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Abstract Sporothrix schenckii (S. schenckii), a

ubiquitous thermally dimorphic fungus, is the etio-

logical agent of sporotrichosis, affecting immuno-

compromised and immunocompetent individuals.

Despite current antifungal regimens, sporotrichosis

results in prolonged treatment and significant mortal-

ity rates in the immunosuppressed population. The

innate immune system forms the host’s first and

primary line of defense against S. schenckii, which has

a bi-layered cell wall structure. Many components act

as pathogen-associated molecular patterns (PAMPs)

in pathogen-host interactions. PAMPs are recognized

by pattern recognition receptors (PRRs) such as toll-

like receptors, C-type lectin receptors, and comple-

ment receptors, triggering innate immune cells such as

neutrophils, macrophages, and dendritic cells to

phagocytize or produce mediators, contributing to S.

schenckii elimination. The ultrastructure of S.

schenckii and pathogen-host interactions, including

PRRs and innate immune cells, are summarized in this

review, promoting a better understanding of the innate

immune response to S. schenckii and aiding in the

development of protective and therapeutic strategies

to combat sporotrichosis.
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Introduction

The genus of Sporothrix with worldwide distribution

is a typical dimorphic fungus, leading to a chronic

subcutaneous infectious fungal disease named

sporotrichosis [1]. As genotyping technology devel-

ops, 53 species of Sporothrix have been identified, and

only seven members were found to cause deleterious

Handling Editor: Min Chen.

Peng Lin and Jianfeng Zhang have equally contributed to this

work.

P. Lin � J. Zhang � J. Li � C. Guo

Graduate School, Tianjin University of Traditional

Chinese Medicine, Tianjin, China

G. Xie

Department of Traditional Chinese Medicine, First

Affiliated Hospital of Gannan Medical University,

Ganzhou, China

H. Lin

Graduate School, Tianjin Medical University, Tianjin,

China

Y. Zhang (&)

Department of Dermatology, Tianjin Academy of

Traditional Chinese Medicine Affiliated Hospital, Tianjin,

China

e-mail: Niuniuzy7375@aliyun.com

123

Mycopathologia (2023) 188:71–86

https://doi.org/10.1007/s11046-022-00683-0(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0001-9317-2466
http://crossmark.crossref.org/dialog/?doi=10.1007/s11046-022-00683-0&amp;domain=pdf
https://doi.org/10.1007/s11046-022-00683-0


effects on humans [2]. S. schenckii, S. brasiliensis, and

S. globosa are the primary pathogens, and S. schenckii

is the most studied species of a clinical clade [2]. Like

other dimorphic fungi, S. schenckii grows as mycelia

in a saprotrophic environment or culturing at 25 �C,

whereas in host tissues or culturing at 37 �C, it

undergoes dimorphic transition and division into

pathogenic yeast cells [3]. Furthermore, the patho-

genic yeast cells induce a poor pro-inflammatory

compared with mycelia, suggesting an enhanced

survival for S. schenckii [4].

The first case of sporotrichosis in the world was

reported by Benjamin R.Schenck in 1898 [2]. How-

ever, sporotrichosis has now been considered an

emergent health problem, owing to the increasing

number of reports of Sporothrix infection in immuno-

compromised patients [5]. In addition, sporotrichosis

has been classified as one of the Neglected Tropical

Diseases by The World Health Organization [6].

Sporotrichosis occurs due to traumatic inoculation of

materials contaminated with Sporothrix, causing

papules, nodules, plaques, ulcers, granulomas, and

crusting of the face and limbs [2, 7]. Meanwhile,

primary lung disease can occur through the inhalation

of spores, causing pulmonary sporotrichosis [8].

Occurrences of severe clinical forms of sporotrichosis

such as disseminated [9], pulmonary [8], intravascular

granuloma [10], ocular [11], and osteoarticular [12]

sporotrichosis were described, especially among

immunocompromised individuals [13]. Moreover,

increasing evidence indicates that disseminated and

extracutaneous forms of sporotrichosis occur in

immunocompetent individuals [14–20]. Therefore,

oral administration of antifungal agents must be

maintained until the clinical cure is reached, which

usually takes several months [7]. Besides, current

antifungal drugs are expensive and usually invalid due

to the development of drug toxicity and fungal

resistance [21]. Despite treatment with antifungal

drugs, patients with disseminated and extracutaneous

sporotrichosis continue to have high morbidity and

mortality. Among them, the mortality rates of dissem-

inated, osteoarticular, and pulmonary sporotrichosis

are 21.9% [22], 22% [12], and 42.9% [23],

respectively.

