changed to ðaaÞþ=a! a; 0; so that it can fire only when an even number

of spikes is present. If and when the neuron fires for the first time, the number of spikes it

contains becomes odd, thus preventing further spikings. Finally one further neuron,

labelled with stop, is added to the system, with a synapse going to the neurons of the

generator labelled with + and -. Neuron stop is initialized with a single spike at the

beginning of the computation, and contains a rule of the kind a!a; n2 þ nmþ 4; that

sends one spike to neurons + and - when the computation should halt. To these last

neurons we add the forgetting rule a2 ! k; so that when they receive the spike from neuron

stop they halt their computations. After a polynomial number of steps the spikes eventually

still contained in neurons e and in the neurons that compose layer n reach neurons 1, where

they are removed from the system.

We conclude this section by noting that even if the above modifications allow the

system to halt its computations after producing the solution, some spikes still remain in the

halting configurations; hence, the computations performed by our system cannot be con-

sidered strong halting, as defined in (Garcı́a-Arnau et al. 2007; Ibarra et al. 2007).

3 Solving 3-SAT

In this section we turn our attention to 3-SAT, which is defined just like SAT (see Problem 1),

the only difference being that now each clause contains exactly three literals. In what

follows we will sometimes equivalently say that an instance of 3-SAT is a Boolean formula

cn, built on n Boolean variables and expressed in conjunctive normal form, with each clause

containing exactly three literals. Similarly to what we did in the previous section, we will

denote by 3-SAT(n) the set of all instances of 3-SAT which can be built using n variables.

Note that the number m of clauses appearing in a SAT(n,m) problem may be very large

(e.g., exponential) with respect to n: every variable can occur negated or non-negated in a

clause, or not occur at all, and hence the number of all possible clauses is 3n (recall that we

look at clauses as sets of at most n literals, in which repetitions of the same literal and the

presence of both the negated and the non-negated form of the same variable are forbidden).

As shown in (Garey and Johnson 1979, p. 48), every instance c of SAT can be transformed

in polynomial time (with respect to n and m) into an instance c0 of 3-SAT, in such a way that

c is satisfiable if and only if c0 is satisfiable. However this transformation introduces a new

set of variables, whose number is polynomial in m (and thus, possibly, exponential in n).

The reason for which we are here interested into 3-SAT is that the number of possible 3-

clauses which can be built by putting a negated or non-negated variable in each of the three

available positions is at most ð2nÞ3 ¼ 8n3; a polynomial quantity with respect to n. This

quantity is obtained by looking at a 3-clause as a triple, and observing that each component

of the triple may contain one of the 2n possible literals. If we do not allow the repetition of

literals in the clauses, and we also avoid the use of the same variable two or three times in

each clause, then the resulting number of possible clauses becomes 2n�ð2n� 2Þ�ð2n� 4Þ;
which is again Hðn3Þ: In what follows we will denote this quantity by Cl(n).

Figure 4 outlines an SN P system which can be used to solve any instance cn of 3-

SAT(n). The input to this system is once again the instance of 3-SAT we want to solve, but
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this time such an instance is given by specifying—among all the possible clauses that can

be built using n Boolean variables—which clauses occur in the instance. The selection is

performed by putting (in parallel, in the initial configuration of the system) one spike in

each of the input neurons sel1; sel2; . . .; selClðnÞ that correspond to the selected clauses.

To see how the system works, let us consider the family fMðnÞgn2N of Boolean matrices,

where M(n) has 2n rows—one for each possible assignment to the variables x1; x2; . . .; xn—

and one column for each possible 3-clause that can be built using the same variables. As

stated above, the number of columns is ClðnÞ 2 Hðn3Þ; a polynomial quantity in n. In order

to make the construction of the matrix M(n) as regular as possible, we could choose to list

all the 3-clauses in a predefined order; however, our result is independent of any such

particular ordering, and hence we will not bother further with this detail. For every j 2
f1; 2; 3; . . .; 2ng and i 2 f1; 2; . . .;ClðnÞg; the element M

ðnÞ
ji is equal to 1 if and only if the

assignment associated with row j satisfies the clause associated with column i. Table 2

shows an excerpt of matrix M(4), where each row has been labelled with the corresponding

clause; only the columns that correspond to clauses x1 _ x2 _ :x4 and :x1 _ :x2 _ x3 are

shown in details.

