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Abstract The fungus Talaromyces marneffei was

described by Professor Gabriel Segretain in 1959,

originally as a member of the genus Penicillium. As

early as 60 years ago, its peculiarity in exhibiting

temperature-dependent morphological dimorphism,

its characteristic ability to secrete diffusing red

pigment during the mycelial phase and its pathogenic-

ity have already been recognised. Six decades have

passed, and our understanding on this intriguing

fungus has improved. Apart from the clinical aspect,

we have gained a glimpse on its taxonomy, animal or

environmental source(s), mechanism of thermal

dimorphism, molecular genetics, virulence as well as

pathogenesis. However, we are still on our way to get

out of the talaromycosis mist. A lot more collective

endeavour on T. marneffei research is needed to solve

the jigsaw puzzle.
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This year marks the 60th anniversary of the official

description of the thermally dimorphic fungus,

Talaromyces marneffei (previously called Penicillium

marneffei), which is an important fungal pathogen

endemic in Southeast Asia especially to HIV-positive

patients, by Professor Gabriel Segretain [1]. This

fungus was first isolated in 1955 by Capponi and

Sureau from laboratory Chinese bamboo rats (Rhi-

zomys sinensis), which are native in the Central

Highlands of Vietnam, at Institut Pasteur de Dalat

[2], where it caused fatal spontaneous disseminated

infection involving the reticuloendothelial system in

three of the rats. The pathogenicity of T. marneffeiwas

further demonstrated by Segretain, Capponi and

Sureau in various animal models, including mice,

rats, hamsters and guinea pigs [2, 3].

Six decades have passed since the discovery of T.

marneffei; however, our understanding on this pecu-

liar fungus is still poor despite its clinical significance.

Such a lack of knowledge could be reflected by the fact

that up to the end of August 2019, there are only*730

published articles about T. marneffei indexed in

PubMed. This figure significantly lags behind those
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for Aspergillus fumigatus (*11,480 articles) as well

as other thermally dimorphic pathogenic fungi such as

Histoplasma capsulatum (*4050 articles) and Coc-

cidioides immitis/C. posadasii (*2020 articles), and it

is only slightly more than two times than that for the

notorious, recently emerged multidrug-resistant yeast,

Candida auris, discovered in 2009 (*300 articles).

Mycopathologia, as a journal dedicated to the under-

standing of human and animal fungal diseases with

over 80 years of history [4], has long supported

research on T. marneffei. Notably, around 4% of the

*730 T. marneffei articles were published in Myco-

pathologia [3, 5–34], including one of the initial works

by Segretain [3].

Since the first discovery of T. marneffei, its

taxonomy had remained stable until early 2010s. The

original description by Segretain depicted T. marneffei

as a Penicillium-like fungus (and so it was first named

as ‘P. marneffei’), and this fungus was classified in

Penicillium sectionBiverticillium following Biourge’s

taxonomy or section Asymmetrica subsection Divar-

icata following Raper’s and Thom’s taxonomy [1]. At

room temperature, its morphology was found to partly

resemble P. janthinellum and P. citrinum, with bluish

light grey–green colonies and diffusing red pigment

(Fig. 1a, b). However, at 37 �C ‘P. marneffei’ exhib-

ited a very different morphology. Colonies were

bacterial-like, hairless, colourless, matt smooth at first

and later pleated cerebriform, with no diffusing

pigment. Instead of hyphal filaments, the fungus was

composed of separate arthroconidia at this tempera-

ture, which were divided by transverse partitioning

(fission) [1] but not budding [2]. In mature culture, the

cells were almost spherical in shape and this was

similar to the morphology of the fungus in vivo [3]

(Fig. 1c–e). The affiliation of the fungus to the genus

Penicillium, based on phenotypic characteristics, had

lasted for over 50 years. In 2011, based on phyloge-

netic analyses inferred from the RNA polymerase II

largest subunit gene (RPB1) and internal transcribed

spacer (ITS) region as well as extrolite profiling, ‘P.

marneffei’ was transferred to the genus Talaromyces

together with other members of Penicillium subgenus

Biverticillium. As a result, the fungus attained its

present name ‘T. marneffei’ [35]. Such transfer was

also supported by phylogenetic analysis based on

mitochondrial genomes [36]. Currently T. marneffei is

the only member of the genus recognised to cause

invasive infections in humans and animals.

