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Abstract. Evolutionary algorithms with a self-adaptive step control mechanism like

evolution strategies (ES) often suffer from premature fitness stagnation on constrained
numerical optimization problems. When the optimum lies on the constraint boundary
or even in a vertex of the feasible search space, a disadvantageous success probability
results in premature step size reduction. We introduce three new constraint-handling

methods for ES on constrained continuous search spaces. The death penalty step
control evolution strategy (DSES) is based on the controlled reduction of a minimum
step size depending on the distance to the infeasible search space. The two sexes evo-

lution strategy (TSES) is inspired by the biological concept of sexual selection and
pairing. At last, the nested angle evolution strategy (NAES) is an approach in which the
angles of the correlated mutation of the inner ES are adapted by the outer ES. All

methods are experimentally evaluated on four selected test problems and compared with
existing penalty-based constraint-handling methods.
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1. Introduction

Evolutionary algorithms (EA) and in particular evolution strategies
(ES) are used for constrained numerical parameter optimization. The
optimum quite often lies on the constraint boundary or even in a ver-
tex of the feasible search space. In such cases the EA frequently
suffers from premature convergence because of a low success proba-
bility near the constraint boundaries. First of all, in this section the
NLP-problem is defined. After a short survey of constraint-handling
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techniques, the premature fitness stagnation problem is discussed. In
Section 2 we present a new constraint-handling method, the death
penalty step control evolution strategy (DSES). The DSES uses an
adaptive mechanism that controls the reduction of a minimum step
size depending on the distance to the infeasible search space. In Sec-
tion 3 we introduce a biologically inspired concept of sexual selection
and pairing for handling constraints. In Section 4 we present the nes-
ted angle evolution strategy (NAES), a metaevolutionary approach in
which the angles of the correlated mutation of the inner ES are adap-
ted by the outer ES. At last, all techniques are experimentally evalu-
ated on four selected test problems and compared with the results of
an existing penalty-based constraint-handling method.

1.1. The NLP problem

In general, the constrained continuous nonlinear programming prob-
lem is defined as follows: In the n-dimensional search space R find a
solution x ¼ ðx1; x2; . . . ; xnÞT, which minimizes f(x):

fðxÞ ! min :; x 2 R with subject to
inequalities giðxÞ � 0; i ¼ 1; . . . ; n1
equalities hiðxÞ ¼ 0; j ¼ 1; . . . ; n2

ð1Þ

A feasible solution x satisfies all n1 inequality and n2 equality con-
straints. Many constraint-handling techniques like penalty functions
make use of a constraints violation measurement G:

GðxÞ ¼
Xn1

i¼1
max½0; giðxÞ�b þ

Xn2

j¼1
jhjðxÞjc ð2Þ

The parameters b and c are usually chosen as one or two. In the
following, only inequality constraints are taken into account.

1.2. A short survey of constraint-handling methods

1.2.1. Penalty functions
There exists a variety of constraint-handling techniques for EA. Most
of them are based on penalty functions. An early, rather general
penalty approach is the sequential unconstrained minimization

O. KRAMER AND H.-P. SCHWEFEL364



technique (SUMT) by Fiacco and McCormick (1964). The con-
strained problem is solved by a sequence of unconstrained optimiza-
tions in which the penalty factors are stepwise intensified. In other
penalty approaches penalty factors can be defined statically (Homai-
far et al., 1994) or depending on the number of satisfied constraints
(Kuri-Morales and Quezada, 1998). They can dynamically depend on
the number of generations of the EA as Joines and Houck propose
(1994);

~fðxÞ ¼ fðxÞ þ ðC � tÞa � GðxÞ ð3Þ

The parameter t represents the actual generation, the parameters C
and a must be defined by the user. Typical settings are C=0.5,a=1
or 2. Penalties can be adapted according to an external cooling
scheme (Joines and Houck, 1994) or by adaptive heuristics (Bean and
Hadj-Alouane, 1992). In the death penalty (DP) approach infeasible
solutions are rejected and new solutions are created until enough fea-
sible ones exist.

