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Abstract
Chirp signal models and their generalizations have been used to model many natural and
man-made phenomena in signal processing and time series literature. In recent times, sev-
eral methods have been proposed for parameter estimation of these models. However, these
methods are either statistically sub-optimal or computationally burdensome, especially for
two dimensional chirp models. In this paper, we consider the problem of parameter esti-
mation of two dimensional chirp models and propose a computationally efficient estimator
and establish asymptotic theoretical properties of the proposed estimators. Moreover, the
proposed estimators are observed to have the same rates of convergence as the least squares
estimators. Further, the proposed estimators of chirp rate parameters are shown to be asymp-
totically optimal. Extensive and detailed numerical simulations are conducted, which support
the theoretical results of the proposed estimators.

Keywords 2D chirp model · Least squares estimators · Stationary linear process ·
Consistency · Asymptotic normality.

1 Introduction

The parameter estimation problem for two dimensional (2D) chirp models is encountered in
many real-life applications such as 2D-homomorphic signal processing, magnetic resonance
imaging (MRI), optical imaging, interferometric synthetic aperture radar (INSAR), modeling
non-homogeneous patterns in the texture image captured by a camera due to perspective
or orientation (see e.g., Francos & Friedlander, 1995, 1998, 1999 and the references cited
therein). 2D chirp signals have also been used to model Newton’s rings (Guo & Li, 2018).
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These rings are predominantly used in testing spherical and flatting optical surface and
curvature radius measurement. 2D chirp signals have been used as a spreading function or
base for digital watermarking (Stankovic et al., 2001), which is also helpful in data security,
medical safety, fingerprinting, and observing content manipulations, see (Zhang et al., 2010).
2D chirpswith linear frequencymodulation have been extensively used because of their linear
feature in time-frequency domain. These models have been employed in many applications
due to other important properties also, e.g., spectral shaping of the watermark by choosing
appropriately the frequency and frequency rate parameters, which allows minimum overlap
of the spreading function with the image data. 2D chirps also allow adaptive watermarking
for enhanced robustness to stationary filtering attacks, i.e., filtering whose parameters do not
change over an image, see (Stankovic et al., 2001).

Many algorithms based on different approaches have been put forward in the literature to
solve such problems. Polynomial phase differencing (PD) operator was introduced in Fried-
lander and Francos (1995) as an extension of the polynomial phase transform proposed in
Peleg and Porat (1991). Several works Friedlander and Francos (1996), (1998) and (1999)
utilized PD operator to develop computationally efficient algorithms for estimating simi-
lar polynomial phase signals. Cubic phase function (CPF) proposed in O’shea (2002), was
extended in Zhang et al. (2008) for similar 2D chirp signal modeling. Further, CPF was
utilized to estimate 2D cubic phase signal using genetic algorithm in Djurović et al. (2010).
Consistency and asymptotic normality of LSEs for a general 2D polynomial phase signal
(PPS) model have been derived in Lahiri and Kundu (2017). A finite step computationally
efficient procedure for a similar 2D chirp signal model proposed in Lahiri et al. (2013) was
proved asymptotically equivalent to LSEs. Quasi-Maximum Likelihood (QML) algorithm
Djurović and Stanković 2014 proposed for 1D PPS, was generalized for 2D PPS in Djurović
(2017). Further approximate least squares estimators (ALSEs) proposed inGrover andKundu
(2018) have been proved to be asymptotically equivalent to LSEs. An efficient estimation
procedure based on fixed dimension technique, presented in Grover et al. (2021) was shown
to be asymptotically equivalent to the optimal LSEs, for a 2D chirpmodel without the product
term mn, e.g., compare model (1) and the one considered in Grover et al. (2021).

Estimators based on phase differencing strategies or high order ambiguity function (HAF)
or someof theirmodifications are computationally easier to obtain.However, the performance
of estimation deteriorate below a relatively high signal-to-noise ratio (SNR) threshold and
are sub-optimal. Methods that use PD in the steps of estimation, usually estimate coefficients
of the highest degree first, and then subsequently estimate the coefficients of a lower degree
from the demodulated or de-chirped signal. Therefore, the estimation error of highest degree
coefficients accumulates and affects estimation accuracy of lower degree coefficients quite
seriously. For more details, one can refer to Barbarossa et al. (1998), Djurović (2017) and
Wu et al. (2008). Till date, there is no detailed study of the theoretical properties of the
estimators CPF and QML, such as strong consistency and asymptotic normality. Recently,
optimal estimators for a simpler 2D chirp model without the interaction term have been
developed in Grover et al. (2021). However, the results in Grover et al. (2021) cannot be
generalized directly for the underlying model (1). It may be noted that the model considered
in this paper is more general, as it takes into account the interaction term μ0mn. Due to the
presence of this interaction term coefficient μ0, the estimation becomes more difficult as the
estimators of α0 and γ 0 are no longer independent (as in the case for Grover et al., 2021),
and hence making their computation as well as the study of theoretical analysis becomes
more challenging. The problem becomes more complicated under the assumption of general
stationary linear process error assumption.
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The main contributions of this paper are; providing a computationally efficient algorithm
to estimate the parameters of the model defined in (1), and further establishing theoretical
asymptotic properties of the proposed estimators. The proposed algorithm ismotivated by the
fact that a 2D chirp model with five non-linear parameters can be viewed through a number
of 1D chirp models with two non-linear parameters, and hence computational complexity of
estimators for the 2D models can be reduced.

The key attributes of the proposed method are that it is computationally faster than the
conventional optimal methods such as LSEs, maximum likelihood estimators, or ALSEs
and at the same time, having desirable statistical properties such as, attaining the same
rates of convergence as the optimal LSEs. In fact the proposed estimators of the chirp rate
parameters have the same asymptotic variance as that of the traditional LSEs, and hence are
asymptotically optimal.

The rest of the paper is organised as follows: themathematical model and themethodology
to obtain the proposed estimators is presented in Sect. 2. The model assumptions and the
asymptotic theoretical results are given in Sect. 3. In Sect. 4, the finite sample performance
of the proposed estimators is demonstrated through simulation studies. In this section, a
comparison of the performance of the proposed estimators with the state-of-the-art methods
such as the least squares method, approximate least squares method, and 2D multilag HAF
method is also presented. Finally, Sect. 5 concludes the paper, followed by detailed proofs in
appendices.

