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Abstract Cryptococcosis is caused by fungi of the

genus Cryptococcus. Owing to its importance, this

study aimed to analyze the genetic diversity of C.

gattii isolates from animals, humans, and the environ-

ment in Mato Grosso State (MT), Brazil, during

November 2010–December 2017. All isolates of the

C. gattii species complex were subjected to molecular

genotyping via Restriction Fragment Length Poly-

morphism (PCR–RFLP) and Multi-locus Sequence

Typing (MLST). PCR–RFLP analysis revealed that 21

isolates presented the genotype VGII, which is con-

sidered the most common and virulent genotype

globally among. MLST analysis revealed the presence

of 14 sequence types (STs), of which 5 are considered

new genotypes. Clonal Complex (CC) CC182 (n = 5;

23,80%) and CC309 (n = 3; 14,28%) were the most

frequent. CC distribution in relation to origin revealed

that three CCs were found in animals with a

predominance of CC182 (66,66%), while nine were

found in humans, and two CCs were found in the

environment. Extensive genetic variability was

observed among the isolates in the State of Mato

Grosso. STs belonging to the already described clonal

complexes (CC) indicate the global expansion and

adaptation of isolates in several other countries.

Therefore, detection of clonal complexes and STs

already described in other regions and the occurrence

of new STs in the present study help further the current

understanding of the geographic dispersion and

genetic origin of the C. gattii species complex.
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Introduction

Cryptococcosis is a disease caused by fungi of the

genus Cryptococcus, affecting immunocompetent and

immunocompromised humans and animals. The esti-

mated of the global incidence, in 2014, of cryptococcal

meningitis to be substantial at 223,100 cases annually,

resulting in 181,100 annual deaths [1–3]. Owing to

nomenclatural controversy, the species of the genus

Cryptococcus can be classified in accordance with

Kwon-Chung et al. [4] and are divided in two

complexes of greater relevance: the ‘‘Cryptococcus

neoformans species complex’’ and ‘‘C. gattii species
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complex.’’ Accurate taxonomy was proposed by

Hagen et al. [3], that recognized seven species,

excluding diploid/aneuploid hybrids, in the C. neo-

formans species complex (C. neoformans and C.

deneoformans) and C. gattii species complex (C.

gattii; C. deuterogattii, C. bacillisporus, C. tetragattii

and C. decagattii).

The C. gattii species complex has been extensively

studied because studies have indicated their expansion

to temperate regions, wherein they were previously

associated with tropical and subtropical climates

[5, 6]. Considered rare, this C.gattii species complex

gained importance in an outbreak in humans and

animals on Vancouver Island (Canada) in 1999 [7].

At the molecular level, the C. gattii species

complex can be classified into five main genetic

groups) with varying ecology and epidemiology in

accordance with the geographic region [3]. The

differentiation and molecular typing of these species,

using methods including Restriction Fragment Length

Polymorphism (PCR–RFLP), Amplified Fragment

Length Polymorphism Analysis (AFLP), and Multi-

Locus Sequence Typing (MLST) [8], are necessary to

verify the distributions of their molecular patterns and,

consequently, to provide knowledge regarding possi-

ble virulent genes and drug resistance [3].

This study aimed to investigate the molecular

diversity of C. gattii species complex in Mato Grosso

(MT) state, Brazil. This geographic location, with

different biomes in the region, which favors high

genetic variability among isolates of the C. gattii

species complex, can further the current understanding

of the dynamic distribution of this yeast and to the

prevention and effective control of this disease.

Materials and Methods

Isolation and Culture of Genus Cryptococcus

Isolates were obtained from samples sent to the routine

of the Veterinary Hospital of the Federal University of

Mato Grosso (UFMT) as well as the University Hospital

of Julio Muller. It was carried out from November 2010

to December 2017. The environmental isolates were

incubated by the Mycology Laboratory (UFMT). Rou-

tinely, the isolation of cultures suspects of genus

Cryptococcus was cultured on Sabouraud dextrose agar

2%, Sabouraud dextrose agar plus chloramphenicol

(0.05 g/L), and niger seed agar (Guizotia abysinica) [9].

The material was incubated at 30 �C and 37 �C and

evaluated daily for 7 d, followed by morphological

evaluation using India ink for microscopic morpholog-

ical analysis and biochemical test on CGB agar (L-

Canavanine–Glycine–Bromothymol blue).