Let us now consider the algorithm given in pseudocode in Fig. 5. The variable res is a

vector of length 2n, whose components—which are initialized to 1—are bijectively

associated with all the possible assignments to x1; x2; . . .; xn: The components of res are

treated as flags: when a component is equal to 1, it indicates that the corresponding

assignment satisfies all the clauses which have been examined so far. Initially we assume

that all the flags are 1, since we do not have yet examined any clause. The algorithm then

considers all the columns of M(n), one by one. If the column under consideration does not

correspond to a selected clause, then it is simply ignored. If, on the other hand, it corre-

sponds to a clause which has been selected as part of the instance, then the components of

res are updated, putting to 0 those flags that correspond to the assignments which do not

satisfy the clause. At the end of this operation, which can be performed in parallel on all

Fig. 4 Sketch of a deterministic SN P system that uniformly solves all possible instances of 3-SAT(n)
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the components, only those assignments that satisfy all the clauses previously examined, as

well as the clause currently under consideration, survive the filtering process. After the last

column of M(n) has been processed, we have that the instance cn of 3-SAT(n) given in input

is satisfiable if and only if at least one assignment survives, that is, if and only if the logical

OR of all the components of res gives 1 as a result.

This algorithm can be easily transformed into a(n exponential size) Boolean circuit, that

mimics the operations performed on the matrix M(n), described by the pseudocode given in

Fig. 5. Such a circuit can then be easily simulated using the SN P system that we have

outlined in Fig. 4. This system is composed by three layers for each possible 3-clause that

can be built using n Boolean variables. Two of these layers are used to store the inter-

mediate values of vector res and the values contained in the columns of M(n), respectively.

The third layer, represented by the boxes marked with Filter in Fig. 4, transforms the

current value of res to the value obtained by applying the corresponding iteration of the

algorithm given in Fig. 5. This layer is in turn composed by three layers of neurons, as we

Table 2 An excerpt of matrix M(4). On the left we can see the assignments which are associated to the
corresponding rows of the matrix. Only the columns corresponding to the clauses x1 _ x2 _ :x4 and :x1 _
:x2 _ x3 are detailed

x1 x2 x3 x4 · · · x1 ∨ x2 ∨ ¬x4 · · · ¬x1 ∨ ¬x2 ∨ x3 · · ·
0 0 0 0 · · · 1 · · · 1 · · ·
0 0 0 1 · · · 0 · · · 1 · · ·
0 0 1 0 · · · 1 · · · 1 · · ·
0 0 1 1 · · · 0 · · · 1 · · ·
0 1 0 0 · · · 1 · · · 1 · · ·
0 1 0 1 · · · 1 · · · 1 · · ·
0 1 1 0 · · · 1 · · · 1 · · ·
0 1 1 1 · · · 1 · · · 1 · · ·
1 0 0 0 · · · 1 · · · 1 · · ·
1 0 0 1 · · · 1 · · · 1 · · ·
1 0 1 0 · · · 1 · · · 1 · · ·
1 0 1 1 · · · 1 · · · 1 · · ·
1 1 0 0 · · · 1 · · · 0 · · ·
1 1 0 1 · · · 1 · · · 0 · · ·
1 1 1 0 · · · 1 · · · 1 · · ·
1 1 1 1 · · · 1 · · · 1 · · ·
Assignments Clauses

Fig. 5 Pseudocode of the algorithm used to solve any instance of 3-SAT(n)

530 T.-O. Ishdorj, A. Leporati

123



will see in a moment. The last layer of the system is a simple OR gate, which can be easily

simulated using one neuron containing the rule a! a; 0: Note that this neuron will

continue to fire until it consumes all its spikes. An observation on how this system could be

modified in order to halt the computation just after determining whether the instance given

in input is positive or not is given in the last paragraph of this section.