The innate immune system forms the host’s first

line of defense against pathogens [24]. Innate immune

cells such as macrophages play a vital role and are

likely the primary effector cell in killing and

ultimately eliminating Sporothrix infection [25]. More

adequate approaches to treating sporotrichosis may

necessitate the incorporation of immunomodulatory

therapies, as the compromised status of the immune

system prevents the host from responding optimally to

conventional therapy. A new strategy named the

Trained Immunity-based Vaccine indicates that

immunomodulation via PRR ligands in innate immune

cells could generate broad-spectrum anti-infectious

formulations [26]. Therefore, effective disease control

requires the engagement of host receptors by patho-

gen-derived PAMPs to stimulate the immune

response. In this review, the ultrastructure of yeast of

S. schenckii is reviewed, contributing to recognition of

PAMPs on the cell wall. It will also highlights the role

of the innate cellular immune members and the arsenal

of PRRs utilized by these cells to detect S. schenckii,

contributing to a better understanding of the innate

immune in response to S. schenckii and assisting in

developing protective and therapeutic strategies

against sporotrichosis.

The Cell Wall Components of Sporothrix

The fungal cell wall is the first point of contact

between the host and the pathogen, which also

contributes to establishing communication with the

environment and the host [27]. Innate immunity is

triggered by the interaction between the host cell

surface PRRs and the pathogen-associated molecular

patterns (PAMPs) from fungi [28]. PAMPs are

conserved molecular structures on the pathogen sur-

face, whereas PRRs are conserved transmembrane or

soluble receptors on host [28]. Therefore, many cell

wall components of S. schenckii were regarded as

PAMPs.

The Cell Wall Structure of S. schenckii

The ultrastructural data reveal that S. schenckii has a

bi-layered cell wall structure which includes an

external microfibrillar layer and an inner electron-

dense layer (Fig. 1) [29].

The outer layer, i.e., fibrils, is composed of

peptidorhamnomannan, a complex of molecules with

a wide molecular weight range, containing 16% of

peptide, 51% of mannose and 33% of rhamnose [30].

Chitin and b1,3-glucan are covered by mannan and
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glycoprotein on the cell wall of S. schenckii sensu

stricto [31–33]. Further studies demonstrate that b1,3-

glucan, b1,4-glucan, b1,6-glucan and chitin constitute

the inner cell wall layer [29, 32, 34].

Interestingly, glycogen a-particles could be

observed in the cytoplasm adjacent to the cell wall

and the plasma membrane and were localized at

budding poles of yeast cells, indicating that it serves as

a source of glucose, whereas it vanished after 7and/or

10 days in culture [29]. Notably, a-glucan found in

other pathogenic species such as Scedosporium,

Pseudallescheria and Aspergillus complex was not

present on the cell surfaces of Sporothrix.spp [29, 35].

Melanin is vital to the survival of fungi and can

keep them from being phagocytosed [36, 37]. Melanin

granules distribute on the external cell wall, and some

melanin granules are released into the peripheral

space, separate from the cell wall [37, 38]. The cell

wall thickness of S. schenckii correlates with the

presence of melanin. S. schenckii with melanin has a

thicker cell wall than S. schenckii without melanin

[39]. Furthermore, the yeast phases of Sporothrix

shows a reduced production of melanin compared with

conidia [37].

Extracellular vesicles (EVs), bi-layered biological

structures that communicate between host cells and

fungi cells, are secreted from Sporothrix yeast cells

[40, 41]. The phagocytosis index of macrophages

increased after co-culture with extracellular vesicles,

suggesting that EVs play a protective role during

Sporothrix infections [41].

Adhesion to extracellular matrix proteins is crucial

to the invasion of S. schenckii, and cell surface

glycoconjugates can bind to extracellular protein

fibronectin via their carbohydrate or peptide moieties

[42]. S. schenckii has 37–92 kDa of fibronectin on the

surface, which contributes to the adhesion to host cells

[43]. Surprisingly, research shows that S. schenckii

can molt sheets of intact cell wall layers and deliver

into the extracellular milieu, suggesting that it can

cause antigenemia or inflammation far from the

original site, which maybe the immunological basis

of the disseminated type [29]. However, the mecha-

nism of cell wall-shedding remains unknown. In

Fig. 1 A schematic diagram for pathogenic yeast cells of

Sporothrix in host tissues or culturing at 37 �C. S. schenckii has

a bi-layered cell wall structure, including external microfibrillar

and inner electron-dense layers. The outer layer is composed of

peptidorhamnomanna containing peptide, mannose and rham-

nose. Meanwhile, the chitin, b1,3-glucan, b1,4-glucan and b1,6-

glucan constitute the inner layer of cell wall. Melanin granules

distribute on the external cell wall, and some are released into

the peripheral space separated from the cell wall. Extracellular

vesicles with bi-layered biological structures could be secreted

by Sporothrix yeast cells. (Created with BioRender.com)
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general, the biofilm matrix contains polysaccharides,

lipids, proteins, and nucleic acids, providing the

stability of biofilms [44]. Many fungi such as Candida,

Cryptococcus, and Aspergillus can produce biofilms

that can decrease the effectiveness of antifungal

therapies [45–48]. Like other fungi, S. schenckii, S.

globosa and S. brasiliensis have the same ability to

form biofilm in the filamentous phase, leading to a less

susceptible to antifungal agent [49, 50]. However, it

remains to explore whether yeast has the same biofilm.

