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Abstract
Given a Laurent polynomial F ∈ C[z±1

1 , . . . , z±1
n ], its amœba AF is the image by z =

(z1, . . . , zn) ∈ (C∗)n �−→ (log |z1|, . . . , log |zn |) ∈ R
n of the algebraic zero set V (F) =

{z ∈ (C∗)n ; F(z) = 0} of the complex torusTn := (C∗)n . We relate here the question of the
BIBO stability of a multilinear discrete time invariant system with a regular transfer function
G(z1, ..., zn)/F(z1, . . . , zn), where F, G ∈ C[z1, ..., zn] are coprime or more precisely
structural stability, with the geometrical study of the amœba AF . A criterion for strong and
weak structural stability is expressed in terms of the position of 0 = (0, . . . , 0) ∈ R

n with
respect to the amœba AF . Then we propose a Monte-Carlo integration based algorithm in
order to test the structural stability of a given such system. The proposed algorithm is not
limited by the curse of dimensionality, as opposed to the state-of-the-art methods: It can
be applied to any number of variables n. Several illustrative examples are presented and
discussed.
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1 Introduction

Let n ∈ N and consider the set of multi-indexed complex-valued signals

C
[Zn ] := {u = (uk)k∈Zn : Zn �−→ C ; with finite support}.

A multilinear discrete time invariant system S,

(uk)k∈Zn ∈ C
[Zn ] �−→(vk)k∈Zn = S{(uk)k∈Zn } =

( ∑
p∈Zn

h puk−p

)
k∈Zn

is said to be BIBO (Bounded-Input, Bounded-Output) stable if for a bounded input signal u,
its output v is bounded. That is,

(uk) ∈ �∞
C

(Zn) �⇒ (vk) ∈ �∞
C

(Zn).

A fundamental theorem states that the system S is BIBO stable if and only if its impulse
response (hk)k∈Zn belongs to �1

C
(Zn), that is

∑
k∈Zn

|hk | < +∞. (1)

One meets the problem of BIBO stability during the design of linear systems. Such systems
find their applications in several practical areas related to signal processing (such as geo-
physics, medical imagery, processing of radar and sonar data) and to control theory (Benidir,
1991).

Since �1
C
(Zn) ↪→ �2

C
(Zn), condition (1) implies that

∑
k∈Zn

|hk |2 < +∞, which corresponds

to the fact that the system S is asymptotically stable (or stationary). BIBO stability thus
constitutes a stronger requirement than asymptotic stability.

In this paper, we are concerned with multilinear discrete time-invariant systems which
admit a rational transfer function, as

B(z−1
1 , . . . , z−1

n )

A(z−1
1 , . . . , z−1

n )
= zγ G(z1, . . . , zn)

F(z1, . . . , zn)
∈ C(z1, . . . , zn), (2)

where γ ∈ Z
n and G, F ∈ C[z1, . . . , zn] are coprime inC[z1, . . . , zn]with zγ = zγ1

1 · · · zγn
n .

They are called discrete n-rational filters. In case the rational function

z ∈ T
n := (C∗)n �−→ G(z)/F(z),

where C∗ := C \ {0}, is regular about the n-dimensional torus

S
n
1 = {z = (eiθ1 , . . . , eiθn ) ; θ = (θ1, . . . , θn) ∈ (R/2πZ)n}, (3)

that isG and F have no common zeroes onSn
1, then the two following assertions are equivalent

for such a discrete n-rational filter S:

(i) S is BIBO stable

(i i) F−1({0}) ∩ {z ∈ C
n ; |z j | ≤ 1 for j = 1, . . . , n} = ∅.

(4)

The characterization of stability given in (i i) is called structural stability (Bouzidi et al.,
2019).

The subject of BIBO stability of discrete n-rational systems has a very long and rich
history, with several criteria available in the classical literature (see (Huang, 1972; Justice
& Shanks, 1973; Anderson & Jury, 1974; Schussler, 1976; Bose, 1977; Goodman, 1977;
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Bistritz, 1999)). Also, several algorithms, both symbolic and numeric have been proposed
for testing these criteria. The problem is completely solved for n = 2. For moderate n, say
n = 3, 4, one can find in the literature very efficient algorithms with available packages
implemented e.g in Singular, Sage or Maple. To our knowledge, the problem of testing
the BIBO stability is however still open for large n and or high degree.

We intend in this paper to introduce a novel approach on structural stability, based on
the notion of amœba of an algebraic hypersurface in Tn . The objective is to escape from the
curse of dimensionality. In addition, we hope that the approach is interesting in itself, by the
connections it establishes between tropical geometry and systems theory in signal processing
and control theory.

