
Staged self-assembly: nanomanufacture of arbitrary
shapes with O(1) glues

Erik D. Demaine Æ Martin L. Demaine Æ Sándor P. Fekete Æ
Mashhood Ishaque Æ Eynat Rafalin Æ Robert T. Schweller Æ
Diane L. Souvaine

Published online: 14 March 2008
� Springer Science+Business Media B.V. 2008

Abstract We introduce staged self-assembly of Wang tiles, where tiles can be added

dynamically in sequence and where intermediate constructions can be stored for later

mixing. This model and its various constraints and performance measures are motivated by

a practical nanofabrication scenario through protein-based bioengineering. Staging allows

us to break through the traditional lower bounds in tile self-assembly by encoding the

shape in the staging algorithm instead of the tiles. All of our results are based on the

E. D. Demaine � M. L. Demaine
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA
e-mail: edemaine@mit.edu

M. L. Demaine
e-mail: mdemaine@mit.edu

S. P. Fekete
Department of Computer Science, Braunschweig University of Technology,
Muehlenpfordtstr. 23, Braunschweig 38116, Germany
e-mail: s.fekete@tu-bs.de

M. Ishaque � D. L. Souvaine
Department of Computer Science, Tufts University,
Medford, MA 02155, USA
e-mail: mishaq01@cs.tufts.edu

D. L. Souvaine
e-mail: dls@cs.tufts.edu

E. Rafalin
Google Inc., Mountain View, CA 94043, USA
e-mail: erafalin@cs.tufts.edu

R. T. Schweller (&)
Department of Computer Science, University of Texas-Pan American,
Edinburg, TX 78539, USA
e-mail: schwellerr@cs.panam.edu

123

Nat Comput (2008) 7:347–370
DOI 10.1007/s11047-008-9073-0

practical assumption that only a constant number of glues, and thus only a constant number

of tiles, can be engineered. Under this assumption, traditional tile self-assembly cannot

even manufacture an n 9 n square; in contrast, we show how staged assembly in theory

enables manufacture of arbitrary shapes in a variety of precise formulations of the model.

Keywords Self-assembly � Tiling � Nanotechnology � DNA computing �
DNA self-assembly

1 Introduction

Self-assembly is the process by which an organized structure can form spontaneously from

simple parts. It describes the assembly of diverse natural structures such as crystals, DNA

helices, and microtubules. In nanofabrication, the idea is to co-opt natural self-assembly

processes to build desired structures, such as a sieve for removing viruses from serum, a drug-

delivery device for targeted chemotherapy or brachytherapy, a magnetic device for medical

imaging, a catalyst for enzymatic reactions, or a biological computer. Self-assembly of

artificial structures has promising applications to nanofabrication and biological computing.

The general goal is to design and manufacture nanoscale pieces (e.g., strands of DNA) that

self-assemble uniquely into a desired macroscale object (e.g., a computer).

Our work is motivated and guided by an ongoing collaboration with the Sackler School

of Graduate Biomedical Sciences that aims to nanomanufacture sieves, catalysts, and drug-

delivery and medical-imaging devices, using protein self-assembly. Specifically, the

Goldberg Laboratory is currently developing technology to bioengineer (many copies of)

rigid struts of varying lengths, made of several proteins, which can join collinearly to each

other at compatible ends. These struts occur naturally as the ‘‘legs’’ of the T4 bacterio-
phage, a virus that infects bacteria by injecting DNA. In contrast to nanoscale self-

assembly based on DNA (Winfree et al. 1998; Mao et al. 2000; Rothemund et al. 2004;

Barish et al. 2005; Seeman 1998; Shih et al. 2004; Rothemund 2006), which is inherently

floppy, these nanorod structures are extremely rigid and should therefore scale up to the

manufacture of macroscale objects.

The traditional, leading theoretical model for self-assembly is the two-dimensional tile
assembly model introduced by Winfree in his Ph.d. thesis (Winfree 1998) and first

appearing at STOC 2000 (Rothemund and Winfree 2000). The basic building blocks in this

model are Wang tiles (Wang 1961), unrotatable square tiles with a specified glue on each

side, where equal glues have affinity and may stick. Tiles then self-assemble into super-

tiles: two (super)tiles nondeterministically join if the sum of the glue affinities along the

attachment is at least some threshold s, called temperature. This basic model has been

generalized and extended in many ways (Adleman 2000; Adleman et al. 2001, 2002;

Soloveichik and Winfree 2004; Aggarwal et al. 2005; Rothemund and Winfree 2000; Kao

and Schweller 2006). The model should be practical because Wang tiles can easily sim-

ulate the practical scenario in which tiles are allowed to rotate, glues come in pairs, and

glues have affinity only for their unique mates. In particular, we can implement such tiles

using two unit-length nanorods joined at right angles at their midpoints to form a plus sign.

Most theoretical research in self-assembly considers the minimum number of distinct

tiles—the tile complexity t—required to assemble a shape uniquely. In particular, if we

allow the desired shape to be scaled by a possibly very large factor, then in most models

the minimum possible tile complexity (the smallest ‘‘tile program’’) is H(K/lg K) where K
is the Kolmogorov complexity of the shape (Soloveichik and Winfree 2004). In practice,

348 E. D. Demaine et al.

123

the limiting factor is the number of distinct glues—the glue complexity g—as each new

glue type requires significant biochemical research and experiments. For example, a set of

DNA-based glues requires experiments to test whether a collection of codewords have a

‘‘conflict’’ (a pair of noncomplementary base sequences that attach to each other), while a

set of protein-based glues requires finding pairs of proteins with compatible geometries and

amino-acid placements that bind (and no other pairs of which accidentally bind). Of

course, tile and glue complexities are related: g B t B g4.

We present the staged tile assembly model, a generalization of the tile assembly model that

captures the temporal aspect of the laboratory experiment, and enables substantially more

flexibility in the design and fabrication of complex shapes using a small tile and glue com-

plexity. In its simplest form, staged assembly enables the gradual addition of specific tiles in a

sequence of stages. In addition, any tiles that have not yet attached as part of a supertile can be

washed away and removed (in practice, using a weight-based filter, for example). More

generally, we can have any number of bins (in reality, batches of liquid solution stored in

separate containers), each containing tiles and/or supertiles that self-assemble as in the

standard tile assembly model. During a stage, we can perform any collection of operations of

two types: (1) add (arbitrarily many copies of) a new tile to an existing bin; and (2) pour one

bin into another bin, mixing the contents of the former bin into the latter bin, and keeping the

former bin intact. In both cases, any pieces that do not assemble into larger structures are

washed away and removed. These operations let us build intermediate supertiles in isolation

and then combine different supertiles as whole structures. Now we have two new complexity

measures in addition to tile and glue complexity: the number of stages—or stage complex-
ity s—measures the time required by the operator of the experiment, while the number of

bins—or bin complexity b—measures the space required for the experiment.1 (When both of

these complexities are 1, we obtain the regular tile assembly model.)

Our results. We show that staged assembly enables substantially more efficient man-

ufacture in terms of tile and glue complexity, without sacrificing much in stage and bin

complexity. All of our results assume the practical constraint of having only a small

constant number of glues and hence a constant number of tiles. In contrast, an information-

theoretic argument shows that this assumption would limit the traditional tile assembly

model to constructing shapes of constant Kolmogorov complexity.