DNA Isolation and PCR

For molecular characterization, the isolates of genus

Cryptococcus were incubated on Sabouraud dextrose

agar at 30 �C for 48 h. After sample growth, DNA was

extracted from each isolate and transferred to a 2-mL

microtube containing 500 ll of extraction buffer,

followed by glass pearls and phenol/chloroform, as

described by Del Poeta et al. [10]. The material was

stored at - 20 �C for use in molecular testing.

Subsequently, PCR was performed to identify the

isolates in accordance with the protocol of Aoki et al.

[11]. CNA 70A and CNA 70S oligonucleotide pairs

specific for C. neoformans species complex, and CNB

49A and CNB 49S specific for the C. gattii species

complex, were used to determine the species of the

isolates, by amplifying products of 695 bp and 448 bp,

respectively. For the identification of the SOD1

(superoxide dismutase) gene and confirmation of the

C. gattii species complex, PCR was performed as

described by D’Souza et al. [12]. Amplification

products, stained with Gel Red (Biotium), were

subjected to 1.5% agarose gel electrophoresis at

100 V for 90 min and visualized on ChemiDocTM

XRS using ImageLabTM� software.

PCR–RFLP Technique

PCR–RFLP analysis for genotyping was performed in

accordance with the method of Meyer et al. [13]. The

amplification products of the URA5 gene were double

digested with Sau96I (10 U/L) and HhaI (20 U/ll) for

3 h and separated by electrophoresis on agarose gel

(3%). PCR–RFLP patterns were attributed by com-

parison with band-profile strain references (VNI-

VNIV and VGI-VGIV) [13].

MLST Technique

In the MLST for isolates of the C. gattii species

complex, seven genetic loci (CAP59 GPD1, LAC1,

PLB1, SOD1, URA5, and IGS1) were used to
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distinguish the closely related strains as described by

Meyer et al. [14]. Each amplified locus was purified

using the GFXTM PCR kit DNA and Gel Band

Purification (GE Healthcare). Subsequently, the sam-

ples were sequenced on the automatic ABI-PRISM

3500 Genetic Analyzer.

Software Analysis

The sequences were trimmed and compared to

sequences from each locus published in the MLST

database of the C. gattii species complex (http://mlst.

mycologylab.org) [15]. Subsequently, STs were ana-

lyzed in goeBurst software to better comprehend the

distribution and possible identification of a common

ancestor of the isolates.

Results and Discussion

Isolation and Culture of Genus Cryptococcus

Of the 21 isolates, 13 (61.90%) were from humans, six

(28.57%) were from animals, and two (9.52%) were

from environmental samples. Indian ink was used to

observe the capsule of the genus Cryptococcus. All the

samples on CGB agar were positive and confirmed via

PCR analysis. In humans, 11 (84.61%) samples were

from neurologic cases, 1 (7.69%) was from a pul-

monary case, and 1 (7.69%) was from a case showing

both clinical forms. The animal isolates had (dog, cat,

and guinea pig) lesions on the nose or skin and, to a

lesser extent, the neurologic form (Table 1).

PCR–RFLP Analysis

PCR–RFLP analysis revealed that all the isolates

belonged to genotype VGII. In previous reports,

genotype VGI was considered the most frequent;

however, currently, VGII has been the most com-

monly found genotype in global isolates [16]. This

genotype is distributed worldwide and has been

described as the most virulent strain responsible for

infections in both immunocompetent and immuno-

compromised humans and animals [17, 18]. In

animals, the importance of isolating this genotype

can contribute to the identified the sentinel markers of

the disease and verify that this genotype can adapt to

several hosts, thus increasing its dispersion.

Associated with the outbreak on Vancouver Island,

Canada, it is believed that the evolutionary origin of

this molecular type may be traced to South America,

adapting to the temperate zones [19–21]. Hagen et al.

[18] reported that phylogenetic and recombination

analysis (AFLP and SCAR-MLST) suggested that the

oldest lineage originated in Brazil, where the Amazon

region is the most plausible for the origin of the VGII

genotype, causing outbreaks in British Columbia

(Canada) and the Pacific Northwest (USA) and cases

in Australia. The first VGII isolate (LMM 293)

identified in Brazil was in the state of Rio de Janeiro

in 1988, from a patient in the Northern region of the

country [22]. The genotype was also described in the

Northeast, South, Southeast, and Midwest Brazil

[22–26].