1.2.2. Penalty-related methods
Many methods revert to the penalty principle. In the segregated
genetic algorithm by Riche et al. (1995) two penalty functions, a
weak and an intense one, are calculated in order to surround the
optimum. In the coevolutionary penalty-function approach by
Coello Coello (2000b) the penalty factors of the inner EA are
adapted by an outer EA. Some methods are based on the assump-
tion that any feasible solution is better than any infeasible (Powell
and Skolnick, 1993; Deb, 2001). An example are the metric penalty
functions by Hoffmeister and Sprave (1996). Feasible solutions are
compared using the objective function while infeasible solutions are
compared considering the satisfaction of constraints.

1.2.3. Decoders and repair
Decoders build up a relationship between the constrained search
space and an artificial search space easier to handle (Koziel and
Michalewicz, 1999; Michalewicz and Fogel, 2000). Repair algorithms
either replace infeasible solutions or only use the repaired solutions
for evaluation of their infeasible pendants (Belur, 1997; Coello Coello,
2002).
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1.2.4. Multiobjective optimization
Multiobjective optimization techniques are based on the idea of han-
dling each constraint as an objective. Under this assumption many
multiobjective optimization methods can be applied. Such approaches
were used by Parmee and Purchase (1994), Jiménez and Verdegay
(1999), Coello Coello (2000a), and Surry et al. (1995). In the behav-
ioral memory method by Schoenauer and Xanthakis (1993) the EA
concentrates on minimizing the constraint violation of each constraint
in a certain order and optimizing the objective function in the last
step.

1.2.5. Other approaches
A further method is to avoid infeasible solutions by special con-
straints preventing representations and operators. An example is the
GENOCOP-algorithm (Michalewicz and Fogel, 2000) that reduces the
problem to convex search spaces and linear constraints. A predator–
prey approach to handle constraints is proposed by Paredis (1994)
using two separate populations. Schoenauer and Michalewicz (1996)
propose special operators that are designed to search regions in the
vicinity of active constraints. A comprehensive overview to constraint-
handling techniques is given by Coello Coello (2002) and also by
Michalewicz and Fogel (2000). Recently, Montes and Coello Coello
(2005) introduced a technique based on a multimembered evolution
strategy combining a feasibility comparison mechanism with several
modifications of the standard ES.

1.3. Evolution strategies

For a comprehensive introduction to ES see Beyer and Schwefel
(2002). Here, the most important features of the state of the art
ðl=qþ; kÞ-ES for continuous search spaces are repeated. An ES uses a
parent population with cardinality l and an offspring population with
cardinality k. At first, the individuals, consisting of a vector of objec-
tive and strategy variables, are initialized. The objective variables rep-
resent a potential solution to the problem whereas the strategy
variables, which are step sizes in the standard (l=qþ; k)-ES, provide
the variation operators with information how to produce new results.
The initial values of our experiments can be found in Appendix
B. During each generation k individuals are produced. In the first step
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q ð1 � q � lÞ parents are randomly selected for reproduction. After
recombination of strategy and objective variables the ES applies log-
normal mutation to the step sizes ri ð0 � i � nÞ and uncorrelated
Gaussian mutation to the objective variables. After k individuals are
produced the best l individuals are selected as parents for the next
generation exclusively out of the offspring population in the case of
comma selection or out of the offspring and the previous parental
population in case of the plus selection scheme. As an extension of
the comma selection scheme the parameter j specifies the number of
reproduction cycles individuals are allowed to survive in the parental
population if they cannot be replaced by fitter offspring solutions.

1.4. The problem of premature step size reduction

ES on constrained optimization problems suffer from premature step
size reduction in case of active inequality constraints. This results in a
premature convergence. Figure 1 shows a typical situation. Consider
the application of death penalty or other penalty based approaches as
constraint-handling method and a small angle a between the contour
lines of the fitness function and the constraint boundary. For the sake
of better understanding we do as if all mutations fall within a r-circle
around individual P instead of taking a normal distribution with
standard deviation r into account. Only within the marked area the
fitness of an offspring individual is better than the fitness of its parent

Figure 1. Premature step size reduction. The success probability ps increases for
decreasing step sizes.
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P. The relation between this success area and the size of the whole
circle resembles the success probability ps, which is bigger for small
step sizes (upper P) than for bigger step sizes (lower P). For a small
angle a� p=2 the infeasible search space cuts off a big area of the
success region in the case of big mean step sizes. This means the suc-
cess probability ps increases for decreasing step sizes and therefore the
self-adaptive selection process prefers solutions with smaller mean
step sizes. Furthermore, up to one half of the mutations are produced
in the opposite direction of the optimum. All circumstances lead to
the mentioned premature step size reduction resulting in premature
convergence. We explain the role of the angle d in Section 4.