The Cell Wall Related to Virulence

The proportion of cell wall components can affect the

recognition of host cell PRRs, thus affecting virulence

of Sporothrix. S. schenckii, S. brasiliensis, and S.

globosa have a similar cell wall structure [31]. What’s

more, the similarity of genomes between S. brasilien-

sis and S. schenckii is 97.5% [51], while S.brasiliens is

the most virulent species, followed by S. schenckii,

and S. globosa is the least virulent species [52]. Cell

wall proteins, kinases and heat shock proteins, extra-

cellular and intracellular proteinases, melanin, extra-

cellular vesicles, lipids, and biofilm were recognized

as major virulent factors of S. schenckii [53].

The components of out cell wall contribute to the

virulence of Sporothrix, while the exposure of inner

cell wall contribute to the protective effect in host. S.

schenckii has a thinner cell wall than S. brasiliensis,

with lower chitin and rhamnose contents [29]. While

the latest study indicated that the increased chitin in

the cell wall reduces virulence [54]. Rhamnose is a

vital virulence factor for S. schenckii in the G.mel-

lonella model of infection [32]. Furthermore, the ratio

of rhamnose-to-b-glucan is proportional to the viru-

lence, while the length of rhamnomannan is inversely

proportional to the virulence [55]. The carbon or

nitrogen limitation of the culture medium increases

b1,3-glucan exposure at the cell surface and decreases

the virulence of S. schenckii and S. brasiliensis, except

for S. globosa [56].

Host Recognition of Sporothrix

PRRs, expressed on host cells, are vital components of

innate immunity. In addition, PRRs can recognize and

initiate an inflammatory response to invading microor-

ganisms [57]. TLRs, CLRs, NOD-like receptors

(NLRs), and RIG-I-like receptors (RLRs) are four

receptor families that contribute to fungi recognition

[57], especially TLRs and CLRs [58]. Fungal PAMPs

contain cell wall components, such as mannan, chitin,

and rhamnose. Besides, S. schenckii contain various

potentially antigenic molecular components (Fig. 1).

Toll-Like Receptors

TLRs were first identified in Drosophila melanogaster

[59]. TLRs are expressed in innate immune cells such

as DCs and macrophages. There are two subfamilies of

TLRs based on their localization, cell surface TLRs

and intracellular TLRs. TLR1, TLR2, TLR4, TLR5,

TLR6, and TLR10 are localized on the cell surface,

while TLR3, TLR7, TLR8, TLR9, TLR11, TLR12,

and TLR13 are localized in the endosome [60]. TLR-2

and TLR-4 are two of the most intensively studied

receptors among TLRs.

TLR-2 plays a vital role in triggering an inflam-

matory response to eradicate S. schenckii. Macro-

phages from C57BL/6 TLR-2 knock-out (KO) mice

significantly reduced the percentage of macrophages

with internalized yeasts and reduced the release of

TNF-a, IL-1b, IL-12, NO, and IL-10 (Table 1, Fig. 2)

[61, 62]. After human peripheral blood mononuclear

cells (PBMCs) were pre-incubated with anti-TLR2,

TNF-a, IL-1b, IL-6, and IL-10 were diminished by

stimulating S. schenckii yeast cell [31]. While IL-17

liberation is independent of TLR-2, TLR-2 absence

increases the release of IL-17 and TGF-b and develops

Th17 response [62]. However, research reveals that an

optimal fungal clearance depends on an intact Th17

response since IL-23 decrease is accompanied by

fungal burden increase [63].

TLR-4 is also crucial for developing inflammatory

responses during S. schenckii infection [64]. Cell wall

rhamnose is required for S. schenckii virulence and

rhamnose-based oligosaccharides are ligands that

interact with TLR4 [32]. Both pro-inflammatory

(NO, TNF-a) and anti-inflammatory mediators (IL-

10) are reduced in TLR4-deficient peritoneal macro-

phages after coculturing with S. schenckii [65].