2 Estimationmethodology

This paper addresses the problem of parameter estimation of a 2D chirp signal model defined
as follows:

y(m, n) = A0 cos(α0m + β0m2 + γ 0n + δ0n2 + μ0mn)

+ B0 sin(α0m + β0m2 + γ 0n + δ0n2 + μ0mn) + X(m, n),

m = 1, 2, . . . , M, n = 1, 2, . . . , N . (1)

Here, y(m, n) is the observed real valued signal and X(m, n) is the additive noise term.
A0, B0 are amplitude parameters, α0, γ 0 are frequency parameters, β0, δ0 are frequency
rates or chirp rates, and μ0 is the coefficient of product term. ξ0 = (α0, β0, γ 0, δ0, μ0)�
represents vector of non-linear parameters. This model can be used to describe signals having
constant amplitude with frequency to be a linear function of spatial co-ordinates. The product
term mn in such chirp models (1), is an important characteristic of numerous measurement
interferometric signals, radar signal returns and detecting digital watermarking.

Now we discuss the proposed method of estimation. Let the data matrix for model (1) be
denoted as

Y =

⎡
⎢⎢⎢⎣

y(1, 1) y(1, 2) . . . y(1, N )

y(2, 1) y(2, 2) . . . y(2, N )
...

...
. . .

...

y(M, 1) y(M, 2) . . . y(M, N )

⎤
⎥⎥⎥⎦

M×N

.

The proposed algorithm uses the fact that for each fixed column (or row) of Y , the 2D chirp
model breaks down to a cascade of 1D chirp models.
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Realise that if we fix one dimension say n = n0 in (1), then the 2D chirp can be seen as
1-D chirp for m = 1, 2, . . . , M , as follows:

y(m, n0) = A0(n0) cos
(
(α0 + n0μ

0)m + β0m2)

+ B0(n0) sin
(
(α0 + n0μ

0)m + β0m2)

+ X(m, n0),

where, A0(n0) = A0 cos(γ 0n0 + δ0n20) + B0 sin(γ 0n0 + δ0n20),

B0(n0) = −A0 sin(γ 0n0 + δ0n20) + B0 cos(γ 0n0 + δ0n20). (2)

Similarly, for a fixed m = m0, we have 1-D chirp for n = 1, 2, . . . , N ,

y(m0, n) = Ã0(m0) cos
(
(γ 0 + m0μ

0)n + δ0n2
) + B̃0(m0) sin

(
(γ 0 + m0μ

0)n + δ0n2
)

+ X(m0, n). (3)

Equation (2) represents 1-D chirp signal model with α0 + n0μ0 and β0 as the frequency and
frequency rate parameters respectively. Similarly, Eq. (3) represents 1-D chirp signal model
with γ 0 + m0μ

0 and δ0 as the frequency and frequency rate parameters respectively.
Hence, our methodology is developed by estimating parameters of these 1D chirps based

on a particular column (or row) vector of data matrix, rather than estimating the whole 2D
chirp parameters based on the full data matrix. Therefore this procedure reduces computa-
tional burden to estimate model parameters drastically. Further suppose column vector YMn0
denotes the nth0 column of data matrix Y and column vector Ym0N denotes the transpose of
mth

0 row of data matrix Y . Define Zk(α1, α2) matrix as

Zk(α1, α2) =

⎡
⎢⎢⎢⎣

cos(α1 + α2) sin(α1 + α2)

cos(α12 + α222) sin(α12 + α222)
...

...

cos(α1k + α2k2) sin(α1k + α2k2)

⎤
⎥⎥⎥⎦
k×2

. (4)

We need to estimate the model parameters of (2) which is a 1D chirp model, so we use LSEs
to estimate the parameters. We obtain LSEs of non-linear parameters in model (2) for a fixed
n0 by defining following reduced sum of squares, see (Grover et al., 2021):

RMn0(α1, α2) = Y T
Mn0

(
IM×M − PZM (α1, α2)

)
YMn0 , (5)

where, PZM (α1, α2) = ZM (α1, α2)
(
ZM (α1, α2)

�ZM (α1, α2)
)−1

ZM (α1, α2)
� and IM×M

is the M × M identity matrix.
Then,

(̂αn0 , β̂n0)
� = arg min

α1,α2

RMn0(α1, α2) (6)

is the proposed estimator of (α0 + n0μ0, β0)� based on minimizing the sum of squares cor-
responding to nth0 column of the data matrix Y . Similarly, we can obtain LSEs of parameters
in model (3) by defining

Rm0N (α1, α2) = Y T
m0N

(
IN×N − PZN (α1, α2)

)
Ym0N , (7)
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where, PZN (α1, α2) = ZN (α1, α2)
(
ZN (α1, α2)

�ZN (α1, α2)
)−1

ZN (α1, α2)
� and IN×N is

the N × N identity matrix. Then,

(γ̂m0 , δ̂m0)
� = arg min

α1,α2

Rm0N (α1, α2) (8)

will be the proposed estimator of (γ 0 +m0μ
0, δ0)� based on minimizing the sum of squares

corresponding to mth
0 row of data matrix Y .

We observe that for each fixed column, we get an estimate of the same chirp rate parameter
β0 in (6), and also an estimate of frequency parameter, which is a linear combination of α0

and μ0. Similarly, estimates of δ0 and a linear combination of γ 0 and μ0 for a fixed row
in (8) has been obtained. It is important to note that the linearity of parameters of 1D-chirp
models plays a crucial role in getting proposed estimators of α0, γ 0, andμ0 by fitting a linear
regression model as follows.

Once the parameters corresponding to each (M + N ) 1-D chirp models have been esti-
mated.We apply the following three steps to obtain final estimates of parameters of themodel
(1):

Step-1. Let �� =
⎡
⎣
1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
1 2 · · · N 1 2 · · · M

⎤
⎦, and �� = [̂

α1 α̂2 · · · α̂N γ̂1 γ̂2 · · · γ̂M
]
.