The notion of amoeba was introduced by Gelfand, Krapanov and Zelevinsky in 1994 in
their pioneer book on multidimensional determinants (Gelfand et al., 1994). The amœba
AF of F (one should better say of the zero set F−1({0}) of F in T

n) when F is a Laurent
polynomial in n variables (in particular a polynomial in n variables) is the image of F−1({0})
under the log absolute value map Log : z �→ (log |z1|, . . . , log |zn |). We refer to Bogdanov
et al. (2016), Bogdanov and Sadykov (2020), Nisse and Sadykov (2019) for algorithmic
computation of polynomial amœbas. Readers interested in interactive visualization of 2 or
3 variables amœbas are invited to see the recent website www.amoebas.ru. Visualization in
dimension 4 is also considered through slices of amœbas

1.1 Outline

This paper is organized as follows. Section §2 provides a state of the art on the problem
of testing structural stability for n-rational systems. The section §3 provides a recall of the
concept of amœbas, in view of the role it could play in relation with the establishment of our
criterion on structural stability. In section §4, we will formulate our criterion within the frame
of amœba and enlarge the notion of structural stability into that of weak structural stability.
In section §5, we design a numerical algorithm using the Monte-Carlo integration method,
to test the structural stability of a given rational system of n variables. The proposed method
does not stuck from the curse of dimensionality as opposed to the state-of-the-art methods.

1.2 Notation

Throughout the paper, we will use the boldface notation 0 = (0, . . . , 0) for the zero vector
of dimension n > 1. We write degi F(z1, . . . , zn) for the degree of F , with respect to the
variable zi .

2 State of the art

In the case of a multilinear discrete time-invariant system, the following theorems due to
DeCarlo et al. (1977) and Strintzis (1977) constitute important equivalent conditions to (ii)
and easier to handle.
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Theorem 1 (DeCarlo et al. 1977) Condition (ii) is equivalent to
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F(z1, 1, ..., 1) �= 0, |z1| ≤ 1,

F(1, z2, 1, ..., 1) �= 0, |z2| ≤ 1,
...

...

F(1, . . . , 1, zn) �= 0, |zn | ≤ 1,

F(z1, . . . , zn) �= 0, |z1| = · · · = |zn | = 1.

Theorem 2 (Strintzis 1977) Condition (ii) is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F(0, ..., 0, zn) �= 0, |zn | ≤ 1,

F(0, ..., 0, zn−1, zn) �= 0, |zn−1| ≤ 1, |zn | = 1
...

...

F(0, z2..., zn) �= 0, |z2| ≤ 1, |zi | = 1, i = 3, . . . , n,

F(z1, z2..., zn) �= 0, |z1| ≤ 1, |zi | = 1, i = 2, . . . , n.

With these criteria, the original problem of dimension n in the unit closed polydisc D
n
is

converted into n or n + 1 easier sub problems of lower dimensions, on reduced subsets of
D

n
. Most of the existing criteria on the structural stability are developed from Theorems 1

and 2.
Recently Y. Bouzidi, A. Quadrat and F. Rouiller have proposed a method for the imple-

mentation of the structural stability of the n-dimensional case (Bouzidi et al., 2015; Bouzidi
&Rouillier, 2016; Bouzidi et al., 2019). Their starting point is the theorem 1 and they focused
on testing the last condition

F(z1, . . . , zn) �= 0, |z1| = · · · = |zn | = 1 for n ≥ 2 (5)

in the particular case where F ∈ R[z1, . . . , zn]. The n first conditions of the theorem 1, being
easy, are tested using the 1-D Bistritz test (Bistritz, 1984). An algorithmic procedure for
testing (5) has been proposed using some computer algebra methods namely the Cylindrical
AlgebraicDecomposition (CAD) and theRationalUnivariateRepresentation (RUR) (Bouzidi
et al., 2019). The implementation is proposed using some packages that they have developed
under Maple which make their approach efficient in practice for moderate n.

We mention that Dumitrescu also has proposed a method for testing the condition (5). His
approach is based on sum of squares decomposition but it provides only a sufficient condition
(see (Dumitrescu, 2006)).

Alternative methods have been introduced by M. Najim, I. Serban and F. Turcu. These
methods are based on the introduction of so-called Schur coefficients families in several
variables, the goal being to obtain a multidimensional Schur-Cohn criterion (see Serban and
Najim (2006, 2007a, b, c)). We present hereafter the basic steps of their method.

Let

F(z1, . . . , zn) =
∑

α∈Supp F⊂Nn

cα zα (cα ∈ C
∗)

with total degree δF in the n variables z1, . . . , zn . For any ω = (eiω1 , . . . , eiωn−1) define
Fω ∈ C[Y ] by

Fω(Y ) = F(eiω1Y , . . . , eiωn−1Y , Y ) ∈ C[Y ].
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Let also F#
ω be the reciprocal polynomial defined by

F#
ω(Y ) = Y δF Fω(1/Y ).

Theorem 3 (Serban and Najim 2007b) Consider (γk(ω)) the functional Schur coefficients of
the one variable function F#

ω/Fω. The following statements are equivalent

a) F has no zeroes in D
n
.

b) Fω has no zeroes in D for any ω = (eiω1 , . . . , eiωn−1) .
c) |γk(ω)| < 1 for any ω = (eiω1 , . . . , eiωn−1) and any k = 0, . . . , δF − 1.

Such equivalence allows to split the n-dimensional problem given in item a) to the δF sub
problems in item c), of n − 1 variables, on the unit polycircle of dimension n − 1. A test for
conditions b) or equivalently c), can be performed in an efficient way for n = 2 and for small
degrees δF . However there is no rule for big values of n and δF . In particular, the graphical
inspection of the plot of |γk(ω)|, adopted in Serban and Najim (2007b) to check the validity
of c), can hardly be applied for n > 3.

More generally, all the methods presented so far are effective in practice only when n is
low. To our knowledge, there is still no method capable of answering the question of BIBO
stability beyond n = 4.