Increased release of H2O2, IL-1b, IL-6, and TGF-b
was found during S. schenckii infection on macro-

phages from TLR-4 deficient mice, reducing the

inflammatory response [64]. Interestingly, it is

CD80, CD86, and CD40 but not TLR-4 that is highly

expressed on S. schenckii cell wall proteins (SsCWP)-
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stimulated bone marrow-derived dendritic cells

(BMDCs) [66]. Furthermore, studies indicate that

cytokine released by Human PBMCs pre-incubated

with anti-TLR4 remained unchanged after being

stimulated by S. schenckii yeast cells, suggesting a

modest participation of TLR4 [31], The role of other

TLRs, such as TLR3, and TLR9, which localizes in the

endosome, have not been elucidated. In summary,

TLRs contribute to S. schenckii recognition and

elimination. Due to the potentially beneficial effects

of TLRs, future research may focus on developing

drugs that act as TLR agonists or ligands as potential

adjuvants for vaccine formulations.

C-TYPE Lectin Receptors

CLRs, including transmembrane receptors on immune

cells and soluble forms in serum, can recognize

carbohydrate polymers such as mannan, glucans and

chitins expressed on the fungal cell wall [67]. Dectin-

1, also known as a b-glucan receptor, is the primary

fungal-1,3-glucan receptor on macrophages and

belongs to CLRs family, which also plays a significant

role in fungal elimination removal and induction of

essential receptors for cytokine production during

Sporothrix infection [31, 68, 69]. Peritoneal macro-

phages could recognize b1,3-glucan by Dectin-1,

Table 1 Pattern recognition receptor (PRR) and pathogen-associated molecular pattern (PAMP) identification and outcome

PRRs PAMP Model system Outcome Citations

TLR2 LipAg TLR2 KO (C57BL/6) The macrophages from C57BL/6 TLR-2 KO mice

cannot produce IL-1b, IL-12, TNF-a and NO

[62]

SolAg, LipAg TLR2 KO (C57BL/6) The absence of TLR-2 significantly reduces the

percentage of macrophages with internalized

yeasts, and reduces the release of TNF-a, IL-1b,

IL-12, and IL-10

[61]

S. schenckii yeast

cell

Human PBMCs TNF-a, IL-1b, IL-6, and IL-10 were diminished

upon blockage of TLR2

[31]

TLR4 rhamnose-based

oligosaccharides

Macrophages incubated with S.
schenckii with rmlD gene

silenced

The silenced strains were more efficiently

phagocytosed than the wild strain and the

macrophages released a reducing level of TNFa
and increasing of IL-1b and IL-10

[32]

Lipid extraction TLR4 KO (C3HL/HeJ) Both pro-inflammatory mediators(NO and TNF-a)

and anti-inflammatory mediators(IL-10) are

reduced in TLR4-deficient peritoneal

macrophages after coculturing with S. schenckii

[65]

S. schenckii yeast

cell

Human PBMCs No effect the cytokine stimulation when blocking

TLR4

[31]

Dectin-

1

b1,3-glucan macrophages An elevated secretion of IL-10, NO, TNF-a and

IL-1b by macrophages

[70]

S. schenckii yeast

cell

Human PBMCs TNF-a, IL-1b, IL-6, and IL-10 were decreased

after pre-incubated with laminarin, a ligand for

Dectin-1

[31]

MR S. schenckii yeast

cell

Human PBMCs The production of pro-inflammatory cytokines was

insensitive to MR blockage

[31]

NLPR3 Alkali-insoluble

fraction of S.
schenckii yeasts

Marcrophage and splenocyte from

NLRP3-/-, ASC-/- and

caspase-1-/- mice

A decreased release of IL-1b, IL-18, and IL-17,

while IFN-c release was unaffected

[81]

CR3 PRM hMDMs A decreased release of IL-1b by hMDM in

response to S. schenckii
[83]

PTX3 S. schenckii yeast

cell

hMDMs PTX3 can enhance the clearance of pathogens by

facilitating the deposition of C1q

[83]

hMDMs, human monocyte-derived macrophages; PRM, Peptidorhamnomannan; LipAg, Lipid antigen; PBMCs, Peripheral blood

mononuclear cells; MR, Mannose receptor
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resulting in elevated secretions of IL-10, NO, TNF-a
and IL-1b [70]. In vitro, the release of TNF-a, IL-1b,

IL-6, and IL-10 was decreased by PBMCs, where

Dectin-1 was blocked [31]. A Dectin-1 antibody-

mediated blockade assay also reduced cytokine pro-

duction in infected and non-infected mice [70]. There

is a study reveals that the dog with sporotrichosis

which is prior resistant to itraconazole results in

complete elimination of the fungus with itraconazole

combined with b1,3-glucan. While the masked b1,3-

glucan results a weaker recognition of fungi by innate

immune cells, thus aiding in the fungi to evade from

innate immune clearance [71]. b1,3-glucan can act as

an immunomodulator since it can be recognized by

Dectin-1 and results in the activation of host protective

immunity against S. schenckii infection.