For example, we develop a method for self-assembling an n 9 n square for arbitrary

n [0, using 16 glues and thus O(1) tiles (independent of n), and using only O(log log n)

stages, Oð
ffiffiffiffiffiffiffiffiffiffi

log n
p

Þ bins, and temperature s = 2 (Sect. 4.2). Alternatively, with the minimum

possible temperature s = 1, we can self-assemble an n 9 n square using 9 glues, O(1) tiles

and bins, and O(log n) stages (Sect. 4.1). In contrast, the best possible self-assembly of an

n 9 n square in the traditional tile assembly model has tile complexity H(log n/log log n)

(Adleman et al. 2001; Rothemund and Winfree 2000), or Hð
ffiffiffiffiffiffiffiffiffiffi

log n
p

Þ in a rather extreme

generalization of allowable pairwise glue affinities (Aggarwal et al. 2005).

More generally, we show how to self-assemble arbitrary shapes made up of n unit

squares in a variety of precise formulations of the problem. Our simplest construction

builds the shape using 2 glues, 16 tiles, O(diameter) stages, and O(1) bins, but it only glues

tiles together according to a spanning tree, which is what we call the partial connectivity
model (Sect. 5.1). All other constructions have full connectivity: any two adjacent unit

1 Here we view the mixing time required in each stage (and the volume of each bin) as a constant, mainly
because it is difficult to analyze precisely from a thermodynamic perspective, as pointed out in (Adleman
2000). In our constructions, we believe that a suitable design of the relative concentrations of tiles (a feature
not captured by the model) leads to reasonable mixing times.

Staged self-assembly 349

123

squares are built by tiles with matching glues along their shared edge. In particular, if we

scale an arbitrary hole-free shape larger by a factor of 2, then we can self-assemble with

full connectivity using 8 glues, O(1) tiles, and O(n) stages and bins (Sect. 5.2). We also

show how to simulate a traditional tile assembly construction with t tiles by a staged

assembly using 3 glues, O(1) tiles, O(log log t) stages, O(t) bins, and a scale factor of

O(log t) (Sect. 5.3). If the shape happens to be monotone in one direction, then we can

avoid scaling and still obtain full connectivity, using 9 glues, O(1) tiles, O(log n) stages,

and O(n) bins (Sect. 5.4). We also discuss an efficient method for the design of binary

counters in the staged assembly framework, an important tool for a large number of self-

assembly systems (Sect. 6). This technique offers benefits over non-staged counters in

terms of reduced temperature (s = 1) and potentially faster assembly.

Table 1 summarizes our results in more detail, in particular elaborating on possible trade-

offs between the complexities. The table captures one additional aspect of our constructions:

Planarity. Consider two jigsaw puzzle pieces with complex borders lying on a flat surface. It

may not be possible to slide the two pieces together while both remain on the table. Rather,

one piece must be lifted off the table and dropped into position. Our current model of

assembly intuitively permits supertiles to be placed into position from the third dimension,

despite the fact that it may not be possible to assemble within the plane. A planar construction

guarantees assembly of the final target shape even if we restrict assembly of supertiles to

remain completely within the plane. This feature seems desirable, though it may not be

essential in two dimensions because reality will always have some thickness in the third

dimension (2.5D). However, the planarity constraint (or spatiality constraint in 3D) becomes

more crucial in 3D assemblies, where there is no fourth dimension to avoid intersection, so

this feature gives an indication of which methods might generalize to 3D; see Sect. 7.

Related work. There are a handful of existing works in the field of DNA self-assembly

that have proposed very basic multiple stage assembly procedures. John Reif (1999)

Table 1 Summary of the glue, tile, bin, and stage complexities, the temperature s, the scale factor, the
connectivity, and the planarity of our staged assemblies and the relevant previous work

Glues Tiles Bins Stages s Scale Conn. Planar

n 9 n square

Previous work (Adleman
et al. 2001; Rothemund
and Winfree 2000)

Hð log n

log log n
Þ 1 1 2 1 Full Yes

Jigsaw technique (Sect. 4.2) 9 O(1) O(1) O(log n) 1 1 Full Yes

Crazy mixing (Sect. 4.2) 16 O(1) B O
��

log n
B2

�

þ log B
�

2 1 Full Yes

Crazy mixing, B ¼
ffiffiffiffiffiffiffiffiffiffi

log n
p

16 O(1)
ffiffiffiffiffiffiffiffiffiffi

log n
p

O(log log n) 2 1 Full Yes

General shape with n tiles

Previous work (Soloveichik
and Winfree 2004)

HðK=log KÞ 1 1 2 Unbounded Partial No

Arbitrary shape with n tiles
(Sect. 5.1)

2 16 O(log n) O(diameter) 1 1 Partial No

Hole-free shape with n tiles
(Sect. 5.2)

8 O(1) O(n) O(n) 1 2 Full No

Simulation of 1-stage tiles T
(Sect. 5.3)

3 O(1) O(|T|) Oðlog log jT jÞ 1 Oðlog jT jÞ Partial No

Monotone shapes with n tiles
(Sect. 5.4)

9 O(1) O(n) O(log n) 1 1 Full Yes

350 E. D. Demaine et al.

123

introduced a step-wise assembly model for local parallel biomolecular computing. In more

recent work Park et al. (2006) have considered a simple hierarchical assembly technique

for the assembly of DNA lattices. Somei et al. (2006) have considered a microfluidic

device for stepwise assembly of DNA tiles. While all of these works use some form of

stepwise or staged assembly, they do not study the complexity of staged assembly to the

depth that we do here. Further, none consider the concept of bin complexity.

2 The staged assembly model

In this section, we present basic definitions common to most assembly models, then we

describe the staged assembly model, and finally we define various metrics to measure the

efficiency of a staged assembly system.

Tiles and tile systems. A (Wang) tile t is a unit square defined by the ordered quadruple

hnorthðtÞ; eastðtÞ; southðtÞ;westðtÞi of glues on the four edges of the tile. Each glue is taken

from a finite alphabet R, which includes a special ‘‘null’’ glue denoted null. For simplicity

of bounds, we do not count the null glue in the glue complexity g = |R|-1.

A tile system is an ordered triple hT ;G; si consisting of the tileset T (a set of distinct tiles),

the glue function G : R2 ! f0; 1; . . .; sg; and the temperature s (a positive integer). It is

assumed that Gðx; yÞ ¼ Gðy; xÞ for all x; y 2 R and that Gðnull; xÞ ¼ 0 for all x2R: Indeed,

in all of our constructions, as in the original model of Adleman (2000), Gðx; yÞ ¼ 0 for all

x 6¼ y (see footnote2), and each Gðx; xÞ 2 f1; 2; . . .;sg:The tile complexity of the system is jT j:
Configurations. Define a configuration to be a function C : Z2 ! T [femptyg; where

empty is a special tile that has the null glue on each of its four edges. The shape of a

configuration C is the set of positions (i, j) that do not map to the empty tile. The shape of a

configuration can be disconnected, corresponding to several distinct supertiles.

Adjacency graph and supertiles. Define the adjacency graph GC of a configuration C as

follows. The vertices are coordinates (i, j) such that Cði; jÞ 6¼ empty: There is an edge

between two vertices ðx1; y1Þ and ðx2; y2Þ if and only if jx1 � x2j þ jy1 � y2j ¼ 1: A su-
pertile is a maximal connected subset G0 of GC, i.e., G0 � GC such that, for every

connected subset H, if G0 � H � GC; then H = G0. For a supertile S, let jSj denote the

number of nonempty positions (tiles) in the supertile. Throughout this paper, we will

informally refer to (lone) tiles as a special case of supertiles.

If every two adjacent tiles in a supertile share a positive strength glue type on abutting

edges, the supertile is fully connected.

Two-handed assembly and bins. Informally, in the two-handed assembly model, any

two supertiles may come together (without rotation or flipping) and attach if their strength

of attachment, from the glue function, meets or exceeds a given temperature parameter s.