The situation becomes even worse for problems similar to the tan-
gent problem, see Appendix A. Here, the angle a decreases when
approximating the optimum and consequently the success probability
ps also decreases. The premature step size reduction can be shown
experimentally on problem 2.40 (see Appendix A) for the DP method
and the dynamical penalty function by Joines and Houck (1994), see
Table 1. Problem 2.40 exhibits a linear objective function and an opti-
mum with five active linear constraints. Each line of Table 1 shows
the results of a (15,100)-ES after 50 runs. As termination condition
fitness stagnation is chosen. If the difference between the fitness value
of the best individual of a generation and the best of the following
generation is smaller than h ¼ 10�12, then the ES terminates as the
magnitude of the steps sizes is too small to effect further improve-
ments. Both constraint-handling methods are not able to approximate
the optimum of the problem satisfactorily. The standard deviation
Std. dev show that the algorithms produce rather different results in
the various runs.

Table 1. Experimental results of the DP method and the dynamic penalty function
by Joines and Houck (Dyn) on problem 2.40

Algo Best Mean Worst Std. dev FFC CFC

DP )4948.07919871 )4772.33867 )4609.98512 65.2821 50,624 96,817

Dyn )4780.55456768 )4559.12982 )4358.44663 85.0955 31,878 31,878

The parameter Best shows the best fitness, Mean shows the average fitness with the
standard deviation Std. dev whereas Worst shows the worst fitness achieved by the
presented methods after all runs. The parameter FFC counts the fitness function calls

and CFC the constraint function calls. Both constraint-handling techniques are not able
to approximate the optimum of the problem satisfactorily. The relatively high standard
deviations Std. dev show that the algorithms produce unsatisfactorily different results.
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2. The death penalty step control approach

2.1. Minimum step size reduction mechanism

As mentioned in section 1.4 the DP method suffers from premature
step size reduction because of insufficient birth surplus. The death
penalty step control evolution strategy (DSES) is based on DP, i.e.
rejection of infeasible solutions. For the initialization feasible starting
points are required. The key principle of the approach is a minimum
step size e, a lower bound on the step sizes r, that prevents the evolu-
tionary process from premature step size reduction. But it also pre-
vents the optimization process from unlimited approximation of the
optimum when reaching the range of �. Consequently, a control
mechanism is introduced with the task of reducing � when approxi-
mating the optimum. Intuitively, the reduction process depends on
the number of infeasible mutations produced when reaching the area
of the optimum at the boundary of the feasible search space. Con-
sider the situation presented in Figure 2. Again, for the sake of better
understanding we do as if all mutations fall within a r-circle around
the parental individual instead of using a normal distribution with
standard deviation r. On the left (a), the parent P has come quite
close to the optimum at a vertex of the feasible search space. Further
approximation (b) with the same minimum step size means an in-
crease of infeasible mutations which are counted with the parameter
z. The reduction process of � depends on the number z of rejected

Figure 2. The optimum lies in the vertex of the feasible search space. For the sake

of better understanding we do as if all mutations fall into a r-circle around the
parental individual instead of using a normal distribution with standard deviation
r. (a) The minimum step size � enables the optimization process to approximate
the optimum. (b) A further approximation is possible until the marked region of

success becomes considerably small and many mutations fall into the infeasible re-
gion. (c) When the number of infeasible trials exceeds the parameter mod the min-
imum step size � is reduced and a further approximation of the optimum becomes

possible.
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infeasible solutions: Every mod infeasible trials � is reduced by a fac-
tor 0 < melt < 1 according to the equation:

�0 :¼ � �melt ð4Þ

The DSES is denoted by [mod; melt]-DSES.

