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Abstract. Many real-world problems are multi-objective optimization problems and

evolutionary algorithms are quite successful on such problems. Since the task is to
compute or approximate the Pareto front, multi-objective optimization problems are
considered as more difficult than single-objective problems. One should not forget that

the fitness vector with respect to more than one objective contains more information
that in principle can direct the search of evolutionary algorithms. Therefore, it is pos-
sible that a single-objective problem can be solved more efficiently via a generalized

multi-objective model of the problem. That this is indeed the case is proved by inves-
tigating the computation of minimum spanning trees.

Key words: multi-objective optimization, working principles of evolutionary comput-
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1. Introduction

Typical textbooks on optimization problems focus on single-objective
optimization problems, see, e.g., Cormen et al. (2001). The function f
to be optimized is defined on a search space S and takes real values,
i.e., f : S! R. For minimization problems on discrete search spaces S
there may be many optimal search points s2S such that f(s) £ f(s¢) for
all s¢2S but only one optimal value fmin :¼ min{ f(s)| s2S}. One is
interested in the optimal value fmin and one optimal search point s.

In the case of multi-objective optimization problems the objective
function f is vector-valued, i.e., f : S! Rk. Since there is no canonical
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complete order on Rk, one compares the quality of search points
with respect to the canonical partial order on Rk, namely f(s) £ f(s¢) iff
fi(s) £ fi(s¢) for all i2 {1, . . . , k}. A Pareto-optimal search point s is a
search point such that (in the case of minimization problems) f(s) is
minimal with respect to this partial order and all f(s¢), s¢2S. Again
there can be many Pareto-optimal search points but they do not neces-
sarily have the same objective vector. The Pareto front consists of all
objective vectors y=(y1, . . . , yk) such that there exists a search point s
where f(s)=y and f(s¢) £ f(s) implies f(s¢)=f(s). The problem is to com-
pute the Pareto front and for each element y of the Pareto front one
search point s such that f(s)=y. As in any case of optimization prob-
lems one may be satisfied with approximate solutions. This can be for-
malized as follows. For each element y of the Pareto front we have to
compute a solution s such that f(s) is close enough to y. Close enough
is measured by an appropriate metric and an approximation parame-
ter. In the single-objective case one switches to the approximation var-
iant if exact optimization is too difficult. The same reason may hold in
the multi-objective case. There may be another reason. The size of the
Pareto front may be too large for exact optimization.

Sometimes, people try to turn multi-objective problems into single-
objective ones, e.g., by optimizing a weighted sum of the objective
values of the single criteria. This may be useful in some applications
but, in general, we do not obtain the information contained in the
Pareto front and corresponding search points.

Multi-objective optimization has been an issue in operations
research for a long time. Due to the typically high computational
complexity of multi-objective problems the application of randomized
search heuristics is a possibility to obtain satisfying solutions. Many
variants of evolutionary algorithms specialized to multi-objective opti-
mization problems have been developed and applied, for a survey see
the monographs of Deb (2001) and Coello Coello et al. (2002).

A conclusion from this discussion is that ‘‘multi-objective optimi-
zation is more (at least as) difficult than (as) single-objective optimiza-
tion’’. This is true at least if the objective values for the different
criteria are ‘‘somehow independent’’. Without such an assumption
there is no reason to believe in the conclusion above.

We discuss the following scenario. The considered problem is a
single-objective problem. It is possible to add some further criteria
such that the Pareto front of the newly created multi-objective optimi-
zation problem is not too large and such that the solution of the
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multi-objective problem includes the solution of the single-objective
problem. Solving the multi-objective problem instead of the single-
objective problem implies to compute the Pareto front instead of a
single optimal value. Each considered search point contains more
information than in the single-objective case since it contains also the
objective values for the additional criteria. At least in principle it is
possible that this additional information improves the search behavior
of evolutionary algorithms. This would imply that for solving difficult
single-objective optimization problems one should also think about
the possibility to model the problems as generalized multi-objective
optimization problems.

The purpose of this paper is to prove that the considered scenario
is not a fiction. We do not investigate artificial problems to support
this claim but one of the combinatorial optimization problems con-
tained in each textbook on algorithms namely the computation of
minimum spanning trees. (Nobody should expect that evolutionary
algorithms computing minimum spanning trees beat the well-known
problem-specific algorithms.)