Combine the obtained estimates as follows:

� = �

⎡
⎣

α

γ

μ

⎤
⎦ . (9)

Then estimate of (α0, γ 0, μ0)� is
(
���

)−1
���.

Step-2. The estimates of β0 and δ0 are simply the averages β̂ = 1

N

N∑
n=1

β̂n and δ̂

= 1

M

M∑
m=1

δ̂m , respectively.

Step-3. After getting estimates of non-linear parameters, ξ̂ = (̂α, β̂, γ̂ , δ̂, μ̂)� , the ampli-
tude parameter estimates can be provided as follows:

[
Â
B̂

]
=

⎡
⎢⎢⎢⎢⎣

2

MN

M∑
m=1

N∑
n=1

y(m, n) cos φ̂

2

MN

M∑
m=1

N∑
n=1

y(m, n) sin φ̂

⎤
⎥⎥⎥⎥⎦

. (10)

3 Theoretical results

In this section, we first state the model assumptions required to derive the theoretical asymp-
totic properties explicitly. These are as follows:
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Assumption 1 X(m, n) can be expressed as a linear combination of a double array sequence
of independently and identically distributed (i.i.d.) random variables {ε(m, n)} with mean 0,
variance σ 2 and finite fourth moment.

X(m, n) =
∞∑

i=−∞

∞∑
j=−∞

a(i, j)ε(m − i, n − j), (11)

such that
∞∑

i=−∞

∞∑
j=−∞

|a(i, j)| < ∞. (12)

Assumption 2 True parameter θ0 = (A0, B0, α0, β0, γ 0, δ0, μ0)� is an interior point of
parameter space 	, where 	 = (−M, M) × (−M, M) × [0, 2π] × [0, π/2] × [0, 2π] ×
[0, π/2] × [0, 2π], and A02 + B02 > 0, for some M > 0.

Assumption 1 puts themodel under a very general set-up of noise contamination as it includes
the dependent relationship too. Assumption 2 is taken to assure the absence of any identifia-
bility problem and non-zero deterministic part of the signal. Under these general assumptions,
we have derived strong consistency and asymptotic normality of the estimators. The obtained
results are stated in the following theorems.

Theorem 1 Under assumptions 1 and 2, the proposed estimator of parameter θ0 is strongly
consistent, i.e.,

θ̂
a.s.−−→ θ0 as min{M, N } −→ ∞.

Proof Please see Appendix A for the proof. ��
Theorem 2 Under assumptions 1 and 2, the proposed estimators of θ0 is asymptotically
normally distributed.

D−1(̂θ − θ0)
d−→ N7(0,�) as M = N → ∞,

where c =
∞∑

i=−∞

∞∑
j=−∞

a(i, j)2, D−1 = diag(M
1
2 N

1
2 , M

1
2 N

1
2 , M

3
2 N

1
2 ,

M
5
2 N

1
2 , M

1
2 N

3
2 , M

1
2 N

5
2 , M

3
2 N

3
2 ), and

� = cσ 2

(A02 + B02)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2A02 + 187B02 −185A0B0 −378B0 60B0 −378B0 60B0 612B0

−185A0B0 2B02 + 187A02 378A0 −60A0 378A0 −60A0 −612A0

−378B0 378A0 996 −360 612 0 −1224
60B0 −60A0 −360 360 0 0 0

−378B0 378A0 612 0 996 −360 −1224
60B0 −60A0 0 0 −360 360 0
612B0 −612A0 −1224 0 −1224 0 2448

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here diag(a1, a2, . . . , ak) represents k × k diagonal matrix with elements a1, a2, . . . , ak
in the principal diagonal and Nk(M,S) represents the k-variate normal distribution with
mean vector M and variance-covariance matrix S.
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Proof Please see Appendix B for the proof. ��
AlthoughTheorem2 has been proved for the increasing sample size assumingM = N → ∞,
however asymptotic normality will still hold even if M/N → p as M, N → ∞, for some
p > 0. It is interesting to note that the asymptotic properties of the proposed estimators of
chirp rates β0, δ0 will remain the same even if we take min{M, N } −→ ∞. The asymptotic
variance-covariance matrix of (α0, γ 0, μ0) will however change depending on the value of
p among non-linear parameters.

If we further assume that the errors in (1) are i.i.d. Gaussian distributed random variables,
then it can be observed that the proposed estimators of chirp rates parameters β0 and δ0,
asymptotically attain Cramer-Rao lower bound (CRLB). CRLB for estimators of other non-

linear parameters α0, γ 0, and μ0 are
456cσ 2

(A02 + B02)
,

456cσ 2

(A02 + B02)
and

288cσ 2

(A02 + B02)
, see

(Lahiri & Kundu, 2017).

4 Simulation results

Simulation studies performed in this paper are divided into three parts. The first part demon-
strates the evaluation of finite sample size performance of proposed estimators. We compare
the performance of the proposed estimators with the asymptotically optimal estimators such
as LSEs, and ALSEs, and fast but sub-optimal 2D-multilag-HAF estimators. The second part
shows the lower computational cost of the proposed estimators as compared to the LSEs.
Finally, the third part exemplifies the ability of the proposed estimators to extract original
gray-scale texture from one contaminated with noise and reproduce the original texture. We
have performed simulations on the complex counterpart of the model (1), (see Barbarossa,
2014) for comparison purposes.

4.1 Finite sample performance

To provide a detailed assessment of the performance of proposed estimators, we have chosen
sample sizes M = N = 20, 40, 60, 80 and 100. The fixed values of all parameters to obtain
complex-valued chirp data are:

A0 = 1, α0 = 0.4, β0 = 0.1429, γ 0 = 0.25, δ0 = 0.1250, μ0 = 0.1667. (13)

Obtained data from the model is then contaminated with noise X(m, n). We consider two
distinct noise structures for our simulations. These are:

• Independently and identically distributed (i.i.d.) normal errors with mean 0 and variance
σ 2;

• Autoregressive moving average (ARMA) errors with following representation:

X(m, n) = 0.06X(m − 1, n − 1) − 0.054X(m, n − 1) + 0.087X(m − 1, n)

+ ε(m, n) + .01ε(m − 1, n − 1) + 0.035ε(m, n − 1) + 0.042ε(m − 1, n).