2.2. Experimental results

The experimental results of the DSES with several settings on prob-
lem 2.40 are shown in Table 2. Again, the algorithm performs 50 runs
with the same parameters as used in the previous Section 1.4. Table 2
shows that the DSES achieves satisfactory results on problem 2.40 as
long as the minimum step size is not reduced too fast. The latter is
the case for the [75; 0.5]- and the [75; 0.3]-ES. For the other test set-
tings the fitness values and standard deviations show that the opti-
mum of )5000.0 is reached in every run with high accuracy. A slow
reduction of the minimum step size entails inefficiency. The [100; 0.7]-
DSES requires about 15% more fitness and 35% more constraint
function calls than the [75; 0.7]-DSES while achieving the same solu-
tion quality.

Figure 3 shows the development of the mean step size and the
minimum step size � during a typical run of the [75; 0.7]-ES on prob-
lem 2.40. The step sizes are presented on a logarithmic scale. As ex-
pected, the minimum step size � is always located below the actual
average step size. Further experiments in Section 5 confirm positive

Table 2. Results of the DSES with different settings on problem 2.40

DSES Best Mean Worst Std. dev FFC CFC

[100; 0.7] )5000.0000 )5000.0000 )5000.0000 3.2 � 10)10 93,944 1,168,387

[100; 0.5] )5000.0000 )5000.0000 )5000.0000 1.1 � 10)9 85,504 882,620

[100; 0.3] )5000.0000 )5000.0000 )5000.0000 7.1 � 10)10 88,472 747,183

[75; 0.7] )5000.0000 )5000.0000 )5000.0000 2.2 � 10)10 79,566 770,334

[75; 0.5] )5000.0000 )4983.6316 )4823.2500 39.667 178,456 1,324,303

[75; 0.3] )5000.0000 )4932.5880 )4811.6491 62.557 334,532 2,045,082

For four setting the DSES approximates the optimum in every run; Only in the cases of

the [75; 0.5]- and the [75, 0.3]-DSES the minimum step size is reduced too fast to prevent
premature step size reduction.
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results of the DSES on other test problems, but also show its limita-
tions.

3. Constraint-handling with two sexes

3.1. Biologically inspired constraint-handling

The idea of the concept called two sexes evolution strategy (TSES)
is to handle the objective function and the constraint functions as
separate objectives. Every individual of the TSES is assigned to a
new feature called its sex. Similar to nature, individuals with differ-
ent sexes are selected according to different objectives. Individuals
with sex o are selected by the objective function. Individuals with
sex c are selected by the fulfillment of constraints. The intermediate
recombination operator plays a key role. Recombination is only

Figure 3. Development of the minimum and the mean step size during a typical run
of the [75; 0.7]-DSES on problem 2.40 on a logarithmic scale. Both minimum and

mean step sizes shrink exponentially.

ON THREE NEW APPROACHES TO HANDLE CONSTRAINTS 371



allowed between parents of different sex. The treatment of objective
function and constraints as separate objectives sounds similar to
the multiobjective optimization approaches for constraint-handling.
Instead of a multiobjective optimization method a biologically in-
spired concept of pairing two sexes is introduced. Consider the
situation presented in Figure 4. Again, the optimum lies at
the boundaries of the feasible search space. The optimum of the
unconstrained objective function lies beyond the boundary in the
infeasible search space. In the so-called ðlo þ lc; ko þ kcÞ-TSES lo

parents are selected out of ko individuals with sex o, whereas lc

parents are selected out of kc offspring individuals of the previous
generation with sex c. As the individuals with sex o are selected
according to the objective function, they tend to lie finally in the
infeasible search space (black squares) whereas the c-individuals are
selected by the fulfillment of all constraints and mostly lie in the
feasible search space (white circles). The measurement G for the
fulfillment of constraints has already been defined in equation (2).
By means of intermediate recombination, all individuals get closer
to the optimum of the problem, but still are found on opposite
sides of the boundaries between the feasible and the infeasible
search space. For the initialization feasible starting points are not
required.