The system works as follows. During the computation, spikes move from the leftmost to

the rightmost layer, and then one spike is (eventually) expelled to the environment. In the

initial configuration, every neuron in the first layer (which is bijectively associated with

one of the 2n assignments to the Boolean variables x1; x2; . . .; xnÞ contains one spike,

whereas neurons sel1; sel2; . . .; selClðnÞ contain one or zero spikes, depending upon whether

or not the corresponding clause is part of the instance cn given in input. Stated otherwise,

the user must provide one spike—in the initial configuration of the system—to every input

neuron seli that corresponds to a clause that has to be selected. In order to deliver these

spikes at the correct moment to all the filters that correspond to the i-th iteration of the

algorithm, every neuron seli contains the rule a!a; 4ði� 1Þ; whose delay is proportional to

i. In order to synchronize the execution of the system, also the neurons that correspond to

the i-th column of M(n) deliver their spikes simultaneously with those distributed by

neurons seli, using the same rules. An alternative possibility is to provide the input to the

system in a sequential way, for example as a bit string of length Cl(n), where a 1 (resp., 0)

in a given position indicates that the corresponding clause has to be selected (resp.,

ignored). In this case we should use a sort of delaying subsystem, that delivers— every

four time steps—the received spike to all the neurons that correspond to the column of M(n)

currently under consideration. Since the execution time of our algorithm is proportional to

the number Cl(n) of all possible clauses containing n Boolean variables, this modification

keeps the computation time of the entire system cubic with respect to n.

In the first computation step, all the inputs going into the first layer of filters are ready to

be processed. As the name suggests, these filters put to 0 those flags which correspond to

the assignments that do not satisfy the first clause (corresponding to the first column of

M(n)). This occurs only if the clause has been selected as part of the instance cn 2 3-SAT(n)

given in input, otherwise all the flags are kept unchanged, ready to be processed by the next

layer of filters. In either case, when the resulting flags have been computed they enter into

the second layer of filters together with the values of the second column of M(n), and the

input sel2 that indicates whether this column is selected or not as being part of the instance.

The computation proceeds in this way until all the columns of M(n) have been considered,

and the resulting flags have been computed. A final OR among all these flags reveals

whether at least one flag survived all the filtering processes, that is, whether at least one

assignment satisfies all the selected clauses.

To conclude the description of the functioning of the system, we just have to describe

how the filtering process works. This process is performed in parallel on all the flags: if the

clause Ci has been selected then an AND is performed between the value M
ðnÞ
ji (that indicates

whether the j-th assignment satisfies Ci) and the current value of the flag resj; as a result,

resj is 1 if and only if the j-th assignment satisfies all the selected clauses which have been

encountered up to now. On the other hand, if the clause Ci has not been selected then the

old value of resj is kept unaltered. This filtering process can be summarized by the

pseudocode given in Fig. 6, which is equivalent to the following Boolean function:

ð:seli ^ resjÞ _ ðseli ^ resj ^ CiÞ
Such a function can be computed by the Boolean circuit depicted in Fig. 7, that in turn

can be simulated by the SN P system illustrated in Fig. 8. Note the system represented in
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this latter figure is a generic module which is used many times in the whole system outlined

in Fig. 4, hence we have not indicated the delays which are needed in neurons seli and Ci.

Also neuron 1, which is used to negate the value emitted by neuron seli, must be activated

together with seli, that is, after 4(i-1) steps after the beginning of the computation. The

spike it contains can be reused in the namesake neuron that occurs in the next layer of

filters.

As we can see, the structure of the system that uniformly solves all the instances of 3-

SAT(n) is very regular, and does not contain ‘‘hidden information’’. For the sake of regu-

larity we have also omitted some possible optimizations, that we briefly mention here. The

first column of neurons in Fig. 4 corresponds to the initial value of vector res in the

pseudocode given in Fig. 5. Since this value is fixed, we can pre-compute part of the result

of the first step of computation, and remove the entire column of neurons from the system.