(14)

where ε(m, n) is a sequence of i.i.d. Gaussian random variables withmean 0 and variance
σ 2.

We have obtained the estimates for 1000 replications for a fixed sample size M = N , under
a particular error structure with fixed σ 2. The estimators do not have any explicit closed
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Table 1 Time and number of grid points taken to compute the estimates

Sample size Efficient LSEs
M = N Time (seconds) Total no. of grid points Time (seconds) Number of grid points

2 0.044 12 0.128 27

3 0.041 96 0.308 2048

4 0.069 360 4.101 30375

5 0.119 960 34.609 221184

6 0.173 2100 198.038 1071875

7 0.250 4032 856.375 3981312

form expression, so we use Nelder-Mead algorithm ( using “optim" function in R software)
for optimization of the objective function and to obtain the estimators. Mean square errors
(MSEs) obtained under 1000 replications are displayed in the Figs. 1a, b, 2a and b for four
different values of σ = 0.1,0.5,0.9,1. The MSEs are plotted on negative logarithmic scale.
The findings of these simulation results can be summarized as follows:

• MSEs of the proposed estimators decrease rapidly as sample size increases, which sup-
ports the consistency property of the estimators. Further, as sample size increases, the
gap between the MSEs of the proposed estimators and LSEs decreases.

• The obtained MSEs of proposed estimators of β0 and δ0, are at par with those of LSEs
and ALSEs.

4.2 Time comparison

The computational advantage of the proposed estimators over the conventional LSEs is
quite significant. In order to compare the two methods, we measure their computational
complexities in terms of the number of points in the grid that are needed to find the initial
guesses of these estimators. Once we have the precise initial guesses, applying an iterative
algorithm like Nelder-Mead is a matter of seconds. “gridSearch" function from the package
“NMOF" is used to calculate the initial guesses. We report observed time to get the estimates
for a fixed sample size and the total number of grid points overwhich cost function evaluations
are required, in Table 1. The choice of parameters is same as in (13) along with i.i.d. normal
errors with mean 0 and standard deviation σ = 0.9. For a fixed sample size M = N , the
order of computation for LSEs is M4N 4 = M8, but for the proposed method, the order
of computation is M3N + N 3M = 2M4. The numerical experiments for comparing time
efficiency were performed on a system with processor: Intel(R) Core(TM) i3-5005U CPU@
2.00GHz 2.00GHz; installed memory(RAM): 4.00 GB; and system type: 64-bit Operating
System. Codes were written and run in R version 4.0.4 (2021-02-15)—“Lost Library Book",
a free software environment for statistical computing and graphics.

For the considered machine, it was not feasible to perform grid-search to get LSEs for
more than M = N = 7. When we plot logarithm sample size M(= N ) against the logarithm
time to compute initial guess for LSEs, then it is observed to be linear. So, to get an idea of
the time deviation of LSEs with that of proposed estimates at larger sample sizes, we predict
time to obtain LSEs based on grid-search by fitting a simple linear regression model between
log of sample size and log of time to get LSEs. From the results in Table 2, we can clearly
observe the massive time difference of getting proposed estimates and LSEs. For example,
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Fig. 1 Plots of − log(MSEs) versus the sample size for estimators of non-linear parameters
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Fig. 2 Plots of − log(MSEs) versus the sample size for estimators of non-linear parameters
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Table 2 Comparing Time efficiency of proposed estimators with Predicted time for LSEs

Sample size Efficient LSEs
M = N Computed time Total no. of grid points Predicted time Number of grid points

8 0.530 sec 7.06E+03 32.165 min 1.23E+07

9 0.734 sec 1.15E+04 1.375 hr 3.28E+07

10 1.545 sec 1.78E+04 3.195 hr 7.86E+07

15 5.831 sec 9.41E+04 3.411 days 2.20E+09

20 26.479 sec 3.03E+05 34.070 days 2.29E+10

25 1.015 min 7.49E+05 203.051 days 1.40E+11

30 2.443 min 1.56E+06 2.392 yr 6.11E+11

35 5.369 min 2.91E+06 8.209 yr 2.12E+12

40 8.525 min 4.99E+06 23.888 yr 6.22E+12

45 14.530 min 8.02E+06 61.288 yr 1.61E+13

50 24.243 min 1.22E+07 142.37 yr 3.75E+13

if we go for sample size, say M = N = 40, then it will take more than 20 years to obtain
LSEs using grid-search over the same machine (even if we assume a large amount of RAM
in a machine), while it took less than 10min to obtain the proposed estimates.

4.3 Texture pattern estimation

2D chirp signals create interesting gray-scale texture patterns. In order to analyze the effec-
tiveness of the proposed estimators for estimating texture patterns accurately, we generate
data from the complex counterpart of the model with same set of parameters as in (13).
Then real and imaginary part of the obtained data is contaminated independently with i.i.d.
normal errors having mean 0 and variance σ 2 = 0.09. The data matrix obtained is of size
100×100.We analyze this data using the proposed estimator, the optimal LSEs, ALSEs, and
also with the 2D-multilag-HAF method. Note that we have used true values as initial guess
for obtaining optimal estimators, LSEs and ALSEs because of the computational complexity
and grid-search method for obtaining 2D-multilag-HAF estimators and proposed estimators.

Plugging these estimators in the deterministic part of the model, we get estimated texture
patterns as the real part of the reproduced data.We also present real part of the original dataset
to compare the original and estimated textures. It is clear from the figures that texture pattern
obtained using the proposed method is visually the same as that obtained using optimal LSEs
and ALSEs, while the 2D-multilag-HAF estimator gives a slightly different pattern than the
original one (Fig. 3).