Figure 4. The effect of intermediary recombination within the TSES enabling individ-

uals to reach a constrained optimum from both sides of the boundaries. Left: The
individuals with sex o (black squares) enter the infeasible region. Right: After inter-
mediary recombination all individuals get closer to the optimum on a vertex of the

feasible region.
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3.2. Modifications of the basic TSES

Several modifications of the basic concept of the TSES are necessary
until the algorithm provides successful results. The usual self-adapta-
tion process effects an explosion of the mean step sizes, because the
invasion far into the feasible search space is rewarded with high fit-
ness values for individuals with sex c as well as approaching the
unconstrained optimum of the objective function is rewarded for the
o-individuals. Modifications of the population ratios of the TSES aim
at reducing the diversity in the population to avoid the overadapta-
tion of the step sizes. Several experiments with different sex ratios and
selection operators lead to the following heuristic modifications:

– sex ratio and birth surplus (8+8, 13+87)
– two-step selection operator for the sex c, according to the metric
penalty function by Hoffmeister and Sprave (1996): First, selection
by fulfillment of constraints, secondly, if enough feasible solutions
exist: selection by objective function

– introduction of a finite life span 1<j<1 (see Section 1.3) for indi-
viduals with the sex c

These modifications lead to promising results on the test functions,
see next Section 3.3. The sex ratio with a majority of 87 c-individuals
and only 13 o-offspring show that the diversity within the o-individu-
als may not exceed a certain level. Otherwise, the population would
be able to reach the region of the unconstrained optimum resulting,
in an explosion of mean step sizes. The survival possibility for the
most successful individuals over up to j reproduction cycles empha-
sizes the role of the c-individuals.

3.3. Experimental results

In Table 3 the experimental results of the TSES are presented. Like
above the TSES runs 50 times on problem 2.40. As termination con-
dition fitness stagnation is chosen. The parameter j is tested with two
different settings. Table 3 shows that the (8+8,13+87)-TSES is able
to approximate the optimum with the desired accuracy for both set-
tings of j. Both experiments differ in the average number of fitness
and constraint functions calls as the TSES with j=200 requires about
25% more FFC and CFC than the TSES with j=50. Figure 5 shows
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the fitness development of a typical run of the (8+8, 13+87)-TSES
on problem 2.40. As expected in the description of the TSES-idea, the
individuals of the two sexes lie on opposite sides of the constraint
boundaries around the optimum. Individuals with sex o lie in the
infeasible search space. Thus the graph shows the development of
the difference between the optimum and the fitness values. Similarly,
the fitness of the o-individuals develops this way oscillating
around the fitness of sex c and being interrupted where the individuals
lie in the feasible part of the search space. Concerning the performance,

Table 3. The (8+8, 13+87)-TSES with two settings for parameter j. Both TSES
approximate the optimum of problem 2.40 in every run

j Best Mean Worst Std. dev FFC/CFC

50 )5000.00000 )5000.00000 )5000.00000 4.21 � 10)11 529,468

200 )5000.00000 )5000.00000 )5000.00000 8.48 � 10)12 709,536

The numbers of FFC and CFC are equal. As the constraint violation for the
o-individuals does not have to be calculated the number of CFC may even be smaller.

Figure 5. Development of the best fitness of both sexes of the (8+8, 13+87)-TSES

on problem 2.40.
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the TSES is less efficient than the DSES introduced in the previous
Section 2. In Section 5 the qualities and efficiencies of all techniques
are compared to each other.

4. The nested angle evolution strategy

4.1. Metaevolution for mutation ellipsoid rotation

The success probability situation at a boundary of the feasible search
space can change considerably when the mutation ellipsoid is rotated
by an angle in the range of d, see Figure 6. Here, d is the smaller
angle between one parameter axis and the constraint. Using two dif-
ferent step sizes and one rotation angle the mutation ellipsoid can
adapt to a situation where the infeasible search space does not cut off
the success area and consequently prevents premature step size reduc-
tion. This consideration leads to the constraint-handling method pro-
posed in this section. Figure 6 shows the situation when the mutation
ellipsoid is rotated by angle )d. After the rotation the success proba-
bility ps increases. Rotation of the mutation ellipsoid can be achieved
by correlated mutations introduced by Schwefel (1974). But experi-
ments with the correlated mutations show that the diversity in the
population of a (15,100)-ES is not sufficient to achieve the adaptation
of both mean step sizes and angles, see Table 4.