Formally, for any two supertiles X and Y, the combination set Cs
ðX;YÞ of X and Y is

defined to be the set of all supertiles obtainable by placing X and Y adjacent to each other

(without overlapping) such that, if we list each newly coincident edge ei with edge strength

si, then
P

si� s:
We define the assembly process in terms of bins. Intuitively, a bin consists of an initial

collection of supertiles that self-assemble at temperature s to produce a new set of su-

pertiles P. Formally, with respect to a given set of tile-types T, a bin is a pair (S, s) where S

2 With a typical implementation in DNA, glues actually attach to unique complements rather than to
themselves. However, this depiction of the glue function is standard in the literature and does not affect the
power of the model.

Staged self-assembly 351

123

is a set of initial supertiles whose tile-types are contained in T, and s is a temperature

parameter. For a bin (S, s), the set of produced supertiles P0ðS;sÞ is defined recursively as

follows: (1) S � P0ðS;sÞ and (2) for any X; Y 2 P0ðS;sÞ;C
s
ðX;YÞ � P0ðS;sÞ: The set of terminally

produced supertiles of a bin (S, s) is PðS;sÞ ¼ fX 2 P0 j Y 2 P0;Cs
ðX;YÞ ¼ ;g: We say the set

of supertiles P is uniquely produced by bin (S, s) if each supertile in P0 is of finite size. Put

another way, unique production implies that every producible supertile can grow into a

supertile in P.

Intuitively, P0 represents the set of all possible supertiles that can self-assemble from the

initial set S, whereas P represents only the set of supertiles that cannot grow any further. In

the case of unique assembly of P, the latter thus represents the eventual, final state of the

self-assembly bin. Our goal is therefore to produce bins that yield desired supertiles in the

uniquely produced set P.

Given a collection of bins, we model the process of mixing bins together in arbitrarily

specified patterns in a sequence of distinct stages. In particular, we permit the following

actions: We can create a bin of a single tile type t [T, we can merge multiple bins together

into a single bin, and we can split the contents of a given bin into multiple new bins. In

particular, when splitting the contents of a bin, we assume the ability to extract only the unique

terminally produced set of supertiles P, while filtering out additional partial assemblies in P0.
Intuitively, given enough time for assembly and a large enough volume of tiles, a bin that

uniquely produces P should consist of almost entirely the terminally produced set P. We

formally model the concept of mixing bins in a sequence of stages with the mix graph.

Mix graphs. An r-stage b-bin mix graph M consists of rbþ 1 vertices, m� and mi;j for

1� i� r and 1� j� b; and an arbitrary collection of edges of the form ðmr;j;m�Þ or

ðmi;j;miþ1;kÞ for some i, j, k.

Staged assembly systems. A staged assembly system is a 3-tuple hMr;b; fTi;jg; fsi;jgi
where Mr,b is an r-stage b-bin mix graph, each Ti,j is a set of tile types, and each si,j is an

integer temperature parameter. Given a staged assembly system, for each

1 � i � r; 1 � j � b; we define a corresponding bin ðRi;j; si;jÞ where Ri,j is defined as

follows:

1. R1;j ¼ T1;j (this is a bin in the first stage);

2. For i� 2;Ri;j ¼
S

k:ðmi�1;k ;mi;jÞ2Mr;b

PðRði�1;kÞ;si�1;kÞ

 !

[Ti;j:

3. R� ¼
S

k:ðmr;k ;m�Þ2Mr;b

PðRðr;kÞ;sr;kÞ Þ:

Thus, the jth bin in the ith stage takes its initial set of seed supertiles to be the terminally

produced supertiles from a collection of bins from the previous stage, the exact collection

specified by Mr,b, in addition to a set of added tile types Ti,j. Intuitively, the mix graph

specifies how each collection of bins should be mixed together when transitioning from

one stage to the next. We define the set of terminally produced supertiles for a staged

assembly system to be PðR�;s�Þ: In this paper, we are interested in staged assembly systems

for which each bin yields unique assembly of terminal supertiles. In this case we say a

staged assembly system uniquely produces the set of supertiles PðR�;s�Þ:
Throughout this paper, we assume that, for all i,j, si;j ¼ s for some fixed global tem-

perature s, and we denote a staged assembly system as hMr;b; fTi;jg; si:

Metrics. We are interested in designing efficient staged assembly systems that terminally

produce a unique target shape. We use the following natural metrics to measure the

efficiency of the staged tile system:

352 E. D. Demaine et al.

123

Tile complexity: j
S

Ti;jj: This represents the number of distinct tile types that the

assembly system requires. In this paper we emphasize O(1) tile complexity systems in

contrast to previous work, see Fig. 1 for an example staged assembly system.

Bin complexity: The number b of vertices in each partition of the mix graph. Intuitively

this measures the number of distinct containers that would be required to carry out the

specified staged assembly procedure.

Stage complexity: The number r of sequential stages of mixing that occur. This metric

measures the number of stages in which collections of bins must be brought to their

terminal assemblies and mixed together into a new array of bins. It represents operator

time.

Temperature: The value s. In practice, it is difficult to implement systems with accurate

temperature sensitivity. In this paper we focus on s2f1; 2; 3g:
We also consider the following features to measure the quality of the shape produced:

Planarity: In a planar construction, supertiles have obstacle-free paths to reach their

mates (Fig. 2).

Connectivity: In a fully connected supertile, every two adjacent tiles have the same

positive-strength glue along their common edge. Otherwise the supertile is partially
connected.

Scale factor: In some cases, we allow the produced shape to be a uniform scaling of the

desired shape by some small positive integer, called the scale factor.

3 Assembly of 1 3 n lines

As a warmup, we develop a staged assembly for the 1 9 n rectangle (‘‘line’’) using only

three glues and Oðlog nÞ stages.

The assembly uses a divide-and-conquer approach to split the shape into a constant

number of recursive pieces. Before we turn to the simple divide-and-conquer required here,

we describe the general case, which will be useful later. This approach requires the pieces

to be combinable in a unique way, forcing the creation of the desired shape. We consider

the decomposition tree formed by the recursion, where sibling nodes should uniquely

Fig. 1 A sample staged assembly system that uniquely assembles a 1 9 10 line. The temperature is s = 1,
and each glue a, b, c has strength 1. The tile, stage, and bin complexities are 3, 3, and 2, respectively

Staged self-assembly 353

123

assemble to their parent. The staging proceeds bottom-up in this tree. The height of this

tree corresponds to the stage complexity, and the maximum number of distinct nodes at

any level corresponds to the bin complexity. The idea is to assign glues to the pieces in the

decomposition tree to guarantee unique assemblage while using few glues.

We now turn to constructing 1� 2k lines:

Theorem 1 There is a planar temperature-1 staged assembly system that uniquely
produces a (fully connected) 1� 2k line using 3 glues, 6 tiles, 6 bins, and O(k) stages.

Proof The decomposition tree simply splits a 1� 2k line into two 1nbsp;�nbsp; 2k�1

lines. All tiles have the null glue on their top and bottom edges. If the 1�2k line has glue a
on its left edge, and glue b on its right edge, then the left and right 1� 2k�1 inherit these

glues on their left and right edges, respectively. We label the remaining two inner edges—

the right edge of the left piece and the left edge of the right piece—with a third glue c,

distinct from a and b. Because a 6¼ b; the left and right piece uniquely attach at the inner

edges with common glue c. This recursion also maintains the invariant that a 6¼ b; so three

glues suffice overall. Thus there are only 3
2

� �

¼ 6 possible 1�2k lines of interest, and we

only need to store these six at any time, using six bins. At the base case of k = 0, we just

create the six possible single tiles. The number of stages beyond that creation is exactly k
(Fig. 3). h

Corollary 1 There is a planar temperature-1 staged assembly system that uniquely
produces a (fully connected) 1 9 n line using 3 glues, 6 tiles, 7 bins, and Oðlog nÞ stages.