5 Conclusion

The paper proposes a computationally efficient estimators with the same convergence rate as
the LSEs or ALSEs. The key idea is to develop a strategy by disintegrating the 2Dmodel into
several 1D chirp models and then design an optimal estimation method to obtain estimates of
the 2D model parameters. The proposed estimators are not only asymptotically unbiased but
also have an asymptotic normal distribution and same rate of convergence as that of the LSEs.
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Fig. 3 Acomparison of estimated textures using LSEs, ALSEs, 2D-multilag-HAF and the proposed estimators

Furthermore, the estimators converge strongly to the true value of the parameters. Extensive
numerical simulations firmly support the theoretical results and also unveil the gigantic
gap between time required for obtaining proposed estimates and the LSEs. Synthetic data
analysis illustrates the effectiveness of the proposed estimators in recovering 2D gray-scale
textures contaminated with noise. For several applications, like enhancing the robustness of
the watermarking from frequent attacks e.g., cropping, rotating, compressing, etc., multi-
component chirp signals are required for the base watermarking, see Stankovic et al. (2001).
The proposedmethod can effectively be used to address such problems. Further, our proposed
methodology can be adapted for parameter estimation of more general signal models by
utilizing a sequential procedure similar to Grover et al. (2021). We believe that the estimation
technique and the results obtained in this paper can lead to designing computationally efficient
algorithms for estimating higher order polynomial phase signals and thusmaking a significant
contribution towards research in this area.
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Appendix A

Proof of Theorem 1: Given the data matrix Y , we compute the LSEs of α0 + n0μ0 and β0

corresponding to nth0 column vector of Y . We denote the obtained estimators by α̂n0 and β̂n0
to emphasize that these depend on n0. Similarly, for fixedmth

0 row of Y , we have denoted the
LSEs of γ 0+m0μ

0 and δ0 by γ̂m0 and δ̂m0 . Under assumptions that X(m0, n0) are stationary
(11) and (12), see Nandi and Kundu (2004), we have

β̂n0 = β0 + o

(
1

M2

)
, α̂n0 = α0 + n0μ

0 + o

(
1

M

)
, (15)

γ̂m0 = γ 0 + m0μ
0 + o

(
1

N

)
, δ̂m0 = δ0 + o

(
1

N 2

)
. (16)

The final estimator of β0 given by

β̂ =

N∑
n0=1

β̂n0

N

is strongly consistent estimate of β0 which is observed by (15) and also that β̂n0 is strongly
consistent for β0 as M −→ ∞. For proof, one may refer to Lahiri et al. (2015).

Similarly δ̂ = 1

M

M∑
m0=1

δ̂m0 is strongly consistent estimator of δ0.

Denote τ� =
[

︸ ︷︷ ︸
N times

o

(
1

M

)
. . . o

(
1

M

)

︸ ︷︷ ︸
M times

o

(
1

N

)
. . . o

(
1

N

)]

1×(M+N )

.

We now prove the consistency of the frequency parameter estimators α̂, γ̂ , and that of μ̂,
estimator of the interaction term parameter. From (15) and (16), we have thefollowing:

⎡
⎣

α̂

lγ̂
μ̂

⎤
⎦ =

(
���

)−1
��� = (���)−1��

(
�

⎡
⎣

α0

γ 0

μ0

⎤
⎦ + τ

)
, (17)
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where �� =
⎡
⎣
1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
1 2 · · · N 1 2 · · · M

⎤
⎦
3×(M+N )

, and �� = [̂
α1 α̂2 · · · α̂N γ̂1 γ̂2 · · · γ̂M

]
.

This implies that

⎡
⎣

α̂

γ̂

μ̂

⎤
⎦ =

⎡
⎣

α0

γ 0

μ0

⎤
⎦ + (���)−1

⎡
⎢⎢⎢⎢⎢⎢⎣

N × o

(
1

M

)

M × o

(
1

N

)

N (N + 1)

2
× o

(
1

M

)
+ M(M + 1)

2
× o

(
1

N

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (18)

Now we look at the first element a1 + a2 − a3 of the following matrix

(���)−1

⎡
⎢⎢⎢⎢⎢⎢⎣

N × o

(
1

M

)

M × o

(
1

N

)

N (N + 1)

2
× o

(
1

M

)
+ M(M + 1)

2
× o

(
1

N

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

where,

a1 =
(
MK − M2(M + 1)2

4

)
N × o

(
1

M

)
/�,

a2 = MN (M + 1)(N + 1)

4
M × o

(
1

N

)
/�,

a3 = MN (N + 1)

2

(
N (N + 1)

2
× o

(
1

M

)
+ M(M + 1)

2
× o

(
1

N

))
/�,

and

� = MN

12

(
N (N 2 − 1) + M(M2 − 1)

)
, K = N (N + 1)(2N + 1)

6
+ M(M + 1)(2M + 1)

6
.

Now we look at a1, a2 and a3 individually and compute their limits.

a1 =
(
MK − M2(M + 1)2

4

)
N × o

(
1

M

)
/�

= N × o(1)

�
×

(
N (N + 1)(2N + 1)

6
+ M(M + 1)(M − 1)

12

)

= o(1)

M
×

(
2N (N + 1)(2N + 1) + M(M2 − 1)

)

(
N (N 2 − 1) + M(M2 − 1)

) .
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This implies that a1
a.s.−−→ 0 as min{M, N } → ∞. Here,

a2 = MN (M + 1)(N + 1)

4
M × o

(
1

N

)
/� = o(1) × M(M + 1)(

N (N 2 − 1) + M(M2 − 1)

).

This implies that a2
a.s.−−→ 0 as min{M, N } → ∞.

a3 = MN (N + 1)

2

(
N (N + 1)

2
× o

(
1

M

)
+ M(M + 1)

2
× o

(
1

N

))
/�

= (N + 1)

2�

(
N 2(N + 1) × o(1) + M2(M + 1) × o(1)

)
.

This implies that a3
a.s.−−→ 0 as min{M, N } → ∞. Hence, α̂ is strongly consistent estimate

of α0. Similarly strong consistency of γ̂ for γ 0 can be derived.