The problem of testing the structural stability of a discrete n-rational filter thus appeals to
investigate new strategies.

We propose to revisit the problem following a tropical geometry approach. This leads
to a reformulation of the condition ii) in (4) as a new criterion for structural stability. This
expresses in terms of a set membership problem, for one specific point, namely the origin of
R

n . Next we devise a numerical algorithm to provide an answer to the membership problem.

3 Concept of amœbas

To proceed, let us recall the log absolute value mapmentioned in the introduction and defined
by:

Log | · | : Tn → R
n; z = (z1, . . . , zn) �→ (log |z1|, . . . , log |zn |) (6)

For x = (x1, . . . , xn) ∈ R
n , the associated set Log−1(x) is then given by

Log−1(x) =
{
(eiθ1+x1 , . . . , eiθn+xn ) ; θ = (θ1, . . . , θn) ∈ (R/2πZ)n

}
(7)

Let

F =
∑

α∈Supp F⊂Zn

cαzα ∈ C[z±1
1 , . . . , z±1

n ] (cα ∈ C
∗, zα := zα1

1 · · · zαn
n ) (8)

be a Laurent polynomial with zero set F−1({0}) in the complex torus Tn . Let 
(F) be the
Newton polytope of F , that is the closed convex hull in R

n of the set Supp F := {α ∈
Z

n ; cα �= 0}. We will always suppose that F is a true Laurent polynomial in n variables,
which means that dimRn 
(F), that is the dimension of the affine subspace of Rn generated
by 
(F) is maximal, that is equal to n.

Let AF be the amœba of F , that is the closed image Log(F−1({0}) ⊂ R
n of the map

z ∈ F−1({0}) ⊂ T
n Log�−→ (log |z1|, . . . , log |zn |) ∈ R

n .
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From the geometric point of view, the complementRn \AF is a 1-convex open subset ofRn ,
which amounts to saying that its open connected components Eι are convex. The number of
such open connected components is bounded by the number of points in
(F)∩Z

n (Forsberg
et al., 2000). LetEF be the finite setwhose elements are such components Eι. EachLog−1(E),
where E ∈ EF , is a Reinhardt domain in T

n , that is a subdomain which is invariant under
the pointwise multiplicative action of the real torus {(eiθ1 , . . . , eiθn ) ; θ = (θ1, . . . , θn) ∈
(R/2πZ)n}. Moreover it can be described as the maximal domain of convergence of a unique
Laurent series

∑
k≥0 γE,k zαE,k , αE,k ∈ Z

n , whose sum represents z �→ 1/F(z) in Log−1(E).
A key point is that there is in fact a bijection between the finite set EF and the family of all
possible Laurent expansions (with domains of convergence precisely Log−1(E) for E ∈ EF )
for 1/F along the monomials zα for α ∈ Z

n (Forsberg et al., 2000).

Remark 1 (the case n = 1) In the case where n = 1, the amœba AF consists in a finite
number of points −∞ < log |a1| < · · · < log |aN | < +∞ on the real line with F−1({0}) =
{a1, . . . , aN } ∈ (C∗)N . Each of the N + 2 circular domains

{z ∈ C
∗ ; |z| < |a1|}, . . . , {z ∈ C

∗ ; |a j | < |z| < |a j+1|}, . . . , {z ∈ C
∗ ; |z| > |aN |},

is the domain of convergence of a Laurent series which sum represents 1/F in the corre-
sponding domain. The domain C = {z ∈ C

∗ ; |z| > |aN |} is, among such list, the only one
for which the associated Laurent expansion in C is of the form 1/F(z) = ∑

k≥−M γC,k z−k

for some M ∈ Z and hence the sequence (γC,k)k∈Z can be interpreted as the impulse response
of a rational (realizable) discrete 1-dimensional filter.

One can associate (Passare & Rullgård, 2004) to each E ∈ EF a multiplicity νE =
(νE,1, . . . , νE,n) ∈ 
(F) ∩ Z

n , where νE, j is the degree of the loop

θ j ∈ Z/(2πZ) �−→ F(ζE,1, . . . , ζE, j e
iθ j , . . . , ζE,n) (9)

when (ζE,1, . . . , ζE,n) is an arbitrary point in E , the degree of the loop (9) being independent
on the choice of such point ζE in E . For each point α ∈ 
(F) ∩ Z

n , there is at most one
component Eα ∈ EF such that νEα = {α}. If such is the case, let σα be the unique face
of 
(F) which contains α in its relative interior or (if no such face exists) equals {α} : for
example, if α is a vertex of 
(F), σα = {α}, while when α lies in the interior of 
(F),
σα = 
(F), etc. Then the cone

�α = {
x ∈ R

n ; σα = {ξ ∈ 
(F) ; 〈ξ, x〉 = max
u∈
(F)

〈u, x〉}}

is the recession cone of Eα , that is the largest cone � of Rn such that Eα + � ⊂ Eα . Such
recession cone equals {0} whenever α lies in the interior of 
(F), hence the corresponding
component Eα is, if it exists, bounded in this case. When α belongs to the boundary of
(F),
the dimension of the recession cone is maximal (thus equal to n) if and only if α is a vertex
of 
(F). If α is a point of ∂
(F) ∩ Z

n which is not a vertex of 
(F), then, if Eα exists, it
is unbounded. A major point is that any vertex α of 
(F) is the multiplicity νEα of a unique
unbounded component Eα . Thus the cardinal of EF lies between the number or vertices of