Proof We augment the construction of Theorem 1 applied to k ¼ blog nc: When we build

the 1� 2i lines for some i, if the binary representation of n has a 1 bit in the ith position,

then we add that line to a new output bin. Thus, in the output bin, we accumulate powers of

2 that sum to n. As in the proof of Theorem 1, three glues suffice to guarantee unique

assemblage in the output bin. The number of stages remainsOðlog nÞ: h

Fig. 2 All three assemblies are permitted under the basic model. However, only assembly (a) is permitted
under the planarity constraint

Fig. 3 Decomposition tree for 1 9 16 line

354 E. D. Demaine et al.

123

4 Assembly of n 3 n squares

Figure 4(a) illustrates the challenge with generalizing the decomposition-tree technique

from 1 9 n lines to n 9 n squares. Namely, the naı̈ve decomposition of a square into two

n� n=2 rectangles cannot lead to a unique assembly using O(1) glues with temperature 1

and full connectivity: by the pigeon-hole principle, some glue must be used more than once

along the shared side of length n, and the lower part of the left piece may glue to the higher

part of the right piece. Even though this incorrect alignment may make two unequal glues

adjacent, in the temperature-1 model, a single matching pair of glues is enough for a

possible assembly.

4.1 Jigsaw technique

To overcome this shifting problem, we introduce the jigsaw technique, a powerful tool

used throughout this paper. This technique ensures that the two supertiles glue together

uniquely based on geometry instead of glues. Figure 4(b) shows how to cut a square

supertile into two supertiles with three different glues that force unique combination while

preserving full connectivity.

Theorem 2 There is a planar temperature-1 staged assembly of a fully connected n 9 n
square using 9 glues, O(1) tiles, O(1) bins, and Oðlog nÞ stages.

Proof We build a decomposition tree by first decomposing the n 9 n square by vertical

cuts, until we obtain tall, thin supertiles; then we similarly decompose these tall, thin

supertiles by horizontal cuts, until we obtain constant-size supertiles. Table 2 describes the

general algorithm. Figure 5 shows the decomposition tree for an 8 9 8 square. The height

of the decomposition tree, and hence the stage complexity, is Oðlog nÞ:
We assign glue types to the boundaries of the supertiles to guarantee unique assemblage

based on the jigsaw technique. The assignment algorithm is similar to the 1 9 n line, but

we use three glues for the boundary of each supertile instead of one, for a total of nine

glues instead of three. Figure 6 shows the glue assignment during the first two vertical

decompositions of the 8 9 8 square.

It remains to show that the bin complexity is O(1). We start by considering the vertical

decomposition. At each level of the decomposition tree, there are three types of inter-

mediate products: leftmost supertile, rightmost supertile and middle supertiles. The

leftmost and rightmost supertiles are always in different bins. The important thing to

observe is that the middle supertiles always have the same shape, though it is possible to

have two different sizes—the number of columns can differ by one. In one of these sizes,

the number of columns is even and, in the other, the number is odd. Thus we need separate

Fig. 4 (a) The shifting problem encountered when combining rectangle supertiles. (b) The jigsaw solution:
two supertiles that combine uniquely into a fully connected square supertile

Staged self-assembly 355

123

bins for the even- and odd-columned middle supertiles. For each of the even- or odd-

columned supertiles, each of left and right boundaries of the supertile can have three

choices for the glue types. Therefore, there is a constant number of different types of

middle supertiles at each level of the decomposition tree. Thus, for vertical decomposition,

we need O(1) bins. Each of the supertiles at the end of vertical decomposition undergoes

horizontal decomposition. A similar argument applies to the horizontal decomposition as

well. Therefore, the number of bins required is O(1). h

Fig. 5 Decomposition tree for 8 9 8 square in the jigsaw technique

Table 2 Algorithm for vertical decomposition. (Horizontal decomposition is symmetric)

Algorithm Decompose Vertically (supertile S):

— Here S is a supertile with n rows and m columns; S is not necessarily a rectangle.

1. Stop vertical partitioning when width is small enough:

If m B 3, Decompose Horizontally(S) and return.

2. Find the column along which the supertile is to be partitioned:

Let i :¼ bðmþ 1Þ=2c .

Divide supertile S along the ith column into a left supertile S1 and right supertile S2 such that

tiles at position (1, i) and (n, i) belong to S1 and the rest of the ith column belongs to S2.

3. Now decompose recursively:

Decompose Vertically (S1)

Decompose Vertically (S2)

356 E. D. Demaine et al.

123

4.2 Crazy mixing

For each stage of a mix graph on B bins, there are up to HðB2Þ edges that can be

included in the mix graph. By picking which of these edges are included in each stage,

HðB2Þ bits of information can be encoded into the mix graph per stage. The

large amount of information that can be encoded in the mixing pattern of a stage

permits a very efficient trade-off between bin complexity and stage complexity. In this

section, we consider the complexity of this trade-off in the context of building n 9 n
squares.

It is possible to view a tile system as a compressed encoding of the shape it assembles.

Thus, information theoretic lower bounds for the descriptional or Kolmogorov complexity

of the shape assembled can be applied to aspects of the tile system. From this we obtain the

following lower bound:

Theorem 3 Any staged assembly system with a fixed temperature and bin complexity B
that uniquely assembles an n 9 n square with O(1) tile complexity must have stage
complexity Xðlog n

B2 Þ for almost all n.

Proof The Kolmogorov complexity of an integer n with respect to a universal Turing

machine U is KUðnÞ ¼ minjpjs:tUðpÞ ¼ bn where bn is the binary representation of n. A

straightforward application of the pigeonhole principle yields that KUðnÞ� dlog ne � D for

at least 1� ð1
2
ÞD of all n (see Li and Vitanyi 1997) for results on Kolmogorov complexity).

Thus, for any �[0; KUðnÞ� ð1� �Þlog n ¼ Xðlog nÞ for almost all n.

There exists a fixed size Turing machine that takes as input a staged assembly system

and outputs the maximum length of the uniquely assembled shape of the system, if there is

one. Such a machine that takes as input a system S ¼ hMr;b; fTi;jg; si that uniquely

assembles an n 9 n square will output the integer n, and therefore must have size at least

KU (n). Therefore, an encoding of S into bits must have size at least Xðlog nÞ for almost all

n. But, for a constant bounded s and jT j ¼ Oð1Þ; we can encode fTi;jg and s in O(rb) bits

and Mr;b in Oðrb2Þ bits for a total Oðrb2Þ length encoding. Thus, for some constants c1 and

c2 we know that for almost all n; c1rb2� c2log n; which yields, r� c2log n
c1b2 : h

Fig. 6 Assigning glues in the first two vertical decompositions of the jigsaw technique

Staged self-assembly 357

123

Our upper bound achieves a stage complexity that is within a Oðlog BÞ additive factor of

this lower bound:

Theorem 4 For any n and B, there is a temperature-2 fully connected staged assembly of
an n 9 n square using 16 glues, O(1) tiles, B bins, and Oðlog n

B2 þ log BÞ stages.

Proof Within a O(1) additive factor of tile complexity, (Rothemund and Winfree 2000)

have reduced the problem of assembling an n 9 n square at temperature 2 to the assembly

of a length-log n binary string that uniquely identifies n. A straightforward adaptation of

the analysis shows that this result also works in the two-handed assembly model used in

this paper. Therefore, we focus simply on building an arbitrary x-bit input binary string to

prove the theorem.

We first show how to build a length-O(B2) bit string using a temperature-1 system that

makes use of B bins, O(B) distinct tiles, and O(1) stages. We then apply a technique similar

to that of Theorem 8 to convert this system into a O(1) tile complexity system with an

addition of O(log B) stages. Finally, to get all x bits we can repeat this process d x
B2e times

for a total of Oð x
B2 þ log BÞ stage complexity.