Now, the third element of (���)−1

⎡
⎢⎢⎢⎢⎢⎢⎣

N × o

(
1

M

)

M × o

(
1

N

)

N (N + 1)

2
× o

(
1

M

)
+ M(M + 1)

2
× o

(
1

N

)

⎤
⎥⎥⎥⎥⎥⎥⎦
can

be written as −b1 − b2 + b3, where

b1 = MN (N + 1)

2
× N × o

(
1

M

)
/� = o(1)

N (N + 1)

M
(
N (N 2 − 1) + M(M2 − 1)

).

This implies that b1
a.s.−−→ 0 as min{M, N } → ∞.

b2 = NM(M + 1)

2
× M × o

(
1

N

)
/� = o(1) × M(M + 1)

N
(
N (N 2 − 1) + M(M2 − 1)

).

This implies that b2
a.s.−−→ 0 as min{M, N } → ∞.

b3 = MN ×
(
N (N + 1)

2
× o

(
1

M

)
+ M(M + 1)

2
× o

(
1

N

))
/�

=
(

N (N + 1)(
N (N 2 − 1) + M(M2 − 1)

) × o

(
1

M

)
+ M(M + 1)(

N (N 2 − 1) + M(M2 − 1)
) × o

(
1

N

))
.

Hence b3
a.s.−−→ 0 as min{M, N } → ∞. Hence, μ̂ is a strongly consistent estimate of μ0.

The strong consistency of estimators of amplitude parameters follows from the continuity
mapping theorem. ��

Appendix B

Proof of Theorem 2: Suppose κ� = (A, B, α, β) and
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κ0� = (A0(n0), B0(n0), α0 + n0μ0, β0). We define sum of squares as follows:

Qn0(κ) =
M∑

m0=1

(
y(m0, n0) − A cos(αm0 + βm2

0) − B sin(αm0 + βm2
0)

)2

.

Let κ̂ be the minimizer of Qn0(κ), then using Taylor Series expansion on the first derivative
vector Q′

n0(κ) around the point κ0, we get:

Q′
n0 (̂κ) − Q′

n0(κ
0) = Q′′

n0(κ̆)(̂κ − κ0), (19)

where κ̆ is a point between κ̂ and κ0. Also Q′
n0 (̂κ) = 0 as κ̂ is LSE of κ0.

Let us denote D−1
1 = diag(M1/2, M1/2, M3/2, M5/2). Then on multiplying D−1

1 both
sides of Eq. (19), it gives:

− [
D1Q′′

n0(κ̆)D1
]−1

�n0�
−1
n0 D1Q′

n0(κ
0),= D1

−1(̂κ − κ0)

where lim
M→∞

[
D1Q′′

n0(κ̆)D1
]−1

�n0 = I4×4, (20)

and

�−1
n0 = 2

A02 + B02

⎡
⎢⎢⎢⎢⎢⎢⎣

A02(n0) + 9B02(n0)

2
−4A0(n0)B0(n0) −18B0(n0) 15B0(n0)

−4A0(n0)B0(n0)
9A02(n0) + B02(n0)

2
18A0(n0) −15A0(n0)

−18B0(n0) 18A0(n0) 96 −90
15B0(n0) −15A0(n0) −90 90

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The expression of �−1
n0 can be obtained by proof of Theorem 2 shown in Lahiri et al. (2015).

By using Eq. (20) and above expression of �−1
n0 , we get following asymptotically equivalent

(a.e.) expression of the third element of vector D1
−1(̂κ − κ0) as:

[
M3/2

(̂
αn0 − (α0 + n0μ0)

)]

a.e.= 4

A02 + B02

[
18

∑
m

η(m0, n0)√
M

− 96
∑
m0

m0η(m0, n0)

M
√
M

+ 90
∑
m0

m2
0η(m0, n0)

M2
√
M

]
, (21)

where, η(m0, n0) = X(m0, n0)
(
A0 sin φ(m0, n0, ξ

0) − B0 cosφ(m0, n0, ξ
0)

)
,

φ(m0, n0, ξ
0) = α0m0 + β0m2

0 + γ 0n0 + δ0n20 + μ0m0n0. We have used these notations
for brevity. Similarly expressions of fourth, fifth and sixth element of D1

−1(̂κ − κ0) can be
written as in Eqs. (22), (23) and (24) respectively:

[
M5/2

(
β̂n0 − β0

)]

a.e.= 4

A02 + B02

[
− 15

∑
m0

η(m0, n0)√
M

+ 90
∑
m0

m0η(m0, n0)

M
√
M

− 90
∑
m0

m2
0η(m0, n0)

M2
√
M

]
, (22)

[
N 3/2

(
γ̂m0 − (γ 0 + m0μ

0)
)]
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a.e.= 4

A02 + B02

[
18

∑
n0

η(m0, n0)√
N

− 96
∑
n0

n0η(m0, n0)

N
√
N

+ 90
∑
n0

n20η(m0, n0)

N 2
√
N

]
, (23)

[
N 5/2

(̂
δm0 − δ0

)]

a.e.= 4

A02 + B02

[
− 15

∑
n0

η(m0, n0)√
N

+ 90
∑
n0

n0η(m0, n0)

N
√
N

− 90
∑
n0

n20η(m0, n0)

N 2
√
N

]
. (24)

From Eqs. (22) and (24) above, we can see that estimators β̂ and δ̂ of β0 and δ0 are asymp-
totically equivalent to the LSEs as they have same asymptotic variances by applying central
limit theorem for stationary linear processes, see Fuller (1996). So now, remaining is to show
asymptotic properties of estimators (̂α, γ̂ , μ̂)�.