In Section 2, we present the well-known evolutionary algorithms
for multi-objective optimization that have been subject to a rigorous
analysis of the expected optimization time. In Section 3, we introduce
the two-objective variant of the minimum spanning tree problem
which is subject of our investigations and distinguish it from other
multi-objective variants of the minimum spanning tree problem. In
Section 4, we prove upper bounds on the expected optimization time
of some evolutionary algorithms for multi-objective optimization ap-
plied to our problems. It turns out that they are asymptotically smal-
ler than lower bounds for the worst-case instances of simple
evolutionary algorithms for the single-objective case. We discuss these
results in Section 5. In order to investigate what happens for small
problem dimensions and typical problem instances we have performed
several experiments whose results are presented in Section 6. We fin-
ish with some conclusions.

2. Simple Evolutionary Algorithms for Multi-Objective Optimization

The rigorous analysis of the expected optimization time of evolution-
ary algorithms is not easy. Most of such results are on simple evolu-
tionary algorithms like the (1+1) EA (Droste et al., 2002). This is
even more true for multi-objective optimization. Therefore, we
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investigate and analyze the algorithm called SEMO (Simple Evolu-
tionary Multi-Objective Optimizer) due to Laumanns et al. (2002).
The algorithm starts with an initial solution s2 {0,1}n. All non-domi-
nated solutions are stored in the population P. In each step a search
point from P is chosen uniformly at random and one bit is flipped to
obtain a new search point s¢. The new population contains for each
non-dominated objective vector f(s), s2P [ {s¢}, one corresponding
search point and in the case that f(s¢) is not dominated s¢ is chosen.

SEMO
1. Choose an initial solution s.
2. Determine f(s) and initialize P :¼ {s}.
3. Repeat

– choose s2P uniformly at random,
– choose i2 {1, . . . ,n} uniformly at random,
– define s¢=(s1¢, . . . ,sn¢) by sj¢=sj, if j „ i, and si¢=1 ) si,
– determine f(s¢),
– let P unchanged, if there is an s¢¢2P such that f(s¢¢) £ f(s¢) and
f(s¢¢) „ f(s¢)

– otherwise, exclude all s¢¢ where f(s¢) £ f(s¢¢) from P and add s¢ to P.

In applications, we need a stopping criterion. Here we are inter-
ested in the expected number of rounds until f(P) :¼ {f(s)|s2P}
equals the Pareto front. This is called the expected optimization time.
Note that the described algorithm differs from the original version of
SEMO by replacing an individual s¢¢ of P by s¢ if f(s¢¢)=f(s¢) holds.
Applying our version of SEMO to a single-objective optimization
problem, we obtain the algorithm known as RLS (randomized local
search). All our results also hold for the original version of SEMO
but it seems to be more typical for search heuristics to replace search
points by other ones with the same quality (e.g., simulated annealing
works this way). If SEMO starts with a search point s which is a
local optimum, then P={s} forever. The use of this local mutation
operator was motivated by the fact that this choice simplifies the
analysis. Giel (2003) has generalized the investigations of Laumanns
et al. (2002) and also Zitzler et al. (2003) by considering the usual
mutation operator of evolutionary algorithms.

GSEMO (Global SEMO)
GSEMO works like SEMO but s¢ is defined in a different way. For
each i, si¢=1)si with probability 1/n and si¢=si otherwise.
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Note that GSEMO applied to single-objective optimization
problems equals the well-known (1+1) EA. Hence, we compare
SEMO and GSEMO with RLS and (1+1) EA.

3. A Two-Objective Model of the Minimum Spanning Tree Problem

An instance of the minimum spanning tree problem consists of an
undirected graph G=(V,E) with n vertices and m edges and a positive
integer weight w(e) for each edge. The problem is to find an edge set
E¢ connecting all vertices of V with minimal total weight.