Given the high mortality rate of T. marneffei

infection in untreated patients, especially in immuno-

compromised patients, it is important to identify the

possible sources of talaromycosis. In particular, the

fact that HIV patients who have travel histories to

endemic areas could also become infected by T.

marneffei implies that short-term exposure to the

source(s) of the fungus is sufficient to trigger infection

and that the infection source(s) should originate from

an environment contacted by tourists [37]. Studies

beginning from the 1980s identified a number of

bamboo rats species, including Chinese bamboo rats,

hoary bamboo rats (R. pruinosus), large bamboo rats

(R. sumatrensis) and lesser bamboo rats (Cannomys

badius), as the natural carriers of T. marneffei in

southern China, central and northern Thailand as well

as India [9, 19, 38–45]. The fungus could also be

recovered from the faeces of bamboo rats as well as

soils from their burrows [40, 43, 45, 46]. Apart from

bamboo rats and their associated soil samples, recently

the fungus has been detected from nasal swabs of

outdoor dogs in Chiang Mai, Thailand, as well,

although fungal culture was not successful [37]. A

case-control study in 1997 demonstrated that exposure

to or consumption of bamboo rats did not constitute a

risk factor for talaromycosis [47]. There was also no

significant association between exposure to bamboo

thickets or forests, where the rodents reside, to T.

marneffei infection [47]. Instead, it was shown that

recent occupational exposure to animals or plants,

probably involving soil, was associated with talaromy-

cosis [47]. Indeed, a previous environmental study

detected T. marneffei from soil samples collected

outside the habitats of bamboo rats, including a bat

cave, an elephant camp and surroundings of a

Buddhist Temple using molecular methods [48].

Unfortunately, viable culture of the fungus could still

not be obtained from these positive soil samples [48].

These findings suggested that an environmental

reservoir, likely soil, should exist for T. marneffei

and humans and bamboo rats, and possibly dogs, may

acquire the infection from this common environmental

source. Interestingly, although earlier studies in Thai-

land and Vietnam showed that the incidence of T.

marneffei infection increased during rainy season

[49, 50], a later study in Vietnam found that humidity,

but not rainfall, temperature nor wind, was the

environmental predictor of T. marneffei hospital

admission [51]. It was suspected that humidity may
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facilitate the environmental reservoir of T. marneffei

to expand, favour fungal growth or aid in conidia

release into the environment [51]. Further efforts are

in need to determine the environmental source(s) of

this fungus and to connect this/these environmental

reservoir(s) with the animal hosts and humans such

that the route of infection acquisition can be identified

or confirmed.

Temperature-dependent morphological dimor-

phism is one of the characteristics of T. marneffei.

Indeed, this fungus is the only known Talaromyces

species exhibiting such a feature. Although the change

in morphology has been well studied during phase

transition [52], the underlying molecular mechanism

still warrants much further investigation. From 2000

onwards, a number of genes have been identified to be

involved in morphogenesis and during phase transi-

tion, including abaA [53], brlA [54], cflA [55], cflB

[56], drkA [57], gasA [58], gasC [59], hgrA [60],

madsA [61, 62], myoB [63], pakA [64], pakB [65],

Fig. 1 Morphology of Talaromyces marneffei. a On Sabouraud

glucose agar, after 6 days of incubation at room temperature,

colonies are yellowish green with diffusing red pigment. b The

conidiophores are usually biverticillate. Oval, smooth-walled

conidia are produced in chains. Scale bar = 20 lm. c On

Sabouraud glucose agar, after 6 days of incubation at 37 �C,
colonies are yeast-like and creamy. Diffusing red pigment is no

longer observed. d In Sabouraud glucose broth, after 3 days of

incubation at 37 �C with shaking at 250 rpm, the fungus grows

as short hyphae composed of undissociated arthroconidia. Scale

bar = 20 lm. e In yeast nitrogen base supplemented with 1%

mycological peptone [118], after 3 days of incubation at 37 �C
with shaking at 250 rpm, arthroconidiation is not observed.

Instead, the fungus grows as individual yeast-like cells and

divides by fission and this mode of growth resembles the in vivo

situation. Scale bar = 20 lm
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PmHHK1 [66], rasA [67], rfxA [68], rttA [69], sadA

[70], sakA [71, 72], slnA [57], sskA [73], stuA [74],

tupA [54] and yakA [75], by loss-of-function studies.

The majority of these genes are related to transcrip-

tional regulation [53, 54, 60, 62, 68, 74] or G-protein

signalling [55, 56, 58, 59, 67] or encode kinases

[57, 64–66, 71, 72, 75]; the functions of these genes

were recently thoroughly reviewed by Andri-

anopoulos and his colleagues [76, 77]. Other than

these genes, differentially expressed gene analyses by

suppression subtractive hybridisation [78], microarray

[79, 80] or RNA-sequencing [61, 81] identified groups

of genes that are signature to phase transition. In

addition to protein-coding genes, small RNA-se-

quencing also revealed 24 microRNA-like small

RNA (milRNA) candidates which were more abun-

dantly expressed during the hyphal stage than the yeast

phase [82]. However, further functional studies are

needed to authenticate the participations of these

genes in dimorphic switching. Moreover, how T.

marneffei detects the temperature stimulus and trans-

duces the environmental signals to effect morpholog-

ical change is still unclear. Elucidation of the

molecular mechanism for this could help reveal

potential drug targets for stopping dimorphic switch-

ing to the yeast phase in vivo so as to prevent the

fungus from evading host immune response by hiding

intracellularly.