MR had a minor contribution to the binding and

phagocytosis of conidia of S. schenckii compared with

yeast [4]. The production of pro-inflammatory cytoki-

nes released by Human PBMCs was insensitive to the

blockage of MR after coculture with S. schenckii yeast

cells [31]. Mannose-binding lectin (MBL) and MBL-

associated serine protease-2 (MASP-2) are essential

proteins in the lectin pathway of the immune system

[72], and decreased levels of MBL and MASP-2 have

been reported in serum samples from sporotrichosis

patients compared to controls [72].

Nucleotide-Binding Oligomerization Domain

(NOD)-Like Receptors

The cytoplasm contains nucleotide-binding oligomer-

ization domain (NOD)-like receptors (NLRs), which

are expressed in macrophages and dendritic cells [73].

The cytosolic NLRs are crucial regulators of inflam-

mation and responsible for IL-1b and IL-18 matura-

tion, whose functions depend on the caspase-1

activation that can trigger a response to microbial

infection and cellular damage [74]. NLRs are present

in multiprotein complexes called inflammasomes, and

NOD-like receptor family pyrin domain-containing 3

(NLRP3) is the most studied [75]. NLRP3 has been

implicated in a wide range of diseases, including

fungal diseases [76–79], and various stimuli, including

danger-associated molecular patterns (DAMPs) and

Fig. 2 SolAg and LipAg can bind to TLR2, releasing TNF-a,

IL-1b, IL-12, IL-6, IL-10 and NO; TLR4 recognizes lipid

extraction and releases TNF-a, IL-1b, IL-10 and NO; b1,3-

glucan is recognized by Dectin-1 and results in an elevated

secretion of IL-10, NO, TNF-a and IL-1b; PRM binds to CR3,

leading to a decreased release of IL-1b; Alkali-insoluble

fraction of S. schenckii yeasts binds to NLRP3 leading to a

decreased release of IL-1b, IL-18, and IL-17, while IFN-c
release was unaffected. MR and PTX3 have an impact on

phagocytosis but with unknown PAMPs. UN = unknown

Sporothrix ligand for the receptor. (Created with

BioRender.com)
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PAMPs, contribute to NLRP3 inflammasome activa-

tion [80].

Recently, a study revealed that NLRP3 inflamma-

some linked the innate recognition of S. schenckii to

the adaptive immune response and triggered a protec-

tive response to the host during S. schenckii infection.

On the other hand, KO mice (NLRP3-/-, ASC-/-,

and caspase-1-/-) were more susceptible to infection

than the wild-type (WT). Furthermore, NLRP3

inflammasome could promote the release of IL-1b,

IL-18, and IL-17 by macrophage-splenocyte coculture

in vitro, leading to the elimination of fungi, while

eradicating IFN-c was unaffected [81]. Most recently,

it has been reported that neodymium-doped yttrium

aluminum garnet (Nd:YAG) 1,064-nm is effective in

treating sporotrichosis by inducing apoptosis and

pyroptosis via NLRP3/caspase-1 pathway [82].

Complement and Other Soluble Mediators

Preimmune human serum opsonization plays a critical

role in optimal phagocytosis of S. schenckii. Internal-

ization of yeast cells in macrophages significantly

decreased in heat-inactivated serum, suggesting the

role of complement components in yeast uptake [4].

The peptidorhamnomannan(PRM) is a new PAMP

that is the component of cell walls of S. schenckii and

S. brasiliensis, and it showed a direct interaction with

the complement receptor-3(CR3). IL-1b secretion by

human monocyte-derived macrophages (hMDMs)

decreased when CR3 was blocked [83]. Pentraxin 3

(PTX3) is a soluble receptor that can enhance

pathogen clearance by promoting C1q deposition.

However, the mechanism remains to be further

elucidated (Table 1, Fig. 2) [83, 84].

Effector Functions of Innate Immune Cells

Macrophages

Macrophages are the primary host protection cells,

which can regulate inflammatory responses by elim-

inating invading fungal pathogens through phagocy-

tosis [64]. Macrophages can adopt various phenotypes

and are divided into ‘‘classic’’ and ‘‘alternatively’’

activated populations, known as M1 and M2 macro-

phages, respectively. In general, M1 can promote to

tissue injury and result in pathogen eradication, while

M2 cells contribute to tissue mimicry and repair,

leading to infection persistence [85].

Macrophages undergo a phenotypic switch during

the infection of S. schenckii. IFN-c and IL-12 were

increased in the murine model of disseminated

sporotrichosis in the first two weeks, while the

predominant IL-4 was presented after the fifth week

[86], suggesting a classical and alternative response of

macrophage activation in the early and late phase of

infection, respectively. After being challenged with

cell wall peptide-polysaccharide, the peritoneal exu-

date cells showed a predominance of M1 macrophage

population with an increased NO and IL-12 production

during the second week of infection, while a predom-

inance of M2 macrophage population with an

increased release of IL-10, TGF-b, and Arg-1 were

present during the sixth and eighth weeks after

infection [87]. S. schenckii infection increased the

expression of disabled homolog 2 (DAB2) through

JNK/c-JUN pathway and revealed a mixed M1/M2-

like type of gene expression in bone marrow-derived

macrophages (BMDMs), accompanied by increased of

TNF-a, IL-10, and Mgl-1 and reduced IL-1b, IL-6,

and Arg-1 [88].