(F) and the cardinal of 
(F) ∩ Z

n (Forsberg et al., 2000).
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4 Structural stability and amœbas

4.1 Domain of stability

Let S be a multilinear discrete time invariant system with transfer function (2). Our first
observation is that the condition z �→ G(z)/F(z) is regular about

Log−1({0}) = {z = (eiθ1 , . . . , eiθn ) ; θ ∈ (R/(2πZ))n}
is equivalent to the fact that its polar set F−1({0}) in Tn does not intersect Log−1({0}) which
amounts to say that 0 ∈ R

n \ AF . One can then state the following result.

Theorem 4 Suppose that 0 ∈ R
n \ AF , where dimRn 
(F) = n. A necessary and sufficient

condition for a discrete n-rational filter S with the rational function (2) as transfer function
to be (strongly) structural stable is that ξ = 0 ∈ Supp F and x = 0 ∈ E0.

Remark 2 (Why strong structural stability?) We speak here about strong structural stability
(which is the usual notion as described so far) in order to differentiate it with the weaker one
that we will introduce next in Definition 2.

Proof Suppose that S is structurally stable, which means that F is coprime with z1 · · · zn and
does not vanish in D

n = {z ∈ C
n ; |z1| ≤ 1, . . . , |zn | ≤ 1}. Since {z = (z1, . . . , zn) ∈

T
n ; 0 < |z1| ≤ 1, . . . , 0 < |zn | ≤ 1} equals the Reinhardt domain Log−1

({x =
(x1, . . . , xn) ∈ R

n ; x1 ≤ 0, . . . , xn ≤ 0}) then the cone �− := {x = (x1, . . . , xn) ∈
R

n ; x1 ≤ 0, . . . , xn ≤ 0} lies entirely in some connected component E = Eα ∈ EF . Now
the cone �− is n-dimensional, therefore α is necessarily a vertex of 
(F). It follows from
the fact that Supp F ⊂ N

n (because F is a polynomial in z1 . . . , zn) that the only possible
vertex of 
(F) for such a situation to occur is that α = 0, which implies that 0 ∈ Supp F .
Since �− ⊂ E0, one has in particular that x = 0 ∈ E0.

Conversely, suppose that 0 ∈ SuppF and 0 ∈ E0. Then E0 is unbounded since 0 is a
vertex of 
(F). The recession cone

�0 = {
x ∈ R

n ; {0} = {ξ ∈ 
(F) ; 〈ξ, x〉 = max
u∈
(F)

〈u, x〉}}

of the unbounded connected component E0 of Rn \ AF contains �−, as it is immediate
to check. This implies that z �→ 1/F(z) is holomorphic in the Reinhardt domain {z =
(z1, . . . , zn) ∈ T

n ; 0 < |z j | ≤ 1}, which means that F does not vanish there. Since F is
coprime with z1 · · · zn , F cannot vanish on the union of the coordinate axis either, which
implies that the n-rational filter S is structurally stable. ��

Theorem 4 suggests to introduce two concepts related to the structural stability property.

Definition 1 (Structural stability domain) Let S be a discrete n-rational filter with a rational
function (2) (with its properties, together with the condition dimRn 
(F) = n) as transfer
function. If 0 ∈ Supp F , the connected component E0 of Rn \ AF is called the structural
stability domain of the n-filter S. If 0 /∈ Supp F , one decides that the structural stability
domain of S is empty.

Definition 2 (Structural weak stability) Let S be a discrete n-rational filter with a rational
function (2) as in Definition 1. The discrete n-rational filter S is said to be structurally weakly
stable if 0 ∈ Supp F and 0 belongs to the topological boundary of the connected component
E0, which is part of the contour ofAF . If it is the case, the component E0 is called the weak
structural stability domain of the discrete n-rational filter S ; otherwise the weak structural
domain of S is considered as empty.
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4.2 Ronkin function

Consider the Laurent polynomial F(z) = ∑
aαzα defined in (8), with zero set F−1({0}) in

the complex torus (C∗)n and with Newton polytope 
(F).
The Ronkin function of F , denoted by RF , is defined as the convex function

RF : x ∈ R
n �→

(
1

2π i

)n ∫

Log−1(x)

log |F(z)| dz

z
. (10)

With a simple change of variables, we rewrite this function as

RF : x ∈ R
n �→

∫

(R/(2πZ))n
log

∣∣∣F(eiθ1+x1 , . . . , eiθn+xn )

∣∣∣ dλ(θ) (11)

where λ is the Lebesgue measure on (R/(2πZ))n .
This function was introduced by Ronkin in Ronkin (2000), and it provides geometric

information on the associated amœba AF . Three important properties of this function are
listed hereafter:

1. The function RF is affine in the connected component (of Rn \ AF ) Eα ∈ EF with
multiplicity α ∈ 
(F)∩Z

n , provided, of course, that such component exists (Passare &
Rullgård, 2004). More precisely,

∀x ∈ Eα, RF (x) = ρα + ν1x1 + · · · + νn xn . (12)

The vector ν = (ν1, . . . , νn) belongs to
(F)∩Z
n , it represents the multiplicity attached

to a connected component Eα , that is ν = νEα and is given by

ν j =
(

1

2π i

)n ∫

Log−1(x)
z j

∂ j F(z)

F(z)

dz

z
, 1 ≤ j ≤ n. (13)

It is important to precise that in (13), x is an arbitrary point of Eα . Moreover, the numbers
ν j are real (see (Ronkin, 2000; Lundqvist, 2015; Yger, 2012) for more details).