Neumann and Wegener (2004) have analyzed RLS (with 1-bit flips
and 2-bit flips) and the (1+1) EA for the minimum spanning tree
problem. They have used the following model of the problem. The
search space is S={0,1}m and s2S describes the edge set of all edges
ei where si=1. Raidl and Julstrom (2003) have shown that edge sets
are appropriate for the minimum spanning tree problem. Neumann
and Wegener (2004) have penalized edge sets which do not describe
connected graphs (and in one model additionally edge sets containing
cycles). They were able to prove the following results:

– The expected optimization time of RLS and the (1+1) EA is
bounded by O(m2(log n+log wmax)) where wmax is the largest
weight of the considered graph.

– There are graphs with m=Q(n2) and wmax=Q(n2) such that the
expected optimization time of RLS and the (1+1) EA equals
Q(m2 log n).

This is one of the first rigorous analyses of the expected optimiza-
tion time of evolutionary algorithms on combinatorial optimization
problems contained in textbooks. Previous results considered the com-
putation of shortest paths (Scharnow et al., 2002) and maximum
matchings (Giel and Wegener, 2003).

We discuss the reason for the expected optimization time of RLS
and the (1+1) EA. If a search point describes a non-minimum span-
ning tree, one-bit flips are not accepted. Either the new search point
describes an unconnected graph or a connected graph with a larger
weight. We have to wait until a mutation step includes an edge and
excludes a heavier one from the newly created cycle. The expected
waiting time for a specified 2-bit flip equals Q(m2).

As already mentioned, the considered algorithms penalize the
number of connected components. This motivates the following
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two-objective optimization model of the minimum spanning tree
problem.
– The search space S equals {0,1}m for graphs on m edges and the
search point s describes an edge set.

– The fitness function f : S! R2 is defined by f(s)=(c(s),w(s)) where
c(s) is the number of connected components of the graph described
by s and w(s) is the total weight of all chosen edges.

– Both objectives have to be minimized. We discuss some simple
properties of this problem.

– The parameter c(s) is an integer from {1, . . . ,n}.
– The first property implies that the populations of SEMO and
GSEMO contain at most n search points and the Pareto front con-
tains exactly n elements.

– The parameter w(s) is an integer.

We have to be careful when discussing this problem. There exists
another type of multi-objective minimum spanning tree problem. Each
edge has k different types of weights, i.e., w(e)=(w1(e), . . . ,wk(e)).
Unconnected graphs are penalized and the aim is to minimize f(s)
where s is not legal if s does not describe a connected graph and f(s) is
the sum of all w(ei) where si=1, otherwise. Similarly to other optimi-
zation problems this multi-objective variant of a polynomially solvable
problem is NP-hard (Ehrgott 2000). This problem has been attacked in
different ways, e.g., by Hamacher and Ruhe (1994). Zhou and Gen
(1999) present experimental results for evolutionary algorithms and
Neumann (2004) has analyzed which parts of the Pareto front can be
obtained in expected pseudopolynomial time.

4. The Analysis of the Expected Optimization Time

Our results hold for SEMO as well as for GSEMO. The essential
steps are 1-bit flips. In the definition of SEMO and GSEMO we have
not specified how to choose the first search point. We discuss two
possibilities.

– The first search point is chosen uniformly at random. This is the
typical choice for evolutionary algorithms.

– The first search point is s=0m describing the empty edge set. This
is quite typical, e.g., for simulated annealing.

Our analysis is simplified by knowing that P contains 0m. Note
that f(0m)=(n,0) belongs to the Pareto front and 0m is the only search
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point s with c(s)=n. First, we investigate the expected time until the
population contains the empty edge set.

Theorem 1. Starting with an arbitrary search point the expected time
until the population of SEMO or GSEMO contains the empty edge set
is bounded above by O(mn (log n +log wmax)).

Proof. One might expect that we only have to wait until all edges of
the initial search point s have been excluded. This is not true. In this
way, it is possible that we accept the inclusion of edges since this
decreases the number of connected components (although it increases
the total weight). Later, we may exclude edges of the new search
point s¢ without increasing the number of connected components. It is
possible to construct a search point s¢¢ which dominates s. Then s is
eliminated and all search points in the population (perhaps only one)
have more edges than s.