For some arbitrary integer w, consider the size 2w tileset and corresponding 3-stage mix

graph given in Fig. 7. For each of w bit positions, there is a corresponding pair of white

tiles, one representing the binary value 0, the other representing 1. By placing exactly one

white tile from each pair into a single bin, a length w bit string is specified. In the transition

from stage 1 to stage 2, such a length w string is built for each of w bins, yielding w length

w bit strings. These strings can then be concatenated in the transition from stage 2 to 3 to

yield a length w2 binary string.

For w = B/2, this yields a system with O(B) bins, O(B) tile complexity, and O(1) stage

complexity that assembles a length-B2 target string. To reduce the tile complexity to O(1),

we apply a technique similar to that of Theorem 8. In particular, we use O(B) bins and

O(log B) stages to create a size B alphabet of macro glues as shown in Fig. 8. Each macro

c1

0
w-1

1
w-1

0 10 1 0
2

1
21 1 1 1

0
2

1
2 33 3 3

0

1

0
2

1
2

1

1

1

1

0
2

1
2 3

3

Example target string: 1001 0100 1010 0011

... Edges of mix graph encode
the target string broken up
into equal length pieces:

1
1

0
21

0
2 3

1
3

0
1

1
21

0
2 3

0
3

1
1

0
21 2 3

01
3 1

0
21 2 3

10 1
3a b

a
b

b
a a

a a b b

b b ab a b a

a

a

b

b

b

Add to ith bin:

a

c2 c2 c3 c3c1

ci-1 ci

b

acw-1

c1b

ac1

b

a

c2

c2

b

a

c3

c3

cw-1

c1
1

1
0

21
0

2 3
1

3
0

1
1

21
0

2 3
0

3
1

1
0

21 2 3
01

3 1
0

21 2 3
10 1

3a b
a

b
b

a ab b ab a b ac2c2 c3c3c1

Tileset:

Mix Graph:

...

... ...

...

Fig. 7 This tileset and mix graph depict a tile system with 2w tiles and w bins that will assemble an
arbitrarily specified length w2 binary string

358 E. D. Demaine et al.

123

glue is a supertile that consists of a string of tiles representing bits of a binary string.

Further, with the same bin and stage complexity we create a parallel set of complement
macro glues as shown in Fig. 8(a). Note that when combined into the same bin, two macro

glues will only attach to one another if they are exact complements (have the same binary

encoding). By design, the tooth like geometry of the macro glues provides that even a

single bit difference between two macro glues excludes even a single bond from attaching.

Given this set of macro glues, we now conceptually index the set of distinct glues

from the size O(B) tileset of Fig. 7 and assign each glue a corresponding macro glue

whose binary string matches the index of the glue. Next, we attach macro glues to the

long thin supertiles shown in Fig. 8 which can be created using a slightly modified

version of the line algorithm from Sect. 3. In particular, for each element of the tileset

from Fig. 7, we attach macro glues corresponding to the east and west glues of the

singleton tile. Further, we can assign a glue representing ‘0’, ‘1’, or ‘nothing’ on

the north surface of each macro tile, according to which glue the corresponding singleton

tile displays on its north side.

Once we have built this set of macro tiles, we mix them according to the same mixing

algorithm for the size O(B) tile set, but instead replace each singleton tile with its

corresponding macro tile. By design, the macro glues attach exactly as the basic glues

they are built to emulate. The result is thus a length-w2 binary string encoded on the

north surface of the assembled macro tiles.

Fig. 8 (a) As described in Sect. 5.3, a collection of supertiles, each in its own bin, can be created such that
each supertile encodes a binary string with a sequence of pockets and tabs specified by the binary pattern
encoded. These supertiles act as large glues, or macro glues, by combining glue type and geometry to bond
only to their exact complement supertile. (b) By combining macro glues onto the surfaces of supertiles,
macrotiles can be created whose assembly pattern is the same as that for a corresponding set of singleton
tiles. (c) The tile set of from Fig. 7 can be simulated with macro tiles to create a binary string using only
O(1) tile complexity. The example assembly shown here corresponds to the middle section of the example
assembly from Fig. 7

Staged self-assembly 359

123

Finally, to get a length-x string, we can repeat this process d x
B2e times for a total of

Oð x
B2 þ log BÞ stage complexity. Given this string, the technique of (Rothemund and

Winfree 2000) is easily adapted to take into account the log B vertical magnification factor

we introduce by utilizing the macro glue construction. Further, while the technique of

(Rothemund and Winfree 2000) is temperature 2 rather than 1, this is not a problem as we

can simply double the strength of each glue in our construction to make it a temperature 2

system. Details of applying the square building set from (Rothemund and Winfree 2000)

are straightforward and applications of the technique to similar problems are considered in

(Aggarwal 2005; Kao and Schweller 2006).

Finally, we observe that the construction used here can be designed to achieve full

connectivity and is planar. Further, the construction of (Rothemund and Winfree 2000)

maintains this full connectivity and planarity, yielding the result. h

We conjecture that this stage complexity bound can be achieved by a temperature-1

assembly by judicious use of the jigsaw technique.

5 Assembly of general shapes

In this section, we describe a variety of techniques for manufacturing arbitrary shapes

using staged assembly with O(1) glues and tiles.

5.1 Spanning-tree technique

The spanning-tree technique is a general tool for making an arbitrary shape with the

connectivity of a tree. We start with a sequential version of the assembly:

Theorem 5 Any shape S with n tiles has a partially connected temperature-1 staged
assembly using 2 glues, at most 16 tiles, O(log n) bins, and O(diameter(S)) stages.

Proof Take a breadth-first spanning tree of the adjacency graph of the shape S. The

depth of this tree is O(diameter(S)). Root the tree at an arbitrary leaf. Thus, each vertex

in the tree has at most three children. Color the vertices with two colors, black and

white, alternating per level. For each edge between a white parent and a black child,

we assign a white glue to the corresponding tiles’ shared edge. For each edge between

a black parent and a white child, we assign a black glue to the corresponding tiles’

shared edge. All other tile edges receive the null glue. Now a tile has at most three

edges of its color connecting to its children, and at most one edge of the opposite color

connecting to its parent.

To obtain the sequential assembly, we perform a particular postorder traversal of

the tree: at node v, visit its child subtrees in decreasing order of size. To combine at

node v, we mix the recursively computed bins for the child subtrees together with the

tile corresponding to node v. The bichromatic labeling ensures unique assemblage.

The number of intermediate products we need to store is O(log n), because when we

recurse into a second child, its subtree must have size at most 2/3 of the parent’s

subtree. h

Figure 9 illustrates spanning tree method for assembling 3 9 3 square. In general, this

construction is nonplanar: the trees may fit together like a key in a keyhole.

The stage complexity of the spanning-tree technique can be reduced by parallelization,

at the cost of more bins:

360 E. D. Demaine et al.

123

Theorem 6 Any shape S with n tiles has a partially connected temperature-1 staged
assembly using O(1) tiles, O(log n) stages, and O(n/log n) bins.

Proof As before, we consider a two-colored breadth-first spanning tree. To build an n-tile

tree, split this tree into two trees of at most 2n/3 nodes. Recursively build these two trees,

and then mix the two resulting bins of supertiles together. If we continue this recursion

down to individual nodes (tiles), we get n such trees and the stage complexity reduces to

O(log n), but the bin complexity is now O(n). We can do better if we recurse until we get

n/log n trees of size log n each. By Theorem 5, each of these trees can be built using

O(log n) stages and O(1) bins. Thus we need n/log n bins in total. These trees can be

combined using another O(log n) stages to get the n-tile tree.h

5.2 Scale factor 2

Although the spanning-tree technique is general, it probably manufactures structurally

unsound assemblies. Next we show how to obtain full connectivity of general shapes, while

still using only a constant number of glues and tiles.