2. When α is a vertex of 
(F) (and hence Eα exists), then, for all x ∈ Eα , the integral

aμ =
(

1

2π i

)n ∫

Log−1(x)
log

∣∣∣∣
F(z)

zμ

∣∣∣∣
dz

z
(14)

is independent of x and we have

aμ = log |cμ| = ρα

where cμ is the coefficient of zμ in the developed expression (8) for F .
3. The singular support of the distribution 
([RF ]) (where 
 is the Laplace operator and

[RF ]means that RF is considered in the sense of distributions) is contained in the contour
of AF Ossete Ingoba (2019, Theorem 3.1).

Now if ν = 0 ∈ Z
n is a vertex of 
(F), then

a0 = RF (x) = ρ0 = log |c0| ∀x ∈ E0.

Assume that the origin 0 ofRn belongs to the connected component E0 ofRn \AF . Then
the restriction of the Ronkin function in E0 is a constant function. Therefore one has the
following characterization:

Corollary 1 The polynomial F with c0 = F(0) �= 0 has no zero in the closed unit polydisk
D

n
if and only if RF (x) = log |c0| for all x ∈] − ∞, 0]n.
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5 Algorithmic considerations

5.1 Lopsided amœba

The characterization of EF can be exploited to design a procedure to test the membership
of x ∈ R

n to R
n \ AF and to identify the component Eν to which it belongs, if any. One

such procedure relies on the concept of lopsidedness approximation of AF , as introduced by
Purbhoo (2008) and completed from the algorithmic point of view in Forsgård et al. (2019).
We briefly recall the construction.

Observe that if z ∈ T
n satisfies F(z) = ∑

α∈SuppF⊂Zn cαzα = 0 then the triangle

inequality implies that |cβ | |zβ | ≤ ∑
α∈SuppF,α �=β |cα| |zα| for all β ∈ SuppF . The set

Lz = {|cα| e〈α,xz〉 ; α ∈ SuppF} where xz = Log |z| = (log |z1|, . . . , log |zn |) is said to
be not lopsided. If, on the contrary, the condition |cβ | e〈β,xz〉 >

∑
α∈SuppF,α �=β |cα| e〈α,xz〉

holds for some β ∈ SuppF and for xz ∈ R
n , then we say that the set of strictly positive real

numbers Lz is lopsided. In such situation, we will say that F is lopsided at the point xz ∈ R
n ,

with dominant exponent β ∈ Z
n . The point xz thus clearly belongs to the complement of

AF .
For any N ∈ N

∗ we denote by F [N ] the cyclic resultant of F of order N , which is by
definition the polynomial

F [N ](z) =
N−1∏
k1=0

· · ·
N−1∏
kn=0

F(e2π ik1/N z1, . . . , e2π ikn/N zn). (15)

Note that F and F [N ] share the same amœba AF for all N ∈ N
∗. Now, from K. Purbhoo’s

observation in Purbhoo (2008, Theorem 1), we have

Theorem 5 - (0, . . . , 0) ∈ Supp F and x = 0 ∈ E0 if, and only, if there exists N0 ∈ N
∗,

such that F [N ] is lopsided at 0 for all N ≥ N0, with dominant exponent (0, . . . , 0) ∈ Z
n.

Inspired from the Cooley-Tukey FFT algorithm (Cooley & Tukey, 1965), a fast iterative pro-
cedure to compute F [2k ] has been proposed in Forsgård (2019, §3). The resulting algorithm,
which provides the position of a given point x ∈ R

n with respect to AF and to the different
components Eν , has been implemented in Singular/Sage (see (Forsgård et al., 2019) to
access the code).

Note however that this algorithm does not escape the curse of dimensionality, like all the
methods mentioned before. Indeed, in the computation of the cyclic resultants, parameters
like the degree of F [2k ], the number of terms and the magnitudes of the coefficients all
increase exponentially with k, as shown in Forsgård et al. (2019). This limits the practical
utility of the method to systems with a number of variables not exceeding 3 or 4, like all the
methods mentioned before.

5.2 Monte Carlo approach

Tomotivate the proposedMonte Carlo approach to BIBO stability let us reconsider the cyclic
resultant in (15). Taking the logarithm of the module,

1

N n
log

∣∣∣F [N ](z)
∣∣∣ = 1

N n

N−1∑
k1=0

· · ·
N−1∑
kn=0

∣∣∣F(e2π ik1/N z1, . . . , e2π ikn/N zn)

∣∣∣ (16)
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we observe with Purbhoo (2008) that the right-hand side may be interpreted as a Riemann
sum which converges pointwise to RF (xz) provided the left-hand side is bounded. Now, as it
is well known, the numerical computation of a multidimensional integral based on a regular
multidimensional grid as in (16) has a reasonable complexity only for moderate dimension.
The Monte Carlo numerical integration method does not suffer from such limitation. It is
therefore the base of the algorithm we propose to test the BIBO stability of an n-rational
filter with transfer function H(z) = zγ G(z)/F(z) as in (2), where we assume that G and F
are coprime. For j = 1, . . . , n, let us define

� j (z) = z j
∂ j F(z)

F(z)
.