Hence, the situation is more complicated. Instead of the minimal
number of edges of all search points in P we analyze the minimal
weight of all search points in P. The search point s* with mini-
mal weight has the largest number of connected components (other-
wise, the search point s** with c(s**)>c(s*) is dominated by s* and
will be excluded from P). We analyze w(s*). We have reached the aim
of our investigations if w(s*)=0, since this implies s*=0m. After ini-
tialization, w(s*) £ W :¼ w1+� � �+wm £ m Æ wmax.

We only investigate steps where s* is chosen for mutation. The
probability of such a step is always at least 1/n, since |P| £ n. Hence,
the expected time is only by a factor of at most n larger than the ex-
pected number of steps where s* is chosen.

By renumbering, we may assume that s* has chosen the first k
edges. We investigate only steps flipping exactly one bit. This has
probability 1 for SEMO and probability at least e)1 for GSEMO,
where e=2.71 . . . . These steps are accepted if they flip one of the first
k edges. If the edge i is flipped, we obtain a search point whose
weight is w(s*) ) wi and the minimal weight has been decreased by a
factor of 1� wi

wðs�Þ. The average factor of the weight decrease equals

1

m

X

1�i�k
1� wi

wðs�Þ

� �
þ

X

kþ1�i�m
1

 !
¼ 1� 1

m
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if the choice of a non-existing edge is considered as a weight decrease
by a factor of 1. The result 1� 1

m does not depend on the population.
After M :¼ dðln 2Þ �m � ðlogWþ 1Þe steps choosing the current s*, the
expected weight of the new s* is bounded above by
ð1� 1=mÞM �W � 1

2. Applying Markoff’s inequality, the probability
that w(s*) ‡ 1 is bounded above by 1/2. Hence, w(s*) < 1 holds with
probability at least 1/2. Since weights are integers, w(s*) < 1 implies
w(s*)=0. The expected number of phases of length M until w(s*)=0 is
at most 2. Hence, altogether the expected waiting time for s*=0m is
bounded above by 2 Æ nÆ M=O(mn (log n+log wmax)) for SEMO. The
corresponding value for GSEMO is larger at most by a factor of 3. h

One may expect that this upper bound is an overestimate for many
graphs and starting points.

Theorem 2. Starting with a population containing the empty edge set
the expected optimization time of SEMO or GSEMO is bounded by
O(mn2).

Proof. As long as the algorithm has not reached its goal we consider
the smallest i such that the population contains for each j, i £ j £ n, a
Pareto-optimal search point sj with f(sj)=(j,Æ). This implies that the
graph described by sj consists of j connected components and has the
minimal possible weight among all possible search points describing
graphs with j connected components. After initialization, the popula-
tion includes 0m which has the smallest weight among all search
points representing graphs with n connected components. Hence, i is
well defined. The search point sj is only excluded from the population
if a search point sj¢ with f(sj¢)=f(sj) is included in the population.
Hence, the crucial parameter i can only decrease and the search is
successful if i=1.

Finally, we investigate the probability of decreasing i. It is well
known that a solution with i)1 components and minimal weight can
be constructed from a solution with i components and minimal weight
by introducing a lightest edge that does not create a cycle. Therefore,
it is sufficient to choose si for mutation (probability at least 1/n) and
to flip exactly one bit concerning a lightest edge connecting two com-
ponents in the graph described by si (probability at least 1/m for
SEMO and at least 1/(em) for GSEMO). Hence, the expected waiting
time to decrease the parameter i is bounded above by O(nm). After at
most n ) 1 of such events the search is successful. h
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Corollary 1. If the weights are bounded above by 2n, SEMO and
GSEMO find the Pareto front in the two-objective variant of the mini-
mum spanning tree problem in an expected number of O(mn2) rounds
independently from the choice of the first search point.

For dense graphs, this bound beats the bound O(m2 Æ log n) for the
application of RLS and the (1+1) EA to the single-objective variant
of the minimum spanning tree problem.