The expression of proposed estimators of (α0, γ 0, μ0)� obtained is:

⎡
⎣

α̂

γ̂

μ̂

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
MK − M2

(
M + 1

)2
4

)
cα + MN (M + 1)(N + 1)

4
cγ − MN (N + 1)

2
cαγ

MN (M + 1)(N + 1)

4
cα +

(
K N − N 2(N + 1)2

4

)
cγ − NM(M + 1)

2
cαγ

−MN (N + 1)

2
cα − NM(M + 1)

2
cγ + MNcαγ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/|���|,

cα =
N∑

n0=1

α̂n0 , cγ =
M∑

m0=1

γ̂m0 ,

cαγ =
N∑

n0=1

n0α̂n0 +
M∑

m0=1

m0γ̂m0 ,

K = N (N + 1)(2N + 1)

6
+ M(M + 1)(2M + 1)

6
,
∣∣���

∣∣

= MN

12

(
N (N 2 − 1) + M(M2 − 1)

)
. (25)

From (25), we get:

M3/2N 1/2(̂α − α0) =
(
2N (N + 1)(2N + 1) + M(M2 − 1)

N (N 2 − 1) + M(M2 − 1)

)

1√
N

N∑
n0=1

M3/2(̂αn0 − (α0 + n0μ
0)

)
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+
(

3M2(M + 1)

N (N 2 − 1) + M(M2 − 1)

)

1√
M

M∑
m0=1

N 3/2(γ̂m0 − (γ 0 + m0μ
0)

)

−
(

6M3/2N 1/2(N + 1)

N (N 2 − 1) + M(M2 − 1)

)[ N∑
n0=1

n0
(̂
αn0 − (α0 + n0μ

0)
)

+
M∑

m0=1

m0
(
γ̂m0 − (γ 0 + m0μ

0)
)]

.

For sufficiently large M and N , we have:

M3/2N 1/2(̂α − α0) =
(
4N 3 + M3

N 3 + M3

)
1√
N

N∑
n0=1

M3/2(̂αn0 − (α0 + n0μ
0)

)

+
(

3M3

N 3 + M3

)
1√
M

M∑
m0=1

N 3/2(γ̂m0 − (γ 0 + m0μ
0)

)

−
(

6N 3

N 3 + M3

)
1

N 3/2

N∑
n0=1

n0M
3/2(̂αn0 − (α0 + n0μ

0)
)

−
(

6M3

N 3 + M3

)
1

M3/2

M∑
m0=1

m0N
3/2(γ̂m0 − (γ 0 + m0μ

0)
)
. (26)

Asymptotic normality of the estimators for M = N → ∞ with given rates of convergence
follows by applying central limit theorem for stationary processes (Fuller, 1996).

We now present some important results whichwill be used to find the asymptotic variance-
covariance matrix of the proposed estimators of non-linear parameters. Using Eqs. (21) and
(23) in the paper, we have the following observations:

1. AsyVar

(
1

2
√
N

N∑
n0=1

M3/2(̂αn0 − (α0 + n0μ
0)

)) = cσ 296

A02 + B02
,

2. AsyVar

(
1

2
√
M

M∑
m0=1

N 3/2(γ̂m0 − (γ 0 + m0μ
0)

)) = cσ 296

A02 + B02
,

3. AsyVar

(
1

2N 3/2

N∑
n0=1

n0M
3/2(̂αn0 − (α0 + n0μ

0)
)) = cσ 232

A02 + B02
,

4. AsyVar

(
1

2M3/2

M∑
m0=1

m0N
3/2(γ̂m0 − (γ 0 + m0μ

0)
)) = cσ 232

A02 + B02
,

5. AsyCovar

(
1

2
√
N

N∑
n0=1

M3/2(̂αn0−(α0+n0μ
0)

)
,

1

2
√
M

M∑
m0=1

N 3/2(γ̂m0−(γ 0+m0μ
0)

))

= 0,
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6. AsyCovar

(
1

2
√
N

N∑
n0=1

M3/2(̂αn0 − (α0 + n0μ
0)

)
,

1

2N 3/2

N∑
n0=1

n0M
3/2(̂αn0 − (α0 +

n0μ
0)

)) = cσ 248

A02 + B02
,

7. AsyCovar

(
1

2
√
N

N∑
n0=1

M3/2(̂αn0 − (α0 + n0μ
0)

)
,

1

2M3/2

M∑
m0=1

m0N
3/2(γ̂m0 − (γ 0 +

m0μ
0)

)) = 0,

8. AsyCovar

(
1

2
√
M

M∑
m0=1

N 3/2(γ̂m0 − (γ 0 + m0μ
0)

)
,

1

2N 3/2

N∑
n0=1

n0M
3/2(̂αn0 − (α0 +

n0μ
0)

)) = 0,

9. AsyCovar

(
1

2
√
M

M∑
m0=1

N 3/2(γ̂m0 − (γ 0 + m0μ
0)

)
,

1

2M3/2

M∑
m0=1

m0N
3/2(γ̂m0 − (γ 0 +

m0μ
0)

)) = cσ 248

A02 + B02
,

10. AsyCovar

(
1

2N 3/2

N∑
n0=1

n0M
3/2(̂αn0 − (α0 +n0μ

0)
)
,

1

2M3/2

M∑
m0=1

m0N
3/2(γ̂m0 − (γ 0+

m0μ
0)

)) = cσ 2

2(A02 + B02)
.

where c =
∞∑

i=−∞

∞∑
j=−∞

a2(i, j).

Using the above results in Eq. (26) from the paper, we get asymptotic variance-covariance
matrix of⎡

⎣
M3/2N 1/2(̂α − α0)

N 3/2M1/2(γ̂ − γ 0)

M3/2N 3/2(μ̂ − μ0)

⎤
⎦ as:

cσ 2

(A02 + B02)

⎡
⎣

996 612 −1224
612 996 −1224

−1224 −1224 2448

⎤
⎦ .

From (21), (22) and (23) equations of the paper, it is further observed that:

1. AsyCovar

(
M5/2N 1/2

(
β̂ − β0

)
, M1/2N 5/2

(̂
δ − δ0

)) = 0,

2. AsyCovar

(
M5/2N 1/2

(
β̂ − β0

)
,

1√
N

N∑
n0=1

M3/2(̂αn0 − (α0 + n0μ
0)

)) = − 360cσ 2

A02 + B02
,

3. AsyCovar

(
M5/2N 1/2

(
β̂ − β0

)
,

1√
M

M∑
m0=1

N 3/2(γ̂m0 − (γ 0 + m0μ
0)

)) = 0,

4. AsyCovar

(
M5/2N 1/2

(
β̂−β0

)
,

1

N
√
N

N∑
n0=1

M3/2n0
(̂
αn0−(α0+n0μ

0)
)) = − 180cσ 2

A02 + B02
,

5. AsyCovar

(
M5/2N 1/2

(
β̂ − β0

)
,

1

M
√
M

M∑
m0=1

m0N
3/2(γ̂m0 − (γ 0 + m0μ

0)
)) = 0.