The algorithm consists in two steps as described below:

Step1 Monte Carlo integration: The first step is devoted to a direct approximation of
the Ronkin function (11) and the orders ν j , j = 1, . . . , n (13), at the point
x ∈ R

n . We resort to the basic Monte Carlo (MC) method for these approxima-
tions. Given K ∈ N

∗, we consider sequences of random vectors U = (uk)k=1,...,K
formed by independent and uniformly distributed (iid) samples in [0, 1]n , that is
uk = (u1,k, . . . , un,k) where {u�,k} are iid in [0, 1]. The K -point MC approxima-
tions, denoted by R̂F,U and ν̂ j,U , j = 1, . . . , n respectively, then read as:

RF (x) ≈ R̂F,U (x) := 1

K

K∑
k=1

log
∣∣∣F(ei2πu1,k+x1 , . . . , ei2πun,k+xn )

∣∣∣ (17)

ν j ≈ ν̂ j,U (x) := �
{
1

K

K∑
k=1

� j (e
i2πu1,k+x1 , . . . , ei2πun,k+xn )

}
. (18)

Remark 3 Needless to say, the sequences U in R̂F,U (x) and ν̂ j,U (x), j = 1, . . . , n are of
course independent.

Remark 4 In all the sequel, x will be the origin or a small perturbation around, obtained by
a random selection from uniformly distributed points in the ball of Rn of radius δ = 0.01,
with center 0. To ease the notation, we subsequently drop the argument x in R̂F,U (x) and
ν̂ j,U (x).

Step2 Hypothesis test: Note that R̂F,U and ν̂ j,U are random variables. As K → ∞, they
are expected to converge to

R̂F,U → log |F(0)| ; ν̂ j,U → 0, j = 1, . . . , n

if, and only if, the system is strongly BIBO stable. In all the sequel, we consider
without loss of generality that F is monic, that is F(0) = 1 (if F(0) = 0 then the
system is clearly unstable). Thus, R̂F,U will also be expected to converge to 0 in case
of BIBO stability. The second step of the algorithm therefore amounts to devising
a statistic based on these variables, completed by a hypothesis testing. The statistic
should result to zero if, and only if, all variables are zero. If we denote by S the
devised statistic, then the test reads as

H0 : S(R̂F,U , ν̂1,U , . . . , ν̂n,U ) = 0 a.s. vs HA : H0 is false. (19)

Strong BIBO stability is concluded when H0 is not rejected.
The design of an appropriate statistic S is discussed after the illustrative examples of
the next subsection.
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Table 1 Five examples treated in the literature

Expression Status Ref

F1(z1, z2) = z31 + z32 − 4z1z2 + 1 Unstable (Forsgård et
al., 2019)

F2(z1, z2) = (5 + i)z31 + i z1z2 + (4 + i)z32 + 1 Unstable (Forsgård et
al., 2019)

F3(z1, z2, z3) = z41z2 + z1z2z53 + z21z42 + z1z22 + z1z2z3 + z1z2z33 + 1 Unstable (Forsgård et
al., 2019)

F4(z1, z2, z3) = [z1z33 + z2 − z1z2z3 + z2z3 + 5]/5 Stable (Serban et al.,
2005)

F5(z1, z2, z3) = (z21 + z22 + 4)(z1 + z2 + z3 + 5)/20 Stable (Bouzidi et al.,
2019; Li et
al., 2013)

In the following, we will say by abuse that an nD-polynomial F is BIBO stable or simply
stable if it does not vanish in D

n
, which amounts to saying that it is the denominator of a

BIBO stable n-rational system.

5.3 Illustrative examples

We consider five examples quoted in the literature to illustrate the Monte Carlo approxima-
tions R̂F,U and ν̂ j,U of the Ronkin function at 0 and the multiplicities given in (17) and (18),
respectively. The examples are collected from the references indicated in the last column of
Table 1 below. As indicated, the first 3 examples correspond to unstable filters and the two
last to stable filters.
Observe that by Theorem 5, the stability property of the three examples F1, F4 and F5 may
be readily obtained:

i) For the first one, we have F1(z1, z2) = ∑
α cαzα , with c0,0 = 1 = c0,3 = c3,0, c1,1 = −4

and cα = 0 elsewhere. Clearly, F1 = F [1]
1 is lopsided at 0 = (0., 0.) [corresponding to

(|z1| = 1, |z2| = 1)]. The dominant exponent is β = (1, 1) which implies that the origin
0 belongs to the connected component Eβ wherein 1/F1 admits a convergent power
series expansion. However, although the origin is outside the amœba, we conclude that
F1 is not BIBO stable since 0 does not belong to E0.

ii) Like F1, we note that F4 = F [1]
4 is lopsided at 0, with dominant exponent β = (0, 0, 0).

The point 0 then belongs to E0. Since (0, 0, 0) is in the support of the filter (F4 is monic),
the necessary and sufficient conditions for strong BIBO stability are therefore met.

iii) Likewise the BIBO stability of F5 easily follows upon noting that each of its two factors
is lopsided at 0, with 0 as dominant exponent.