Cryptococcus gattii and C.neoformans may bias the

immune response toward Th2 response, helping its

escape from the phagosome and resulting in disease

progression [47]. Similarly, M2 macrophage popula-

tions may contribute to immune evasion, thus pro-

moting S. schenckii infection [87]. Ingested conidia

could survive and transform into the yeast cell in the

macrophage with a complete structure [89–91]. S.

schenckii can reverse ergosterol peroxide to ergosterol

and dampen the effects on reactive oxygen species

(ROS) during phagocytosis [92, 93]. This is advanta-

geous to S. schenckii as an immune evasion strategy,

which may be the reason for recurrent and dissemi-

native sporotrichosis.

NO production by macrophages is a double-edged

sword. It not only contributed to pathogen killing but

also inhibited TNF-a release, lymphoproliferation,

and MHC-2 expression, with immunosuppression

consequences [86]. In addition, research proved that

NO overproduction could suppress Th1 responses

against S. schenckii and cause infection susceptibility

[86, 94].

Cell wall components can suppress or promote

macrophage phagocytosis. Melanin, a well-recog-

nized virulence factor of S. schenckii complex, can
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inhibit the innate immune functions of macrophages,

such as phagocytosis and killing. MHC class II, CD86

CIITA, and PIV expressions in macrophages were

inhibited when infected with a black S. globosa strain

(MEL ?) [37]. TLR2 and TLR4 receptors and the

release of TNF-a and IL-6 in THP-1 macrophages

were suppressed after incubation with melanin [36].

The lipid compound from the cell wall was found to

inhibit the phagocytic process of macrophages while

promoting the release of NO and TNF-a in macro-

phage culture [95].

Chitin-rich heteroglycan extracted from S.

schenckii sensu stricto promoted fungus phagocytosis

by macrophages and upregulated TNF-a expression at

24 h and IL-12 expression at 72 h after incubation

[90]. Extracellular vesicles (EVs) play a crucial role in

the biological process. EVs increase the phagocytic

activity of macrophages and result in decreased

colony-forming units [41]. In contrast, more

immunoreactive components exist in EVs from S.

schenckii compared with S. brasiliensis [40]. EVs

have shed new light on their great potential as a

therapeutic tool in modulating the immune response

[40].

Dendritic Cells

DCs, known as antigen-presenting cells (APC), play

an essential sentinel function by taking up antigen or

infectious agents and transporting them to the lymph

node for T cell recognition and the priming of immune

responses [96]. In addition, DCs can sense fungi in a

morphotype-specific manner and activate protective

and non-protective Th cells as well as regulatory T

cells, thus affecting the outcome of the infections [97].

BMDCs can phagocytize the S. schenckii. The

expressions of CD40, CD80, and CD86 on the surface

of S. schenckii-pulsed mouse bone marrow-derived

DC increased indicating that BMDCs undergo the

maturation program after stimulation with S.

schenckii. Then, the secretion of IL-12 increased,

with subsequent activation of Th1-prone immune

responses [98]. S. schenckii of cutaneous origin is

much more potent in activating DCs and induces Th1-

prone immune responses, while S. schenckii from

visceral are only weak activators for DCs with

minimal induction of IFN-c and positively induce

Th2-prone immune responses [99]. The life of S.

schenckii and its exoantigen activated BMDCs and

made them capable of triggering T cell responses, and,

surprisingly, the exoantigen induces an inflammatory

Th17 response rather than a Th1 response [100].

SsCWP-stimulated BMDCs can induce a Th1-prone

cytokine such as IFN-c and IL-2 when cocultured with

splenocytes [66].

Neutrophils

Neutrophils are the most abundant innate immunity

cells in the blood and can rapidly migrate to the site of

infection [101, 102]. Neutrophils represent the pri-

mary inflammatory cells associated with sporotri-

chosis lesions [103]. An in vitro study showed that

human polymorphonuclear leukocytes (PMNLs)

could phagocyte and kill yeast-phase cells of S.

schenckii in the presence of 10% unheated serum

[104], while other in vitro studies revealed that human

PMNs could kill S. schenckii hyphae, and yeasts are

resistant to be killed by neutrophils [105]. PMNs show

a high capacity to bind or ingest S. schenckii cells,

release intracellular content, and establish a pro-

inflammatory environment. Meanwhile, the interac-

tion of human PMNs with S. schenckii cells cannot

affect fungal viability and S. schenckii cells can

undergo dimorphic switching within PMNs [106].