In our new nested angle evolution strategy (NAES) the outer ES
adapts the angles for the rotation of the mutation ellipsoid of the

Figure 6. Situation at the boundary of the feasible search space after rotation of the

mutation ellipsoid by the angle )d: The self-adaptation process enables the step sizes
r1 and r2 to form an ellipsoid that is not cut off by the constraint.
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inner ES. Here we use the advanced notation for nested ES intro-
duced by Rechenberg (1994). In the [l0=q0þ; k0ðl=qþ; kÞc]-ES k¢ inner
ES run for c generations, also called isolation time. In our metaevolu-
tionary approach the isolation time is conditioned by observing the
fitness stagnation. This stops the inner ES after the step size has been
reduced as a result of premature step size reduction. The parameters
q and q¢ specify the number of parents used for recombination and
are set to two during our experiments. They are omitted in the
following notations.

4.2. Experimental results

Table 5 shows the experimental results of the [5, 50(5, 50)]-NAES on
problem 2.40 after 15 runs. The variables of the outer ES which are
the angles for the inner ES are initialized within the interval [0, p/2].
The corresponding initial step sizes are ri ¼ p=8 for all i. The start
position of all inner ES is x(0)=(250, 250, 250, 250, 250). Mutation
and recombination parameters are chosen as usual. For both ES
fitness stagnation is chosen as termination condition. For all inner ES
the setting h ¼ 10�9 and for the outer h=10)7 is chosen. As the worst
fitness values and the standard deviations show (see Table 5), the
NAES is able to find the optimum with the accuracy the termination
condition allows. The NAES is able to adapt the rotation angles and
thus increases the success probability ps. But obviously, the NAES is
not very effcient. The reason for this lies in the nature of the metaev-
olutionary approach. Every evaluation of an individual of the outer
ES causes a full run of k¢ inner ES. As shown in the next Section 5

Table 4. The (15,100)-ES with correlated mutations and standard parameter settings
on problem 2.40

Pb Best Mean Worst Std. dev FFC CFC

2.40 )5000.00000000 )4942.9735056 )4704.2122103 88.653 78,292 180,450

The algorithm is far away from approximating the optimum in every run.

Table 5. The [5, 50(5, 50)]-NAES on problem 2.40

Pb Best Mean Worst Std. dev FFC CFC

2.40 )5000.000000 )5000.000000 )5000.000000 1.16 � 10)8 3.6 � 107 1.5 � 108

In all runs the NAES is able to find the optimum with the desired accuracy.
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with a [3, 15(3, 15)]-NAES we can reduce the number of fitness
function calls by decreasing the population sizes. But smaller popu-
lation sizes are not always sufficient to guarantee the diversity in
the outer population that is necessary to find the correct rotation
angles.

5. Comparison of experimental results

In this section, the proposed constraint-handling techniques are
compared experimentally on four test problems with optima in
vertices of the feasible search spaces. Table 6 summarizes the

Table 6. Survey of the experimental results of the DSES, TSES, and NAES on the
problems TR2, 2.40, 2.41, and HB