For each polynomial Fi , i = 1, . . . , 5, we compute M = 100 sample realizations of R̂F,U
and ν̂ j,U , j = 1, . . . , n as in (17) and (18), respectively. We use K -point MC integration
with K = 15000. The resulting sequences1 are displayed in the plots of Fig. 1 below, using
the classical five-number summary boxplot diagram (showing the minimum, a (blue) box
from the first to the third quartile, the median (red), the maximum and the outliers (red ’+’)).

1 The Matlab computation of all 5 examples took less than 1.4s on a MacBook Pro-2.3 GHz, Intel Core I5.
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Fig. 1 Boxplot of the approximation R̂F,U and ν̂ j ,U , j = 1, . . . , n

For the first three examples, R̂F,U is significantly different from 0 (see Fig. 1a). This is a
sufficient condition to conclude to instability, in accordance with Table 1 indicating that the
corresponding filters are unstable. An additional confirmation is provided in Fig. 1b which
displays for each Fi , the sequence obtained by stacking the n corresponding sequences ν̂ j,U ,
j = 1, . . . , n. Indeed, these sequences are also significantly different from 0 for F1, F2 and
F3, which also constitutes a sufficient condition for BIBO instability. Concerning F1, we
get ν̂ j,U = 1 with a very low variance, showing to what extend the results of the stability
analysis in the item i) above are retrieved, in particular 0 ∈ Eβ=(1,1). Note the contrast with
the high dispersion of the corresponding sequence for F2, suggesting that in this case, the
origin is located in the amœba.

For F4 and F5, all sequences accumulate to 0, meaning that R̂F,U = 0 a.e., and ν̂ j,U = 0,
a.e., j = 1, . . . , n. We then conclude that F4 and F5 are BIBO stable, in agreement with
Table 1. Figures 1c and 1d present a tighter look at the sequences R̂F,U and ν̂ j,U , j = 1, . . . , n
for F3 and F5 respectively. These plots illustrate the typical behavior of the different sequences
when the filter is BIBO stable (how close to 0, in Fig. 1d) or unstable (how significantly
different from 0, in Fig. 1c).

We close this subsection with the following two comments.
Recall that as the examples above have been taken from the literature, most of the methods

mentioned so far are able to manage their BIBO stability analysis.
We also note that the corresponding approximated Ronkin function and exponents reveal

very distinct values (very close to 0/very far from 0) depending on whether the filter is
structurally BIBO stable or not. The clear-cut behaviors suggest that either the BIBO stability
analysis of these polynomials is rather easy, reflecting a position far from the boundary of the
stability domain, or the proposedmethod is very efficient. The latter alternative is investigated
in the next section.
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5.4 Performance of theMC approach

The objective of this subsection is to assess the performance of the proposed approach,
combining Tropical geometry with Monte Carlo integration.

Related to the last two comments above, this section presents a set of experiments that
allows one to 1) show that the proposed approach is not subject to the curse of dimensionality,
unlike all the state-of-the-artmethods and2) investigate the sensitiveness of theBIBOstability
test with respect to the closeness to the boundary of the stability domain.

To address these two points, it is first essential to be able to design nD-polynomials at will,
with large n (n = 4, 5, . . .), high degree, and with fully controlled BIBO stability properties.

5.4.1 Determinantal representation for stable nD-polynomials

A polynomial G ∈ C[x1, . . . , xn] will be called �-stable for some domain � ⊂ C
n , if G

does not vanish in �. Next we set the notation C
+ = {s ∈ C | �s > 0} for the open upper

half plane. The following result will be useful in the sequel (see (Borcea & Brändén, 2008)
and (Wagner, 2011)).

Theorem 6 (Borcea and Brändén 2008, Proposition 2.4) Let A j , j = 1, . . . , n be n given
positive semidefinite matrices, each of size m × m. Let B be an m × m Hermitian matrix.
Then the polynomial of n variables

P(s1, . . . , sn) = det(B + s1A1 + · · · + sn An) (20)

has real coefficients and is either (C+)n-stable or identically zero.

Let us make the following observations.

Lemma 7 Consider a (C+)n-stable polynomial P obtained as in (20) of Theorem 6, with
matrices B and A j of size m. Then we have

deg j P(s1, . . . , sn) = Rank(A j ), j = 1, . . . , n (21)

deg P(s1, . . . , sn) � m (22)

Proof We first establish the equality (21). Let Rank(A j ) = � � m and consider the eigen-
value decomposition

A j = Q

[
�

0

]
Q∗

where � is the diagonal matrix containing the � (strictly) positive eigenvalues of A j . Then,
we may rewrite equation (20) as

P(s1, . . . , sn) = det

[
M11 + s j� M12

M21 M22

]

where Mp,q is the (p, q)-bloc submatrix of the matrix M given by

M = Q∗(B +
n∑

k=1,k �= j

sk Ak)Q.
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Now, we get

P(s1, . . . , sn) = det(M22) det(M11 − M12M−1
22 M21 + s j�)

= det(M22) det(�) det(�−1[M11 − M12M−1
22 M21] + s j I�)

Hence, P(s1, . . . , sn) = ∑�
k=0 sk

j pk(s1, . . . , s j−1, s j+1, . . . , sn) reads as the characteristic

polynomial of the �×�-matrix�−1[M11− M12M−1
22 M21], multiplied by a polynomial which

is independent of s j . In particular, each pk above is a polynomial of the n − 1 variables sq ,
q = 1, . . . , n and q �= j .