5. Discussion

The most interesting case is the case of polynomially bounded
weights. The expected optimization time of the (1+1) EA is then
O(m2log n) (see Section 3) and this bound is best possible as shown
by the analysis of special input graphs Gn. The reason for this bound
is the following. If the considered search point is a spanning tree, we
obtain a better spanning tree by eliminating i edges of the tree and
inserting i edges producing a tree of smaller weight. For Gn, steps for
i=1 are much more likely than steps for larger i. The expected wait-
ing time for a special 2-bit flip is O(m2). It is likely to need Q(n) of
such 2-bit flips. One might think that the expected optimization time
is Q(nm2). However this is not the case since in the beginning there
are several good 2-bit flips.

In Section 4, we have obtained an upper bound of O(mn2) on the
expected optimization time of both SEMO variants. This is only an
upper bound and it would be better to have an upper bound which is
asymptotically best possible. It is open whether there exist graphs Gn

with m=Q(n2) where SEMO has an expected optimization time of
Q(n4). The best lower bound we have obtained is W(n3log n).

In the following, we present the example graphs leading to this ex-
pected optimization time and discuss the main arguments of the run
time analysis. The full proof is much longer than the proof of the up-
per bounds in Section 4. Since the lower bound does not match the
general upper bound, we do not present the complete proof.

The idea of the example is to connect a path with p expensive
edges of weight n2 with a complete graph on q=n ) p vertices with
cheap edges of weight 1. Figure 1 shows such graphs. Here we focus
on the case q=n/2 and p=n/2. The complete graph ensures a number
of Q(n2) edges. The probability to flip k path edges (or shortly

p-edges) is bounded above by ðn=2k Þð1=mÞ
k � ðn=mÞk ¼ Oðn�kÞ.
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We call a graph a c-graph if it consists of a connected component
on the complete subgraph and n/2+1)c p-edges. Note that c-graphs
which do not contain a cycle are Pareto optimal. There are c)1 differ-
ent 1-bit flips to produce (c)1)-graphs.

After random initialization, it is very likely to obtain a c-graph
where c‡ n/6. As seen above, an offspring of a c-graph can be a
c¢-graph but it is very likely that c)c¢=O(1). Hence, at the first point
of time where the population contains a c¢¢-graph where c¢¢£ n/10 it is
very likely that the population size is Q(n) (note that c-graphs can
only be replaced by other c-graphs). Afterwards, we have to produce
a 1-graph. Let c(P) be the smallest c such that the population P con-
tains a c-graph. We can hope to reduce c(P) only if we select for
mutation a c¢-graph where c¢ is close to c(P). Hence, the waiting time
for a good selection is Q(n). Then there are at most c(P))1 good 1-bit
flips with an expected waiting time of W(m/c(P)). This motivates the
W(mnlog n)=W(n3log n) bound. The complete proof is more involved
since it may happen that the population contains a graph with c com-
ponents which is not a c-graph.

Summarizing, SEMO has the advantage to work with 1-bit flips
while the (1+1) EA is mainly based on 2-bit flips. However, SEMO
has to cope with an increase of the population size leading to a wait-
ing time until an appropriate search point is chosen for mutation.

6. Experimental Results

The theoretical results are asymptotic ones. They reveal differences
for worst-case instances and large m. We add experimental results
that show what happens for typical instances and reasonable m. In
order to compare randomized algorithms on perhaps randomly cho-
sen instances one may compare the average run times, but these val-
ues can be highly influenced by outliers. We have no hypothesis about
the probability distribution describing the random run time for con-
stant input length. Hence, only parameter-free statistical tests can be

Figure 1. Example graph with a path containing p edges and a complete graph on q
vertices.
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applied. We apply the Mann–Whitney test (MWT) that ranks all
observed run times. Small ranks correspond to small run times. If the
average rank of the results of algorithm A1 are smaller than those for
A2, MWT decides how likely it can be that such a difference or a lar-
ger one can occur under the assumption that A1 is not more efficient
than A2. If the corresponding p-value is at most 0.05, we call the
result significant, for 0.01 very significant, and for 0.001 highly signifi-
cant. The statistical evaluation has been performed with the software
SPSS (Version 11.5, see http://www.spss.com). The tables contain the
considered class of graphs, the average rank AR of different algo-
rithms and the p-value for the hypothesis that the algorithm with the
smaller AR-value is likely to be faster.

The experiments consider the following graph classes.

– uniformn: these are complete graphs with m ¼ n
2

� �
edges and the

weights are chosen independently and uniformly at random from
f1; . . . ; ng.