Exogenous local hyperthermia at 41 �C could serve as

an effective therapy for fixed cutaneous sporotri-

chosis, while this ability does not involve the forma-

tion of neutrophil extracellular traps (NETs) [107].

Administration of potassium iodide to regular volun-

teers does not increase the killing of S. schenckii by

their neutrophils or monocytes [108]. Therefore, the

role of neutrophils during the protective immune

responses against S. schenckii is complex.

Natural Killer Cells

Natural killer (NK) cells are lymphocytes of the innate

immune system, playing a critical role in the initial

defense against various pathogens, including fungi

[109, 110]. NK cells expand in the spleen and mature

more after S. schenckii infection, and CD62L and

KLRG1 are upregulated on NK cells. Furthermore, the

fungal load in the spleens increased more than

eightfold in NK cell-depleted infected mice, accom-

panied by an augmented systemic production of

inflammatory cytokines of TNF-a, IFN-c, and IL-6

[111], suggesting an indispensable role of NK cells
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against S. schenckii. Recently, researchers have used

expanded NK cells as therapy for invasive Aspergillo-

sis resulting in a significantly reduced fungal burden in

the mice model [112], providing a reference for

treating sporotrichosis.

Mast Cells

Mast cells (MCs) are well recognized for their

complex role in fungal infections and their critical

role in allergic diseases [113]. Five PRRs have been

documented in MCs: TLRs, CLRs, nucleotide-binding

oligomerization domain (NOD)-like receptors

(NLRs), a retinoic acid-inducible gene I (RIG-I) like

receptors (RLRs), and absent-in-melanoma (AIM)-

like receptors (ALRs) [114], while TLRs and CLRs

are the most reported PRRs in antifungal host defense

[113]. Positive or negative immunoregulatory cells

can function depending on the situation [115].

MCs can improve immunity by triggering degran-

ulation and the release of cytokines, while it seems that

MCs act as negative immunoregulators in S. schenckii

infection [113]. MC-deficient mice developed fewer

skin lesions than WT mice after infection with S.

schenckii, significantly decreasing the fungal burden

[116]. The severity of cutaneous lesion of sporotri-

chosis was significantly reduced after depleting peri-

toneal mast cells [117]. Furthermore, the severity of S.

schenckii infection in humans correlates with IL-6 and

TNF levels. It has been demonstrated that MCs

exacerbate mouse and human skin infection by

releasing the pro-inflammatory cytokines TNF and

IL-6 rather than degranulation [116, 117]. Further-

more, when the mast cells were activated by the yeast

cells of S. schenckii, TNF-a and IL-6 could be induced

by the activation of the extracellular signal-regulated

kinase(ERK) signaling pathway [118].

Epithelial Cells

The epithelial lining of the skin is a protective barrier

against infection [119]. The fungus’s adhesion to host

tissue has been identified as a critical step in

colonization and invasion, including S. schenckii

[120]. S. schenckii yeast cells can adhere to epithelial

cells via fungal surface glycoprotein with glucose

residue and mannose [121]. Antimicrobial peptides

(AMPs) are released by epithelial cells and play a vital

role in the innate immune system. AMPs contribute to

pathogen elimination, including fungi such as Cryp-

tococcus neoformans [59, 122]. Recently, AMP

ToAP2D has been revealed ability to inhibit the

growth of S. globosa and trigger apoptosis, suggesting

a potential drug for treatment [123]. However, more

AMPs with therapeutic effects require further

research.

Epidermal keratinocytes can participate in the

cutaneous inflammatory response to invading patho-

gens by producing pro-inflammatory cytokines and

chemokines that recruit and activate neutrophils and

macrophages to the infection site. Upon S. schenckii

cells were implanted into the epidermis and dermis,

keratinocytes could release IL-6 and IL-8 via TLR-2,

TLR-4, and NF-jB signaling pathways [124].

Recently, it has been demonstrated that MR, CR3,

TRL2, and TLR6 on keretinocytes contribute to

S.schencki recognition, except TLR4. A pro-inflam-

matory environment including cytokines, chemokines,

and growth factors was created to recruit other

immune cells to the infection site. Besides, ker-

atinocytes infected with S.schencki change the actin

cytoskeleton to facilitate S.schencki internalization

(Fig. 3) [125].

Summary and Future Prospects

Emerging data on the ultrastructure of S. schenckii

contributes to a better understanding of sporotrichosis.

Many components of the cell wall of S. schenckii

could act as PAMPS and play a vital role in the

interaction between pathogen and host. PRRs like

TLRs, CLRs, NLRs, and complements are vital for

recognizing PAMPs and trigger a cytokine response

and phagocyte recruitment to the clearance of

Sporothrix. As PRRs have been characterized as a

protective role against sporotrichosis, further explo-

ration of the interactions and signaling pathways is

required.