In a similar way we can also remove the subsequent columns that correspond to the

intermediate values of res, and send these values directly to the next filtering layer. A

further optimization concerns the values M
ðnÞ
ji ; which are contained in the neurons labelled

with Ci. Since these values are given in input to AND gates, when they are equal to 1 they

Fig. 6 Pseudocode of the
Boolean function computed by
the blocks marked with FILTER in
Fig. 4

Fig. 7 The Boolean circuit that
computes the function FILTER

whose pseudocode is given in
Fig. 6

Fig. 8 An SN P system that computes the function FILTER given in Fig. 6, simulating the Boolean circuit of
Fig. 7
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can be removed since they do not affect the result; on the other hand, when they are equal

to 0 also the result is 0, and thus we can remove the entire AND gate.

The total computation time of the system is proportional to the number Cl(n) of columns

of M(n), that is, H(n3). This is the reason why we focused our attention on the 3-SAT

problem rather than on SAT: as stated above, the number m of clauses in a SAT(n,m) problem

can be exponential with respect to n; this means not only that we should consider a matrix

M(n,m) which has an exponential number of columns (but whose structure is regular, and

thus from this viewpoint we should have no problems), but we should also provide in input

an exponentially long bit string to specify what clauses are part of the instance. Last but not

the least, also the computation time of the resulting system would be exponential in n.

From the description of the system it is apparent that it spikes to the environment as

many times as the number of assignments that satisfy the instance of 3-SAT given in input.

However, the system can be modified so that it halts after the first spike has been emitted,

thus transforming it to an accepting SN P system (if desired, the spike that would even-

tually be delivered to the environment can be sent to a predefined output neuron instead). It

just suffices to duplicate every neuron in the layer preceding neuron out, so that neuron out
always receives an even number of spikes. We also modify the rule of the output neuron as

ðaaÞþ=a!a; 0; so that it can fire only when an even number of spikes is present. After

neuron out has (possibly) fired for the first time, the number of spikes it contains becomes

odd and the computation halts.

4 Conclusions and directions for future research

Investigations related to the possibility of using SN P systems for solving computationally

hard problems are very recent, and are currently addressed only in a few papers. Besides

(Leporati et al. 2007a, 2007b), mentioned above, we also cite (Chen et al. 2006b), where

the idea to use a pre-computed SN P system of an arbitrarily large size, but of a rather

uniform structure, was introduced, and a way to solve SAT in constant time by means of this

model was proposed.

The present paper is a contribution to this research direction, with results dealing with

pre-computed SN P systems which are used to solve, in a uniform and deterministic

way, the NP-complete problems SAT and 3-SAT. The pre-computed systems we have used

solve the problems in a polynomial number of steps, but their size is exponential with

respect to the number n of variables of the instances given in input.

It is important to note that, as proved in (Leporati et al. 2007b), an SN P system of

polynomial size cannot solve in a deterministic way in a polynomial time an NP-complete

problem (unless P = NP) hence, under the assumption that P = NP, efficient solutions to

NP-complete problems cannot be obtained without introducing features which enhance the

efficiency (pre-computed resources, ways to exponentially grow the workspace during the

computation, non-determinism, and so on). A more careful examination of such features—

in particular, possible relations with the well known notions of uniformity traditionally

studied in the theory of circuit complexity—is a research direction of a clear interest.
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Păun Gh, Pérez-Jiménez MJ, Rozenberg G (2007) Infinite spike trains in spiking neural P systems.

Manuscript
Păun Gh, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(1):73–100
The P systems Web page: http://ppage.psystems.eu/

534 T.-O. Ishdorj, A. Leporati

123

http://www.tucs.fi/Publications/techreports/TR208.php
http://www.tucs.fi/Publications/techreports/TR208.php
http://ppage.psystems.eu/

	Uniform solutions to SAT and 3-SAT by spiking neural �P systems with pre-computed resources
	Abstract
	Introduction
	Solving SAT
	Solving 3-SAT
	Conclusions and directions for future research
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