– uniformbdn: each possible edge is chosen with probability 3/n lead-
ing to a small average degree of 3, unconnected graphs are rejected
and the construction is repeated, the weights of existing edges are
chosen as for uniformn.

– planen: the n vertices are placed randomly on the points of the two-
dimensional grid {1, . . . ,n} � {1, . . . ,n}, the weight of an edge is the
rounded Euclidean distance between the vertices.

– planebdn: the n vertices are placed as for planen but each edge is
only considered with probability 3/n as for uniformbdn.

These graph classes reflect different choices of weights (one non-
metric and one metric one) and the possibility of dense and sparse
graphs. Our algorithms are RLS, (1+1) EA, SEMO, and GSEMO.
The index z denotes the case that the initial search point is the empty
edge set (or all-zero string). Without an index the initial search point is
chosen uniformly at random. The run time of RLS and the (1+1) EA
denotes the number of fitness evaluations until a minimum spanning
tree is constructed. The run time of SEMO and GSEMO denotes the
number of rounds until, in one experiment, P contains a minimum
spanning tree or until f(P) equals the Pareto front. In each experiment
the compared algorithms are considered for 100 runs leading to an
average rank of 100.5.

We have analyzed the influence of the initial search point. First,
we have considered the time until the Pareto front is computed. The
results are shown in Table 1.
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Result 1. In 23 out of 24 experiments the variant starting with the
empty edge set has the smaller AR-value. Only 8 results are significant,
among them 5 very significant and 2 of these highly significant.

If we are only interested in the computation of a minimum span-
ning tree, one may expect that one sometimes computes a minimum
spanning tree without computing the empty edge set. Indeed, the
influence of the choice of the initial search point gets smaller. For the
classes uniformn, n=4i and 3 £ i £ 11, there is no real difference
between SEMOz and SEMO, while the AR-values of GSEMO are in
8 of the 9 experiments smaller than for GSEMOz. For the classes pla-
nen, n=4i and 3 £ i £ 11, SEMOz beats SEMO (7 cases) and GSEM-
Oz beats GSEMO (7 cases). We do not show the results in detail since
they are not significant (with the exception of 3 out of 36 cases). The
remaining experiments consider the more general case of an initial
search point chosen uniformly at random.

We have not considered the worst-case instances for RLS and the
(1+1) EA presented by Neumann and Wegener (2004). This would
be unfair against these algorithms. Nevertheless, the experiments of
Briest et al. (2004) have indicated that, for n and m of reasonable
size, dense random graphs are even harder than the asymptotic worst-
case examples. This leads to the conjecture that SEMO beats RLS
and GSEMO beats its counterpart (1+1) EA. Here, the run time
measures the rounds until a minimum spanning tree is constructed.
Table 2 proves that our conjecture holds for the considered cases.

Table 1. Comparison of SEMO and GSEMO with different initial solutions

Class AR SEMOz AR SEMO p-value AR GSEMOz AR GSEMO p-value

uniform12 92.76 108.25 0.058 89.35 111.66 0.006

uniform16 83.51 117.49 <0.001 91.28 109.72 0.024

uniform20 99.12 101.89 0.735 94.21 106.80 0.124

uniform24 98.01 102.99 0.543 93.65 107.35 0.094

uniform28 94.62 106.38 0.151 94.48 106.52 0.141

uniform32 91.24 109.76 0.024 96.76 104.24 0.361

plane12 81.61 119.39 <0.001 88.14 112.86 0.003

plane16 94.51 106.49 0.143 89.38 111.63 0.007

plane20 97.17 103.83 0.416 95.15 105.85 0.191

plane24 93.33 107.67 0.080 103.11 97.89 0.524

plane28 90.58 110.43 0.015 93.09 107.91 0.070

plane32 94.55 106.45 0.146 97.44 103.56 0.455
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Note that the average rank of 100 runs of one algorithm is at least
50.5. In several experiments the AR-value of SEMO or GSEMO
comes close to this value. For n ‡ 20 all values are at most 51.6 and
for small values of n the AR-values are smaller than 60.