The interactions between Sporothrix and innate

immune cells play a critical role in disease progression

in the host. Neutrophils are the first cells to migrate to

the site of infection and can phagocytose S. schenckii

and chemotactic for other immune cells. Macrophages

play a central role in regulating the disease outcome,

adopting the M1 phenotype, which promotes the

clearance of S. schenckii and M2 phenotype, con-

tributing to tissue remodel and repair. Dendritic cells
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not only phagocytose S. schenckii but also act as a

bridge between innate and adaptive immunity. Addi-

tionally, natural killer cells, epidermal keratinocytes,

and epithelial cells contribute to the clearance of S.

schenckii. While as in other diseases, MCs act as

negative immunoregulators in S. schenckii infection

[113]. However, the role of basophils cannot be

excluded and warrants further investigation in

sporotrichosis [116]. As the biological agents develop,

monoclonal antibodies such as anti-TNF-a [126], anti-

IL-17A [127], and anti-IL4/13 [128] have been

increasingly used in dermatosis. Patients being treated

with or prescribed biologics should be alerted since

biological agents could suppress innate immunity.

This convincing evidence has emerged from studies

suggesting a strong relationship between innate

immune and S. schenckii. However, further funda-

mental mechanisms underlying innate immunity

against S. schenckii remain to be elucidated. Despite

adaptive immune systems, cells of the innate immune

system appear to be able to gain memory character-

istics after transient stimulation, resulting in an

enhanced responsiveness to subsequent triggers and

this phenomenon is called trained immunity [129].

The cell wall component of pathogen including LPS

and b-glucan can induce trained immunity, resulting

an activation of the innate immune system [130].

Therefore, we propose innovative therapeutic

approaches targeting innate cells to combat sporotri-

chosis, especially for creating of future vaccines [21].
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Fig. 3 Innate immune cells involved in Sporothrix-host

interactions. Neutrophils are the first cells to migrate to the site

of infection and can phagocytose S. schenckii as well as

chemotactic for other immune cells. Macrophages play a central

role in regulating the disease outcome, adopting to M1

phenotype, which promotes the clearance of S. schenckii and

M2 phenotype, contributing to tissue remodel and repair.

Dendritic cells not only phagocytose S. schenckii but also act

as a bridge between innate and adaptive immunity. Additionally,

natural killer cells, epidermal keratinocytes and epithelial cells

contribute to S. schenckii clearance. Meanwhile, as in other

diseases, MCs act as negative immunoregulators in S. schenckii
infection. (Created with BioRender.com)
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5. López-Romero E, Reyes-Montes MDR, Pérez-Torres A,
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35. Höft MA, Hoving JC, Brown GD. Signaling C-type lectin

receptors in antifungal immunity. Curr Top Microbiol.

2020;429:63–101. https://doi.org/10.1007/82_2020_224.

36. Guan M, Yao L, Zhen Y, Song Y, Cui Y, Li S. Melanin of

Sporothrix globosa affects the function of THP-1 macro-

phages and modulates the expression of TLR2 and TLR4.

Microb Pathogenesis. 2021;159: 105158. https://doi.org/

10.1016/j.micpath.2021.105158.

37. Song Y, Yao L, Zhen Y, Cui Y, Zhong S, Liu Y, et al.

Sporothrix globosa melanin inhibits antigen presentation

by macrophages and enhances deep organ dissemination.

Braz J Microbiol. 2021;52:19–31. https://doi.org/10.1007/

s42770-020-00345-7.

38. Morris-Jones R, Youngchim S, Gomez BL, Aisen P, Hay

RJ, Nosanchuk JD, et al. Synthesis of melanin-like pig-

ments by Sporothrix schenckii in vitro and during mam-

malian infection. Infect Immun. 2003;71:4026–33.

https://doi.org/10.1128/IAI.71.7.4026-4033.2003.

39. Madrid IM, Mattei AS, Soares MP, de Oliveira NM,

Meireles MC. Ultrastructural study of the mycelial phase

of clinical isolates of Sporothrix schenckii obtained from

feline, canine and human cases of sporotrichosis. Braz J

Microbiol. 2011;42:1147–50. https://doi.org/10.1590/

S1517-838220110003000037.

40. Ikeda MAK, Ferreira KS. Extracellular vesicles from

Sporothrix yeast cells. Curr Top Microbiol.

2021;432:35–44. https://doi.org/10.1007/978-3-030-

83391-6_4.

41. Campos RMS, Jannuzzi GP, Ikeda MAK, de Almeida SR,

Ferreira KS. Extracellular vesicles from Sporothrix
brasiliensis yeast cells increases fungicidal activity in

macrophages. Mycopathologia. 2021;186:807–18. https://

doi.org/10.1007/s11046-021-00585-7.

42. Lima OC, Figueiredo CC, Previato JO, Mendonç Previato
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