Theorem 7 Any simply connected shape has a staged assembly using a scale factor of 2,

8 glues, O(1) tiles, O(n) stages, and O(n) bins. The construction maintains full
connectivity.

Proof Slice the target shape with horizontal lines to divide the shape into 1 9 k strips for

various values of k, which scale to 2 9 2k strips (uniform factor-2 scaling of the target

shape). These strips can be adjacent along horizontal edges but not along vertical edges.

Define the strip graph to have a vertex for each strip and an edge between two strips that

are adjacent along a horizontal edge. Because the shape is simply connected (hole-free),

the strip graph is a tree. Root this tree at an arbitrary strip, defining a parent relation.

A recursive algorithm builds the subtree of the strip graph rooted at an arbitrary strip s.

As shown in Fig. 10(a), the strip s may attach to the rest of the shape at zero or more places

on its top or bottom edge. One of these connections corresponds to the parent of s (unless s

Fig. 9 Spanning-tree method for assembling a 3 9 3 square

Staged self-assembly 361

123

is the overall root). As shown in Fig. 10(b), our goal is to form each of these attachments

using a jigsaw tab/pocket combination, where bottom edges have tabs and top edges have

pockets, extending from the rightmost square up to but not including the leftmost square.

Factor-2 scaling ensures that it is always possible to create these tabs and pockets.

The horizontal edges of each tab or pocket uses a pair of glues. The unit-length upper

horizontal edge uses one glue, and the possibly longer lower horizontal edge uses the other

glue. The pockets at the top of strip s use a different glue pair from the tabs at the bottom of

strip s. Furthermore, the pocket or tab connecting s to its parent uses a different glue pair

from all other pockets and tabs. Thus, there are four different glue pairs (for a total of eight

glues). If the depth of s in the rooted tree of the strip graph is even, then we use the first

glue pair for the top pockets, the second glue pair for the bottom tabs, except for the

connection to the parent which uses either the third or fourth glue pair depending on

whether the connection is a top pocket or a bottom tab. If the depth of s is odd, then we

reverse the roles of the first two glue pairs with the last two glue pairs. All vertical edges of

tabs and pockets use the same glue, 8.

To construct the strip s augmented by tabs and pockets, we proceed sequentially from

left to right, as shown in Fig. 10(c). The construction uses two bins. At the kth step, the

primary bin contains the first k-1 columns of the augmented strip. In the secondary bin, we

construct the kth column by brute force in one stage using 1–3 tiles and 0–2 distinct

internal glues plus the desired glues on the boundary. Because the column specifies only

two glues for horizontal edges, at the top and bottom, we can use any two other glues for

the internal glues. All of the vertical edges of the column use different glues. If k is odd, the

left edges use glues 1–3 and the right edges uses glues 4–6, according to y coordinate; if k
is even, the roles are reversed. (In particular, these glues do not conflict with glue 8 in the

tabs and pockets.) The only exception is the first and last columns, which have no glues on

their left and right sides, respectively. Now we can add the secondary bin to the primary

bin, and the kth column will uniquely attach to the right side of the first k-1 columns. In

the end, we obtain the augmented strip.

During the building of the strip, we attach children subtrees. Specifically, once we

assemble the rightmost column of an attachment to one or two children strips, we recur-

sively assemble those one or two children subtrees in separate bins, and then mix them into

s’s primary bin. Because the glues on the top and bottom sides of s differ, as do the glues of

s’s parent, and because of the jigsaw approach, each child we add has a unique place to

Fig. 10 Constructing a horizontal strip in a factor-2 scaled shape (a), augmented by jigsaw tabs and pockets
to attach to adjacent pieces (b), proceeding column-by-column (c)

362 E. D. Demaine et al.

123

attach. Therefore we uniquely assemble s’s subtree. Applying this construction to the root

of the tree, we obtain a unique assembly of the entire shape. h

5.3 Simulation of one-stage assembly with logarithmic scale factor

In this section, we show how to use a small number of stages to combine a constant number

of tile types into a collection of supertiles that can simulate the assembly of an arbitrary set

of tiles at temperature s = 1, given that these tiles only assemble fully connected shapes.

Theorem 8 Consider an arbitrary single stage, single bin tile system with tile set T, all
glues of strength at most 1, and that assembles a class of fully connected shapes. There is a
temperature-1 staged assembly system that simulates the one-stage assembly of T up to
an Oðlog jT jÞ size scale factor using 3 glues, O(1) tiles, OðjTjÞ bins, and Oðlog log jT jÞ
stages. At the cost of increasing temperature to s = 2, the construction achieves full
connectivity.

Proof Suppose the T uses c distinct glue types. As described in Fig. 11, the initial stage of

assembly can use three distinct tile types that assemble into a supertile representing 0 in a

first bin, and three tile types for the assembly of a supertile representing 1 in a second bin.

We can then split these supertiles into four groups and attach tile types a and A as shown in

Fig. 11. The third stage mixes all possible combinations of supertiles attached to tile type a
with those attached with type A to get a distinct supertile for each possible 4-bit binary

string. This process can be repeated to obtain all possible length-8 bit strings, and so on.

Thus, within Oðlog log cÞ stages we can obtain at least c distinct binary strings of length at

most O(log c).

Repeating this process four times produces an alphabet of glue types for each tile side.

As shown in Fig. 11, we can make the geometry of identical bits for opposite directions

(north/south, east/west) be interlocking. Thus, when two glues are lined up against each

0 1

0 10 1

a A a A

00

a A

0

a

1

A

1

a

0

A

11

a A

Bin 1-1: Bin 1-2:

Bin 2-1: Add
tile type a.

Bin 2-2: Add
tile type A.

Bin 2-3: Add
tile type a.

Bin 2-4: Add
tile type A.

Fig. 11 (a) Using O(1) tile types and O(log r) stages, we can assemble 2r different supertiles, each
encoding a distinct r bit binary string. (b) By creating two versions of each string and appending tiles to the
ends we can enforce that identical strings combine while distinct strings do not. Note that even if a single bit
differs between two strings, the rigid geometry of the supertiles ensure that no tiles will be able to bond

Staged self-assembly 363

123

other, if all bits match, the two supertiles can lock together and get a full bonding.

However, due to the interlocking geometry, if even a single bit does not match, this

mismatch will prevent the two supertiles from getting close enough to get even a single

bond. Further, to prevent shifting of strings that share prefixes/suffixes, we can attach the

interlocking dark tiles shown in Fig. 11(b).

Finally, given the four alphabets of glues with each glue type in a separate bin, we can

bring together arbitrary combinations of four to create macro tiles as shown in Fig. 12. We

can thus create a set of macro tiles that will bond in the same fashion as any given target

s = 1 tile system. The holes in the constructed shape can trivially be filled in in a non-

planar fashion by adding in a constant size set of filler tiles.

Note that the construction does not work for simulating s = 2 systems if we restrict

ourselves to a constant bounded temperature. This is because a single glue match for a

macro tile yields a large, nonconstant number of bonds. Further, note that when a macro

tile attaches at a position adjacent to two or more already attached macro tiles, it cannot

attach within the plane, making the construction inherently nonplanar. h

Extending this simulation to temperature-2 one-stage systems is an open problem.

5.4 Assembly of monotone shapes

Theorem 9 Any monotone shape has a fully connected temperature-1 staged assembly
using 9 glues, O(1) tiles, O(log n) stages, and O(n) bins, where n is the side length of the
smallest square bounding S.