Result 2. It is highly significant for all considered graph classes and
graph sizes that SEMO outperforms RLS and GSEMO outperforms the
(1+1) EA.

The theoretical analysis of the algorithms gives values of O(m2log n)
for RLS and the (1+1) EA and O(mn2) for SEMO and GSEMO (if the
weights are reasonably bounded). For complete graphs, m=Q(n2) and
we get values n4logn vs. n4. For sparse graphs, m=Q(n) and we get
values n2 log n vs. n3. Although these are only upper bounds, one may
expect different results for the sparse graphs from uniformbdn and
planebdn. Table 3 shows that this is indeed the case.

Result 3. It is highly significant for uniformbdn and n ‡ 24 and for
planebdn and n ‡ 16 (and the considered values of n) that RLS outper-
forms SEMO. Similar results hold for the (1+1) EA and GSEMO,
but the results are highly significant only for large values of n, namely
n ‡ 32 for both graph classes.

Note that the last group of experiments considers values of n up to
100.

Table 2. Comparison on complete uniform and complete geometric instances

Class AR RLS AR SEMO p-value AR (1+1) EA AR GSEMO p-value

uniform12 146.36 54.64 <0.001 147.79 53.32 <0.001

uniform16 148.45 52.55 <0.001 149.28 51.72 <0.001

uniform20 149.74 51.26 <0.001 149.40 51.60 <0.001

uniform24 150.00 51.00 <0.001 150.29 50.71 <0.001

uniform28 150.40 50.60 <0.001 150.23 50.77 <0.001

uniform32 150.50 50.50 <0.001 150.50 50.50 <0.001

plane12 141.43 59.58 <0.001 145.04 55.96 <0.001

plane16 144.25 56.75 <0.001 148.28 52.72 <0.001

plane20 149.47 51.53 <0.001 149.54 51.46 <0.001

plane24 149.95 51.05 <0.001 149.89 51.11 <0.001

plane28 150.40 50.60 <0.001 150.36 50.64 <0.001

plane32 150.34 50.66 <0.001 150.28 50.72 <0.001
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7. Conclusions

It has been investigated whether the multi-objective variant of a sin-
gle-variant optimization problem can lead to more efficient optimiza-
tion processes. This is indeed the case for the well-known minimum
spanning tree problem and randomly chosen dense graphs. For sparse
connected graphs it is better to use the single-objective variant of the
problem. The results are obtained by a rigorous asymptotic analysis
of the expected optimization time and by experiments on graphs of
reasonable size.
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Table 3. Comparison on instances with bounded average degree

Class AR RLS AR SEMO p-value AR (1+1) EA AR GSEMO p-value

uniformbd12 91.91 109.09 0.036 101.44 99.57 0.819

uniformbd16 90.62 110.39 0.016 103.54 97.46 0.458

uniformbd20 89.79 111.22 0.009 98.98 102.02 0.710

uniformbd24 73.19 127.82 <0.001 91.53 109.47 0.028

uniformbd28 78.01 122.99 <0.001 93.03 107.98 0.068

uniformbd32 77.92 123.08 <0.001 80.85 120.15 <0.001

uniformbd40 73.02 127.98 <0.001 84.37 116.63 <0.001

uniformbd60 65.40 135.60 <0.001 71.22 129.78 <0.001

uniformbd80 56.70 144.30 <0.001 58.72 142.28 <0.001

uniformbd100 54.99 146.01 <0.001 58.47 142.53 <0.001

planebd12 97.56 103.45 0.472 105.24 95.77 0.247

planebd16 81.88 119.13 <0.001 96.79 104.22 0.364

planebd20 81.06 119.95 <0.001 101.70 99.30 0.769

planebd24 84.45 116.55 <0.001 86.52 114.48 0.001

planebd28 81.94 119.06 <0.001 88.45 112.55 0.003

planebd32 71.53 129.47 <0.001 80.86 120.14 <0.001

planebd40 67.18 133.82 <0.001 74.57 126.44 <0.001

planebd60 56.59 144.41 <0.001 60.69 140.31 <0.001

planebd80 52.98 148.02 <0.001 59.60 141.40 <0.001

planebd100 52.21 148.79 <0.001 52.30 148.70 <0.001
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