Best Mean Worst Std. dev FFC CFC

TR2

DP 2.000 2.000 2.001 3.8 � 1.0)4 11,720 20,447

Dyn 2.000 2.001 2.007 0.0015 13,100 13,100

DSES 2.000 2.000 2.000 8.5 � 10)6 796,2001 1,463,900

TSES 2.000 2.000 2.000 1.2 � 10)8 1,100,872 1,100,872

NAES 2.000 2.000 2.000 3.1 � 10)16 927,372 1,394,023

2.40

DP )4948.079 )4772.339 )4609.985 65.28 50,624 96,817

Dyn )4780.555 )4559.130 )4358.447 85.10 31,878 31,878

DSES )5000.000 )5000.000 )5000.000 2.2 � 10)10 79,566 770,334

TSES )5000.000 )5000.000 )5000.000 4.2 � 10)11 529,468 529,468

NAES )5000.000 )5000.000 )5000.000 1.2 � 10)8 35,935,916 149,829,046

2.41

DP )17596.108 )17050.591 )16496.020 255.018 31,718 69,292

Dyn )17754.605 )17187.705 )16172.738 342.9851 46,290 46,290

DSES )17857.143 )17857.143 )17857.143 1.2 � 10)8 51,660 469,866

TSES )17857.143 )17857.143 )17857.143 8.6 � 10)10 379,268 379,268

NAES )17857.143 )17857.143 )17857.143 3.8 � 10)8 12,821,710 41,720,881

HB

DP )30978.142 )30899.666 )30766.920 41.4454 37,540 77,298

Dyn )30893.281 )30765.428 )30625.048 63.8514 24,186 24,186

DSES )31025.560 )31025.560 )31025.560 1.3 � 10)9 54,344 211,499

TSES )31025.560 )31025.560 )31025.560 7.6 � 10)11 241,290 241,290

NAES )31025.560 )31025.560 )31025.560 2.1 � 10)8 19,730,306 60,667,984
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results of the three proposed constraint-handling methods in com-
parison to the methods DP and the dynamical penalty function
(Dyn) by Joines and Houck 1994 on problems TR2 (two dimen-
sional TR), 2.40, 2.41, and HB. For parameter settings and termi-
nation conditions we refer to Appendix B. Table 6 shows that the
standard methods DP and Dyn are not able to approximate the
optimum of problems TR2, 2.40, and 2.41 satisfactorily. The
dynamic penalty function fails on problem HB, only the DP
method performs well on problem HB to some degree, but cannot
find the optimum in every run. As explained in Section 1.4 both
techniques suffer from premature step size reduction.

In contrast to that, the small standard deviations Std. dev and
the same fitness values for the best and the worst solutions show
that the new proposed constraint-handling techniques do not suffer
from premature fitness stagnation and therefore reach the optimum
as far as the termination condition with the parameter h allows on
the problems 2.40, 2.41, and HB. The only exception is problem
TR2 where only the NAES is able to approximate the optimum
and find the correct rotation angle of p/4. In further experiments
the NAES was able to approximate the optimum of the tangent
problem of higher dimensions.

Obviously, the DSES cannot cope with the decreasing success
probability of problem TR2 when approximating the optimum. The
TSES achieves relatively satisfactory results on problem TR2. Con-
cerning the performance, the DSES requires the least number of
fitness function calls, but causes many constraint function calls.
The reason for this is that the �-reduction mechanism depends on
the number of infeasible trials. The speed of conducting the
�-reduction depends on the parameters mod and melt, of course.
The TSES is not as efficient as the DSES, but uses less constraint
function calls.

The NAES causes the highest number of constraint and fitness
function calls as we expect from the nature of a metaevolutionary ap-
proach. Every solution of the outer ES requires a full run of a couple
of inner ES. But the NAES is the only constraint-handling method
which is able to approximate the optimum of every type of con-
strained problem. In practice, the NAES might be too inefficient, but
the performance can be improved by adequate parameter settings for
the parameters l, l¢, k, and k¢.
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5.1. Summary

The premature step size reduction and the resulting premature fitness
stagnation could be shown experimentally for two traditional con-
straint handling techniques, DP and a dynamic penalty function. Three
new constraint-handling techniques were introduced with the aim of
preventing an ES to suffer from premature fitness stagnation. The
DSES achieves promising results on all test problems except on the tan-
gent problem. The TSES shows similar results. The NAES is able to
approximate the optimum of every kind of problem. All algorithms
were compared by the numbers of necessary fitness and constraint
function calls. We revealed the structural special feature of the tangent
problem concerning the success probability at the optimum. The exper-
imental results have to be expanded to other constrained test functions.
In the future we will recommend further parameter settings for the pro-
posed constraint-handling techniques in order to achieve fast and high
quality results for constrained problems. Perhaps modifications of the
proposed methods will help to improve the quality and efficiency of the
results on the tangent problem and other structurally similar problems.

6. Appendix

6.1. A. Test problems

For our experimental analysis we selected four constrained test prob-
lems with optima at the boundary of the feasible search space.