Fig. 12 By constructing an alphabet of binary strings for each of the four possible tile sides, arbitrary
combinations of four can be brought together to assemble macro tiles. This permits the simulation of s = 1
tile systems with macro blocks using only O(1) tile types

364 E. D. Demaine et al.

123

Proof We assume wlog that the shape is x-monotone, which means its intersection

with any vertical line is connected. We use the similar construction that we used for

building square. We first decompose the shape horizontally to get long thin supertiles

which we already know how to build. Here we will only discuss horizontal decom-

position. During horizontal decomposition, the challenge is to decompose a supertile S
into a left and a right supertile that can be combined uniquely. We decompose S
horizontally only when the number of columns in S is greater than 3, otherwise, we just

need vertical decomposition. Let i, i + 1, and i + 2 be the three columns roughly in the

middle of the supertile S. Column i is adjacent to the column i + 1 at certain locations.

Since the shape is x-monotone, the tiles in column i adjacent to column i + 1 form a

connected component. Same is the case with tiles in column i + 2 that are adjacent to

column i + 1.

If the number of adjacent tiles between column i and i + 1 is B3, we simply cut S
between column i and i + 1. Otherwise if the number of tiles in column i + 2 adjacent

to the tiles in column i + 1 is B3, we can break S between columns i + 1 and i + 2.

See Fig. 13 (top).

If column i + 1 is adjacent to both columns in more than three tiles, we find the tiles

in column i + 1 that are adjacent to both columns. These tiles form a connected

component due to monotonicity. If the number of such tiles C3 we can create a jigsaw

tab/pocket combination at column i + 1. See Fig. 13 (middle). Notice the left supertile

is not monotone anymore because of the last column. But we can ignore the last column

because it will never be one of the three middle columns until the supertile contains

only three columns and at that point we don’t need horizontal decomposition any more.

If number of tiles in column i + 1 that are adjacent to both columns is \ 3, we

decompose S by creating an elbow see Fig. 13 (below). To create an elbow: assume

without loss of generality that the highest tile in column i adjacent to column i + 1 is

lower than the highest tile in column i + 2 adjacent to column i + 1. We cut the

column i + 1 such that the tiles in the column that are either adjacent to column i or

below any such tile belong to the left supertile and the rest of the column belong to

right supertile.

The horizontal decomposition uses only constant number of only 9 glues thus O(1)

tiles. The decomposition tree is balanced so we need only O(log n) stages. The number

Fig. 13 Assembling a monotone
shape

Staged self-assembly 365

123

of bins required can be O(n) because we may need to keep each column in a separate

bin. h

6 Fast counters at temperature s = 1

One of the most powerful and prevalent tools in the algorithmic self-assembly literature is

the counter (Rothemund and Winfree 2000; Adleman et al. 2001; Aggarwal 2005; Kao and

Schweller 2006; Winfree 1998; Barish et al. 2005). A set of tiles that implement a counter

are tiles that assemble into a pattern such that successive positive integer positions are

encoded into successive positions in the assembled shape. Such constructions will typically

then control the length of the assembled shape by stopping growth when the counter

reaches its maximum value. In this section we introduce a new method of building counters

in the tile assembly model that takes advantage of the power of staged assembly. We argue

that our approach yields some important benefits in terms of assembly speed and tem-

perature s = 1. Given the proven utility of counter assemblies, we provide our construction

as a primitive tool that may be useful in the development of more efficient assembly

systems.

The most typical example of a counter consists of a tile set where each tile type is

conceptually assigned either a ‘0’ or a ‘1’ binary label. For some specified value k, such a

system assembles a k 9 2k rectangle such that for any row i in the assembly, the k tiles in

the row i encode the binary value of i by their assigned labels.

Counters under the standard single stage model suffer from two drawbacks. First, they

require temperature s = 2 to work. Second, all the constructions to date in the literature are

designed so that the ith value of the counter cannot attach/assemble until the 1st through

i - 1 values have already assembled. This creates a lower bound of X(n) assembly time for

these constructions (see (Adleman et al. 2001) for a definition of assembly time under the

standard model).

In our construction of a binary counter, we attempt to improve upon both of these draw-

backs. First, our construction utilizes temperature s = 1. Second, the construction may

assembly in a parallel manner. That is, the supertile encoding the value i can attach to the

supertile encoding the value i + 1 at any time, regardless of whether or not the supertile

representing the value i - 1 has attached to anything. While a definition of assembly time

under the two-handed assembly model has not yet been developed, it is plausible that this

parallelism could yield a substantial reduction in assembly time for a reasonable model.

6.1 Counter construction

To implement the staged assembly binary counter, we design a mixing algorithm to yield

two batches of supertiles as shown in Fig. 14, each including a list of long thin supertiles

encoding a bit pattern of interlocking teeth on the north and south surface of the supertile in

the same fashion as Theorem 8. In particular, the first batch will consist of supertiles whose

pattern of interlocking teeth on the north face of the supertile encode the binary string

obtained by incrementing the binary string encoded on the south face of the supertile by

one. The second batch is similar, but the string encoded on the north and south face of each

supertile is not incremented.

By design, the glues on the north and south faces of each supertile in either batch are

distinct, making attachment among supertiles impossible. However, we can make the north

glues used in the first batch the same as the south glues used in the second batch, and vice

366 E. D. Demaine et al.

123

versa. From this we get that when the two batches are mixed together supertiles may assemble

by alternating between supertiles from the first batch and supertiles from the second batch.

Further, due to the geometry encoded on the surface of each supertile, each supertile

attaches above a supertile whose binary value is exactly one less than its own. Thus, any

assembled structure consists of a chain of rows, each row representing an incremented

binary value. Therefore the unique terminal assembly is such that the northmost face is a

supertile encoding the highest value string of all 1’s, while the south face consists of the

supertile representing the string of all 0’s.

To see how to assemble the binary strings used in this construction, consider the

problem of assembling a set of supertiles such that each of the 22i
length 2i binary strings is

represented by a supertile encoding the string on its south surface. Further, for each such

supertile in the set, require that it encodes the value encoded on its south surface incre-

mented by 1 on its north surface (assume the all 1’s string incremented is the all 0’s string).

Denote this set as Xi. Such a set is essentially the first batch of Fig. 14, and a straight-

forward modification of the following technique can yield the second batch as well.

Now, to obtain a bin whose unique assemblies are Xi, it is sufficient to obtain 2 bins

whose assemblies union are equal to Xi, as these bins can be combined within 1 stage. Let Ii

(I for incremented strings) denote the subset of strings in Xi minus the string whose south

surface is all 1’s. Let Ri (R for rollover strings) simply be the supertile encoding all 1’s on

the south face and all 0’s on the north face. Finally, define a third set Si not contained in Xi,

where Si is the set of all length i strings encoding the same value on the south and north

face of the supertile.

To describe how to attain a bin with the set Xi as uniquely produced supertiles, we show

how to recursively compute the three sets Si, Ii, and Ri. Assume, as depicted in Fig. 15, that

Fig. 14 (a and b) With O(1) tile complexity, O(1) bin complexity, and O(k) stage complexity, two separate
batches of supertiles can be created, each containing 22k

distinct supertiles. (c) When combined, supertiles
may attach together by alternating between supertiles from each group. Further, attachment is only possible
between supertiles whose binary strings denote values that are of difference exactly one. The effect is thus
an assembly whose bit pattern encoded row by row represents a counter incrementing by one until the
maximum value is reached, yielding a length Oð22k Þ assembly. In this example of length 4 strings, only 4 of
the possible 16 supertiles are shown. With this construction, in contrast to single stage assemblies, two
successive counter values may attach independent of whether or not previous values have attached. Thus,
the resultant structure should assemble much quicker than other methods in which each row of a counter
must be added in succession, starting from an initial seed row

Staged self-assembly 367

123

each supertile in the sets S, I, and R must have a strength 1 red and green glue on the west

most and east most center edge respectively.