Analysis of MLST Technique

Genotyping analysis of 21 isolates via MLST revealed

a considerable genetic diversity in comparison with

PCR–RFLP analysis. The presence of 14 STs was

observed, of which 5 are considered new (ST 485, ST

486, ST 487, ST 488, and ST 489). These STs are

distributed in 12 Clonal Complexes and four were

‘‘Singletons’’ (Fig. 1). Several genotypes were veri-

fied in Brazil and these new STs probably resulted

from clonal propagation or genetic recombination

[25, 27]. Furthermore, Lockart et al. [28] affirmed the

existence of a large genetic diversity that according to

Souto et al. [25], results from the ability to emerge

from the original habitat, adaptation, and colonization

of new environments and hosts.

The clonal complexes CC182 (n = 5; 23,80%) and

CC309 (n = 3; 14.28%) were the most frequent. The

distribution of CC, in relation to the sample origin,

shows that three CCs with a predominance of CC182

(66,66%) in animals. In humans, nine CCs with a

predominance of CC309 (15,38%), CC40 (15,38%),

CC20(15,38%), and CC306 (15,38%) were observed.

In the environment, only two CCs were observed

(Fig. 2). CC182 and CC309 have been reported

previously in Brazil; however, the CC associated with

ST40 was the most frequent, as reported by Souto et al.

[25]. In addition, these same authors affirmed that the

Brazilian isolates do not show a population structure

established in accordance with the geographic region,

indicating that Brazilian regions are dominated by

different genotypes.

123

Mycopathologia (2019) 184:45–51 47

http://mlst.mycologylab.org
http://mlst.mycologylab.org


CC182 was isolated in four distinct species (human,

feline, canine, and guinea pig) and is related to ST181

and the new ST489. One study reported that guinea

pigs were naturally infected by genus Cryptococcus

[29]. However, the molecular identification of genus

Cryptococcus and its genotyping has not been

described yet to complete the characterization process.

The occurrence of CC182 in tropical and temperate

countries has been described by several authors in

China, Caribbean Islands, and Guyana [15]. More-

over, according to Souto et al. [25], this worldwide

distribution proves the proximity between many

Brazilian STs and the STs present globally, demon-

strating the capacity for expansion, recombination,

and adaptation of these strains.

CC309 was isolated from two humans and one cat

(ST309) and, had already been described in São Paulo

[30]. This ST belongs to the same lineage as that of the

new ST488, which was isolated from humans and is

associated with a new allele for the SOD1 gene.

The clonal complex formed by the founder ST20 is

considered hypervirulent and has already been

described in North America (related to the outbreak

at Vancouver Island), Europe and South America, the

Amazon region, and the Southeast region of Brazil

(São Paulo state) [2, 25, 30–32]. In addition, it has

been modified and expanded to several other regions,

based on the appearance of new strains. Adaptation

and/or microevolution in the environment may be

associated with the high frequency of this complex in

Table 1 Characteristics of C. gattii species complex isolates during the years 2010–2017 from humans, animals, and the envi-

ronment in the State of Mato Grosso, Brazil

Id isolates Year Source Clinical signs City URA5-RFLP MLST CC

53 2012 Human Neurocryptococcosis Várzea Grande VGII 20 20

MASC 2010 Human Neurocryptococcosis Cuiabá VGII 20 20

3174 2012 Human Neurocryptococcosis Cuiabá VGII 40 40

2416 2011 Human Neurocryptococcosis Cuiabá VGII 46 *(46)

M953-16 2016 Human Neurocryptococcosis Cuiabá VGII 182 182

3330 2013 Human Pulmonary cryptococcosis Cuiabá VGII 306 Sg(306)

741-05 2010 Human Neurocryptococcosis Cuiabá VGII 306 Sg(306)

987-08 2010 Human Neurocryptococcosis Cuiabá VGII 309 *(309)

2285 2011 Human Neurocryptococcosis Cuiabá VGII 309 *(309)

638-08 2010 Human Pulmonary and Neurocryptococcosis Cuiabá VGII 316 *(316)

96-06 2010 Human Cryptococcal meningitis Cuiabá VGII 485b *(485)