Problem 2.40. Schwefel’s problem 2.40 (Schwefel, 1995)

Minimize:

FðxÞ ¼ �
X5

i¼1
xi

Constraints:

GjðxÞ ¼
xj � 0, for j ¼ 1; . . . ; 5

�
P5

i¼1
ð9þ iÞxi þ 50; 000 � 0; for j ¼ 6

8
<

:
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Minimum:

x� ¼ ð5000; 0; 0; 0; 0ÞT; Fðx�Þ ¼ �5; 000

G2 to G6 active.
Feasible starting point:

xð0Þ ¼ ð250; 250; 250; 250; 250ÞT; Fðxð0ÞÞ ¼ �1; 250

The objective function as well as the constraints exclusively consist of
linear equations. A similar problem was introduced by Schwefel
(1995):

Problem 2.41. Schwefel’s problem 2.41 (Schwefel, 1995)

Minimize:

FðxÞ ¼ �
X5

i¼1
ðixiÞ

Constraints like problem 2.40.
Minimum:

x� ¼ ð0; 0; 0; 0; 50; 000
14
ÞT; Fðx�Þ ¼ � 250; 000

14

Gj active for j =1, 2, 3, 4, 6.
Feasible starting point:

xð0Þ ¼ ð250; 250; 250; 250; 250ÞT; Fðxð0ÞÞ ¼ �3; 750

Except of the scaling factor i this problem is structurally similar to
problem 2.40. Both problems are flexible concerning their dimension-
ality, but here we limit to five dimensions. The third problem is the
tangent problem, which is based on the sphere model subject to one
constraint active at the optimum.

Problem TR (n-dimensional tangent problem)

Minimize:

FðxÞ ¼
Xn

i¼1
x2i ðn-dim. sphere model)
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Constraint:

gðxÞ ¼
Xn

i¼1
xi � t � 0; t 2 R (tangent)

For n=k and t=k the optimum is located at:

x� ¼ ð1; . . . ; 1ÞT; with Fðx�Þ ¼ k:

Feasible starting point:

xð0Þ ¼ ð50; . . . ; 50ÞT; Fðxð0ÞÞ ¼ n � 502;

As mentioned in Section 1.4 the tangent problem differs from the
other problems in the essential structural feature that the success
probability for improvements decreases when approximating the
optimum.

A further problem is Himmelblau’s nonlinear optimization prob-
lem (Himmelblau, 1972), which is often used for the evaluation of
constraint-handling methods.

Problem HB (Himmelblau’s nonlinear optimization problem)

Minimize:

FðxÞ ¼ 5:3578547x23 þ 0:8356891x1x5 þ 37:293239x1 � 40; 792:141

Constraints:

g1ðxÞ ¼ 85:334407þ 0:0056858x2x5 þ 0:00026x1x4 � 0:0022053x3x5

g2ðxÞ ¼ 80:51249þ 0:0071317x2x5 þ 0:0029955x1x2 þ 0:0021813x23
g3ðxÞ ¼ 9:300961þ 0:0047026x3x5 þ 0:0012547x1x3 þ 0:0019085x3x4

0 � g1ðxÞ � 92
90 � g2ðxÞ � 110
20 � g3ðxÞ � 25
78 � x1 � 102
33 � x2 � 45

27 � xi � 45 ði ¼ 3; 4; 5Þ
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Optimum:

x� ¼ ð78:000; 33:000; 29:995; 45:000; 36:776ÞT; Fðx�Þ ¼ �30; 665:5

Feasible starting point:

xð0Þ ¼ ð100; 40; 40; 40; 40ÞT;Fðxð0ÞÞ ¼ �25147:493180000005

6.2. B. Parameter Settings

In this section the parameter settings of the experimental results are
presented. For all experiments the settings of the first part of the table
are valid unless other settings are presented in the following parts.
The initial mean step sizes are chosen according to the following
equation:

ri ¼
jxð0Þ � x�j

n
ðB:1Þ

for 1 £ i £ n and a problem of dimension n.

Common setting

Runs 50

Initial step sizes TR2: ri=34.65

2.40: ri=955.25

2.41: ri=671.77

HB: ri=5.48

Recombination variables, step sizes q=2, intermediate

Mutation nr=n

TR2: s0=0.45, s=0.0

2.40,2.41, HB: s0 ¼ 1ffiffiffiffi
10
p ; s ¼ 1ffiffiffiffiffiffiffi

2
ffiffi
5
pp

Termination condition Fitness stagnation

TR2: h=10)16

2.40, 2.41: h=10)12

DP

ES-type (15,100)
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