Recursively, assume we already have 3 separate bins containing Si=2; Ii=2; and Ri=2:
Within a single stage, split the contents of each of these three bins into 2 separate bins (for

a total of six distinct bins). Denote the bins by Sa
i=2 and SA

i=2 etc. For the a bins, add tile a
from Fig. 15. For the A bins, add tile A.

Now combine sets Sa
i=2 and SA

i=2: This yields a bin containing the set of all length i binary

strings that have the same values on the north and south faces, which is the set Si.

Now combine set Sa
i=2 and IA

i=2: This yields a set of supertiles that is a subset of Ii, namely

the strings (encoded on the south face of the supertile) whose least significant 0 occurs in

the right half of the string. The remaining set of Ii, the strings whose least significant 0

Fig. 15 Supertiles capable of binary counting can be constructed efficiently by a simple recursive mixing
algorithm. A set of binary strings of length x can be assembled in O(1) bin complexity and O(log x) stage
complexity

368 E. D. Demaine et al.

123

occurs in the left half of the string, is obtained by combining Ia
i=2 and RA

i=2: A third stage

thus yields the set Ii.

Finally, the set Ri is obtained by combining Ra
i=2 and RA

i=2:
As base case for this recursive mixing procedure, we can build the sets for i = 1 by

brute force with distinct tile types. This technique uses at most 6 bins and 3 stages per

recursion level. Thus, the desired set Xx can be obtained in O(1) bins and O(log x) stages.

The procedure for extending size 1 strings to size 2 strings is depicted in Fig. 15.

6.2 Counting up to general n

The counter described in Sect. 6.1 counts from value 0 up to 22k � 1 for a specified value k
using k stages, O(1) bins, and O(1) tile complexity. However, this construction clearly is

not immediately capable of assembling supertiles of arbitrary length n. In contrast, con-

structions exist at s = 2 under the single stage model such that the exact length of counters

can be specified. This can typically be done by specifying an initial first value of the

counter as these systems always start from a seed value. However, with our approach this is

much more difficult.

Currently, we have a complex construction combining the technique of Theorem 4 with

the binary counter system of Sect. 6.1 to yield unique assembly of a counter of any length n
at temperature s ¼ 1;OðBÞ bin complexity, and Oðlog n

B2 þ log BÞ stage complexity. How-

ever, we do not include the details of this construction as it is very complex and as of yet

does not have direct application to building shapes of interest, such as squares. However,

we conjecture that this technique can yield a square building scheme that improves The-

orem 4 to a s = 1 construction.

7 Future directions

There are several open research questions stemming from this work.

One direction is to relax the assumption that, at each stage, all supertiles self-assemble

to completion. In practice, it is likely that at least some tiles will fail to reach their terminal

assembly before the start of the next stage. Can a staged assembly be robust against such

errors, or at least detect these errors by some filtering, or can we bound the error propa-

gation in some probabilistic model?

Another direction is to develop a model of the assembly time required by a mixing

operation involving two bins of tiles. Such models exist for (one-stage) seeded self-
assembly—which starts with a seed tile and places singleton tiles one at a time—but this

model fails to capture the more parallel nature of two-handed assembly in which large

supertiles can bond together without a seed.

Another interesting direction would be to consider nondeterministic assembly in which

a tile system is capable of building a large class of distinct shapes. Is it possible to design

the system so that certain shapes are assembled with high probability?

Another research direction is the consideration of 3D assembly. We have focused on two-

dimensional constructions in this paper which provides a more direct comparison with pre-

vious models, and is also a case of practical interest, e.g., for manufacturing sieves. Many of

our results, in theory, also generalize to 3D (or any constant dimension), at the cost of

increasing the number of glues and tiles. For example, the spanning-tree model generalizes

trivially, and a modification to the jigsaw idea enables many of the other results to carry over.

However, 3D assembly in practice is much harder than 2D assembly, stemming in part from

Staged self-assembly 369

123

the fact that 2D assembly systems in practice make use of 3 dimensions. How to properly

model and address the difficulties of 3D assembly is an important research direction. In

particular, combining our staged assembly techniques with existing error correcting mech-

anisms seems a potentially fruitful direction for further research.

Finally, experimental validation of our model and techniques is an extremely important

direction for future work. It is likely that simulations and implementations of staged assembly

techniques will yield key insights into the model, providing a road map for future work.

Acknowledgments We thank M. S. AtKisson and Edward Goldberg for extensive discussions about the
bioengineering application. E. D. Demaine and M. L. Demaine research was partially supported by NSF
CAREER award CCF-0347776 and DOE grant DE-FG02-04ER25647. M. Ishaque, D. L. Souvaine and E.
Rafalin research was partially supported by NSF grant CCF-0431027. E. Rafalin’s work was performed at
Tufts University.

References

Adleman LM (2000) Toward a mathematical theory of self-assembly. Technical Report 00-722, Department
of Computer Science, University of Southern California

Adleman L, Cheng Q, Goel A, Huang M-D (2001) Running time and program size for self-assembled
squares. In: Proceedings of the 33rd annual ACM symposium on Theory of Computing, pp 740–748

Adleman L, Cheng Q, Goel A, Huang M-D, Kempe D, de Espanés PM, Rothemund PWK (2002) Com-
binatorial optimization problems in self-assembly. In: Proceedings of the thirty-fourth annual ACM
symposium on Theory of Computing, pp 23–32 (electronic), New York, ACM

Aggarwal G, Cheng Q, Goldwasser MH, Kao M-Y, de Espanes PM, Schweller RT (2005) Complexities for
generalized models of self-assembly. SIAM J Comput 34(6):1493–1515

Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self-
assembly: Copying and counting. Nano Lett 5(12):2586–2592

Kao M-Y, Schweller R (2006) Reducing tile complexity for self-assembly through temperature program-
ming. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithm, pp 571–580

Li M, Vitanyi P (1997) An introduction to komogorov complexity and its applications, 2nd edn. Springer
Verlag, New York

Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self-assembly of
DNA triple-crossover molecules. Nature 407:493–496

Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Finite-size, fully addressable
DNA tile lattices formed by hierarchical assembly procedures. Angewandte Chemie 45:735–739

Reif J (1999) Local parallel biomolecular computation. In: Proceedings of DNA-based computers, pp 217–
254

Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302
Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares. In: Pro-

ceedings of the 32nd annual ACM symposium on Theory of Computing, pp 459–468
Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA sierpinski triangles.

PLoS Biol 2(12):e424
Seeman NC (1998) DNA nanotechnology. In: Siegel RW, Hu E, Roco MC (eds) WTEC workshop report on

R&D status and trends in nanoparticles, nanostructured materials, and nanodevices in the United States
Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale

octahedron. Nature 427:618–621
Soloveichik D, Winfree E (2004) Complexity of self-assembled shapes. In: Revised selected papers from the

10th international workshop on DNA computing. Lecture notes in computer science, vol 3384. Milan,
Italy, pp 344–354

Somei K, Kaneda S, Fujii T, Murata S (2006) A microfluidic device for DNA tile self-assembly. In: DNA
computing. Springer, Berlin/Heidelberg, pp 325–335

Wang H (1961) Proving theorems by pattern recognition—II. Bell System Tech J 40(1):1–41
Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology,

Pasadena
Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA

crystals. Nature 394:539–544

370 E. D. Demaine et al.

123

	Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues
	Abstract
	Introduction
	The staged assembly model
	Assembly of 1 x n lines
	Assembly of n x n squares
	Jigsaw technique
	Crazy mixing

	Assembly of general shapes
	Spanning-tree technique
	Scale factor 2
	Simulation of one-stage assembly with logarithmic scale factor
	Assembly of monotone shapes

	Fast counters at temperature &tgr; = 1
	Counter construction
	Counting up to general n

	Future directions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