623-06 2010 Human Cryptococcal meningitis Sinop VGII 487b 40

741-06 2010 Human Neurocryptococcosis Cuiabá VGII 488ab *(488)

662 2011 Canine Apathy and increased abdominal volume Sinop VGII 182 182

142 2012 Feline Pulmonary cryptococcosis Cuiabá VGII 182 182

M638-17 2017 Guinea pig Nasal injury Cuiabá VGII 182 182

865-11 2011 Canine Skin injury Cuiabá VGII 489b 182

147 2012 Feline Nasal injury Cuiabá VGII 309 *(309)

M226-16 2016 Feline Skin injury and neurocryptococcosis Cuiabá VGII 486ab Sg(486)

148C 2014 Public Library Nd* Cuiabá VGII 264 Sg(264)

12 2010 Tree Nd* Cuiabá VGII 310 Sg(310)

*Do not have founder defined

Nd* Nothing to declare

Sg Singletons
aNew allele
bNew ST
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the north of Brazil [25] and, the isolation of ST20 may

be related to human migration or the proximity of the

center west to the northern region (Amazonica).

In relation to the CC formed by the founder ST40,

this has already been described in Bahia, São Paulo,

Rio de Janeiro, and Mato Grosso do Sul [25, 30, 33],

demonstrating the capacity for dispersion. Owing to

potential genetic recombination, this complex has also

been shown to be associated with the new lineage,

ST487.

There was no defined founder in the group formed

by ST46 and ST346; however, ST46 was already

described in Norte de Santander (Colombia) [34] and

in Amazonas (Brazil) [35]. ST316, described in

humans [30] is related to ST135, which was isolated

in the state of Mato Grosso do Sul (Brazil) [25].

Further, the new ST485 is in the same lineage as

ST172, which was isolated from humans in Brası́lia

(Brazil) [36].

The singleton isolates ST264, ST306, ST310, and

ST486 were not correlated with any other genotype in

the MLST database. However, in São Paulo, Brazil,

ST264, ST306, and ST310 had already been reported

in humans [30]. In addition, ST264 was also isolated

Fig. 1 Analysis of isolates

from the State of Mato

Grosso, using the goeBurst

software showing the

sequence typing, formation

of the clonal complex, and

respective lineages. Central

STs: Light

Green = founding group,

Brown = founding

subgroup; Light blue:

common central ST. The

samples, circled in red, are

those included in this study

CC182
66,66%

CC 309
16,66%

CC 486
16,66%

Animal isolates

CC 264
50%

CC 310
50%

Environment isolates

CC 20
15,38%

CC 40
15,38%

CC 46
7,69%

CC 182
7,69%CC 306

15,38%

CC 309
15,38%

CC 316
7,69%

CC 485
7,69%

CC 488
7,69%

Human isolates

Fig. 2 Percentage distribution of the isolates of C. gattii VGII in relation to their origin and Clonal Complex (CC) in the State of Mato

Grosso during the period from 2010 to 2017
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from environmental samples in Amazonas [32], as

reported herein. A new allelic profile and singleton

were discovered in this study, represented by ST486.

Similar to the study by Souto et al. [25], wide

genetic diversity can generate highly virulent strains,

either by factors such as changes in species compo-

sition, stress, climate change, or habitat, adaptation to

regions of dry and humid climate, and variations in

temperature. Thus, the State of Mato Grosso, com-

prising three biomes, Amazon, Cerrado, and Pantanal

[37], may influence the clonal dispersion and/or

recombination among the genotypes. Thus, the

pathogenicity of the C. gattii species complex is

probably related to its genetic diversity, global

dispersion of isolates, and adaptation to different

hosts [36].

Conclusion

Considerable genetic diversity of the C. gattii species

complex was observed along with the appearance of

news STs in MT. The higher frequency of CC309 and

CC182 isolates, affecting both humans and animals,

differed in the state of Mato Grosso from that in other

regions studies, probably owing to the presence of

different biomes in the region, which favor high

genetic variability among isolates of the C. gattii

species complex. This characteristic of the pathogen is

a challenge for public health owing to the effect of this

dispersion, virulence, and resistance on treatment. In

addition, higher detection of neurologic cases in

humans than in animals leads us to question the route

of infection and the mechanism of action of this

pathogen in the organisms of each species, thus

indicating the need for further studies on the virulence

of this complex.
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