Similar results can be derived for M1/2N 5/2
(̂
δ − δ0

)
.
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Asymptotic variance-covariance matrix of the proposed estimators of non-linear param-
eters is given by:

cσ 2

(A02 + B02)

⎡
⎢⎢⎢⎢⎣

996 −360 612 0 −1224
−360 360 0 0 0
612 0 996 −360 −1224
0 0 −360 360 0

−1224 0 −1224 0 2448

⎤
⎥⎥⎥⎥⎦

. (27)

Next, we derive the asymptotics of amplitude estimators, please recall that by using Taylor
series expansion of cosφ(m0, n0, ξ̂) around the point ξ0, we can write:

cos φ̂ − cosφ0 = − sin φ̆
(̂
ξ − ξ0

)�

⎡
⎢⎢⎢⎢⎣

m0

m2
0

n0
n20

m0n0

⎤
⎥⎥⎥⎥⎦

.

For brevity, we have denoted cosφ(m0, n0, ξ̂) by cos φ̂, cosφ(m0, n0, ξ̂) by cosφ0, and
sin φ(m0, n0, ξ̆) by sin φ̆, where ξ̆ is a point lying between ξ̂ and ξ0.

Now consider first element of the following vector,

√
MN

(
⎡
⎢⎢⎢⎢⎢⎣

2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) cos φ̂

2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) sin φ̂

⎤
⎥⎥⎥⎥⎥⎦

−
[
A0

B0

])
,

we get:

√
MN

(
2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) cosφ0 − 2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) sin φ̆R(m0, n0) − A0
)

,

(28)

where R(m0, n0) = (̂
ξ − ξ0

)�

⎡
⎢⎢⎢⎢⎣

m0

m2
0

n0
n20

m0n0

⎤
⎥⎥⎥⎥⎦
, and second element of the above amplitude vector

can be written as:

√
MN

(
2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) sin φ0 + 2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) sin φ̆R(m0, n0) − B0
)

.

(29)

Now let us look at the first and the last term of Eq. (28) and putting value of y(m0, n0) from
the model (1),

√
MN

(
2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) cosφ0 − A0
)
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= √
MN

(
2

MN

M∑
m0=1

N∑
n0=1

A0 cos2 φ0 − A0 + 2

MN

M∑
m0=1

N∑
n0=1

B0 sin φ0 cosφ0

+ 2

MN

M∑
m0=1

N∑
n0=1

X(m0, n0) cosφ0
)

a.e.= 2√
MN

M∑
m0=1

N∑
n0=1

X(m0, n0) cosφ0. (30)

The above result has been obtained from a famous number theory conjecture by Mont-
gomery (1994).

In second term of (28), R(m0, n0) is a sum of five terms, so now consider first term of
2

MN

M∑
m0=1

N∑
n0=1

y(m0, n0) sin φ̆R(m0, n0),

2√
MN

M∑
m0=1

N∑
n0=1

y(m0, n0) sin φ̆m0 (̂α − α0)

= 2√
MN

M∑
m0=1

N∑
n0=1

A0 cosφ0 sin φ̆m0 (̂α − α0)

+ 2√
MN

M∑
m0=1

N∑
n0=1

B0 sin φ0 sin φ̆m0 (̂α − α0)

+ 2√
MN

M∑
m0=1

N∑
n0=1

X(m0, n0) sin φ̆m0 (̂α − α0)

=
(

2

M2N

M∑
m0=1

N∑
n0=1

A0 cosφ0 sin φ̆m0

)
M

√
MN (̂α − α0)

+
(

2

M2N

M∑
m0=1

N∑
n0=1

B0 sin φ0 sin φ̆m0

)
M

√
MN (̂α − α0)

+
(

2

M2N

M∑
m0=1

N∑
n0=1

X(m0, n0) sin φ̆m0

)
M

√
MN (̂α − α0)

a.e.=
(

2

M2N

M∑
m0=1

N∑
n0=1

B0 sin φ0 sin φ̆m0

)
M

√
MN (̂α − α0), by using Proposition 1 of [16].

So, finding the asymptotic distribution of (28) boils down tofinding asymptotic distribution
of

2√
MN

M∑
m0=1

N∑
n0=1

X(m0, n0) cosφ0 −
(

2√
MN

M∑
m0=1

N∑
n0=1

B0 sin φ0 sin φ̆

)
R(m0, n0),

which is further asymptotically equivalent to:

2√
MN

M∑
m0=1

N∑
n0=1

X(m0, n0) cosφ0 − B0
(
1

2
M3/2N 1/2(̂α − α0) + 1

3
M5/2N 1/2(β̂ − β0)
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+ 1

2
N 3/2M1/2(γ̂ − γ 0) + 1

3
N 5/2M1/2(̂δ − δ0) + 1

4
M3/2N 3/2(μ̂ − μ0)

)
. (31)

Asymptotic normality of amplitude estimators is thus proved by Eq. (31). Now we need to
derive the expression of their asymptotic variances.

After lengthy calculations, we get the asymptotic variance of Â as follows:

cσ 2

(A02 + B02)
(2A02 + 187B02).

Similarly by calculating other terms too, we get complete variance co-variance matrix � as
mentioned in Theorem 2.

Hence the result. ��

References

Barbarossa, S., Scaglione, A.,&Giannakis, G. B. (1998). Product high-order ambiguity function formulticom-
ponent polynomial-phase signal modeling. IEEE Transactions on Signal Processing, 46(3), 691–708.

Barbarossa, S., Di Lorenzo, P., & Vecchiarelli, P. (2014). Parameter estimation of 2D multi-component poly-
nomial phase signals: An application to SAR imaging of moving targets. IEEE Transactions on Signal
Processing, 62(17), 4375–4389.
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