The advancement of various omics technologies in

the twenty-first century has allowed more in-depth and

sophisticated characterisation of the mycology of T.

marneffei. The first draft genome of the fungus, based

on the original ex-type strain ATCC 18224T isolated

by Capponi and Sureau, was sequenced using the

Sanger strategy. It was around 28 Mb in length and

was released online in 2007 [83]. A few years later,

using a similar approach the draft genome for a second

strain (PM1), isolated in Hong Kong, was published

[84]. Subsequent second- and third-generation

sequencing technologies further improved this draft

genome [61]. Earlier this year, the genome of T.

marneffei, based on a Chinese clinical strain TM4, was

completed with the help of optical mapping; it was

revealed that the T. marneffei genome consisted of

eight chromosomes [85]. The availability of the whole

genome sequences of T. marneffei has boosted further

research on this fungus, especially in the past decade;

knowledge generated from the fungal genomes as well

as additional transcriptomic, proteomic and

metabolomic studies was discussed in detail in a

recent review [86]. One example was that the

pigmentation phenomenon observed for T. marneffei

could now be explained, with the molecular identities

of the various pigments uncovered [87–90].

While there is accumulating information about the

basic mycology of T. marneffei, it is equally important

to understand what makes this special fungus a

successful pathogen to humans and animals. Thermal

dimorphism, as discussed above, is one of the more

well-studied properties of the fungus which aids in

causing infection. Apart from this, a number of

virulence factors of T. marneffei have been identified.

These virulence mechanisms include the production of

melanin [87, 91, 92], mitorubrinol and mitorubrinic

acid (yellow pigment) [88], aspartyl protease [93],

catalase–peroxidase [94], laccases [95] and superox-

ide dismutase [96], induction of the glyoxylate cycle at

host’s body temperature [97–99], utilisation of non-

preferred nitrogen sources in host’s environment

[100], utilisation of the methylcitrate cycle for detox-

ification of propionyl-CoA [101] as well as seques-

tration of host’s proinflammatory lipids [102–105].

Interestingly, a study last year found that T. marneffei

infected with the mycovirus Talaromyces marneffei

partitivirus-1 exhibited hypervirulence in a murine

model [106], although the underlying mechanism still

awaits additional investigation. In addition to the

intrinsic virulent properties of T. marneffei, how it

interacts with the human/animal hosts may also

contribute to pathogenicity. Although the infection

route for talaromycosis is still unclear as discussed

above, it is generally believed that patients acquire

pathogenic conidia through inhalation. After entering

the host’s airway, conidia bind to the extracellular

matrices [107–110], which is mediated by glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) [110],

and adhere to the host bronchoalveolar epithelium.

There, the fungus interacts with epithelial cells

[111, 112] and is phagocytosed by pulmonary

macrophages. Our limited understanding on macro-

phage immunity against T. marneffei and the fungal

adaptation response was summarised in three review

articles [52, 77, 113]. Yet, the ability of T. marneffei to

survive inside macrophages might also help them

evade host immunity [52, 77]. In addition to macro-

phage response, CD4? T cells were also shown to be

key mediators in anti-T. marneffei response

[114, 115]. It is of note that there have been an
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increasing number of talaromycosis cases in patients

with non-HIV-related immunodeficiency in recent

years [116] and whether the pathologies in these

patients are the same or similar to those observed in

HIV-positive patients requires further research. A

number of experimental infection models, including

nematode (Caenorhabditis elegans), greater wax moth

(Galleria mellonella), zebrafish (Danio rerio), mouse

(Mus musculus) and human primary monocyte-

derived macrophages, have been established for T.

marneffei, and their pros and cons were reviewed in a

recent article by Weerasinghe et al. [77]. More studies

are needed to verify how representative these infection

models are for the in vivo conditions during T.

marneffei infections in humans.

Following 60 years of effort, the mist of T.

marneffei has somehow faded away. We have gained

some knowledge on its taxonomy, source(s), underly-

ing mechanism of thermal dimorphism, molecular

genetics, virulence and pathogenesis. However, the

jigsaw puzzle is still far from completion. Continuous

collective endeavour is needed to uncover the T.

marneffei mystery so that this fungus, currently

recognised as one of the ten most feared fungi in the

world [117], no longer poses threats to humanity.
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