The second part of the Lemma, that is the inequality (22), is straightforward. Indeed, the
total degree of P cannot exceed the degree of the polynomial of one variable

q(s) = P(s, s, . . . , s) = det(B + s
∑

j

A j ).

Now the degree of q(s) cannot obviously exceed the size of the matrix B. ��
To proceed, consider the Möbius map s = �(z) = i 1+z

1−z , which sends the open unit disc
D (resp. unit circle ∂D) to the open upper half plane C

+ (resp. real line R). Since � is a
conformal map, it preserves (weak) stability. In other words, any (C+)n-stable polynomial
P(s1, . . . , sn), with d j = deg j P, j = 1, . . . , n, is mapped by �(·) to a polynomial

F(z1, . . . , zn) = (1 − z1)
d1 · · · (1 − zn)dn P(�(z1), . . . , �(zn)) (23)

that is devoid of zero inDn (Borcea&Brändén, 2008;Wagner, 2011). However, this mapping
clearly induces at least one zero on the boundary of the unit polydisc, at the point z1 = z2 =
· · · = zn = 1, unless α = (d1, . . . , dn) ∈ Supp P . Indeed, each monomial cα1···αn sα1

1 · · · sαn
n

of P is mapped to the corresponding monomial in F , given by

cα1···αn [i(1 + z1)]α1 · · · [i(1 + zn)]αn (1 − z1)
d1−α1 · · · (1 − zn)dn−αn .

Now this vanishes at z1 = · · · = zn = 1 except when d j = α j , for all j = 1, . . . , n.
As discussed above, the conversion from (C+)n-stable toDn-stable polynomial may intro-

duce some spurious zeros on the boundary of the unit polydisc. The presence of these zeros
can be avoided by using a contractive determinantal representation forDn-stable polynomial
(Grinshpan et al., 2013, 2016), as an alternative to Theorem 6 combined with the conformal
mapping �(·).

Given r > 0 and F(z1, . . . , zn) = ∑
k∈Supp F⊂Nn ak1···kn zk1

1 · · · zkn
n , we form the polyno-

mial Fr defined by

Fr (z1, . . . , zn) = F(r z1, . . . , r zn) =
∑

k∈Supp F⊂Nn

r |k|ak1···kn zk1
1 · · · zkn

n (24)

where |k| = k1 +· · ·+ kn . Clearly, to any zero, z0 ∈ C
n , of F corresponds a zero, z′

0 = z0/r
of Fr . Starting from Theorem 6 and using Lemma 7, the procedure above shows how one
can design an nD-polynomial Fr with prescribed degrees d j , j = 1, . . . , n, with completely
controlled stability properties, depending on the choice of the parameter r . As the polynomial
F , obtained from (23) and (20), is devoid of zero in the open unit polydiscDn , the associated
polynomial Fr will not vanish in the closed unit polydisc D

n
whenever r < 1. In particular,

for m <
∑

j d j it comes that α = (d1, . . . , dn) /∈ Supp P and F admits a zero at the
boundary point z1 = · · · = zn = 1 which is reflected in Fr at the point z′

1 = · · · = z′
n = 1/r .

The filter Fr is thus strongly BIBO stable if, and only if, r < 1.
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Fig. 2 Boxplot of R̂Fr ,U , ν̂ j ,U , for different r , with k = 50 000

The next experiment gives an illustration of the immunity of the proposed approach to the
curse of dimensionality. We use the construction above to design an nD-polynomial F , with
n = 5 variables, with degrees d j = deg j F(z1, . . . , z5) = j , j = 1, . . . , 5. The matrices A j

in (20) are of size 6 × 6 and are simulated as

A j =
j∑

�=1

u�u∗
�

where the real and imaginary parts of the components of u� ∈ C
6 are sampled from a uniform

distribution in [−10, 10]. The resulting polynomial F has a total degree of d = m = 6 and
m! = 720 nonzero coefficients ak1···k5 ∈ C. It has no zero in the open unit polydisc but F
vanishes at the boundary point z1 = · · · = z5 = 1 since m <

∑
j d j = 15. Given r , we form

Fr from F and we compute M = 100 samples of R̂Fr ,U and of ν̂ j,U , j = 1, . . . , 5, using
K -point MC integration. The obtained sequences are all stacked together to form a unique
sequence of size 6M . Figure 2 above displays the boxplot of this sequence for different values
of r indicated on the abscissa axis.

It is remarkable how sensitive the proposed method is, with a high ability to discern strong
structural stability (r < 1 top subplot) from instability (r > 1 bottom subplot, includingweak
structural stability r = 1), even in borderline situations (r = 0.999).

The results above have been obtained using K = 50 000 points for the MC integration.
For each r , the Matlab computation time of the stacked sequence of the 6 × 100 samples of
R̂Fr ,U and ν̂ j,U , j = 1, . . . , 5 took less than 42s. This computation time drops to less than
8s when the number of MC sample points is set to K = 10 000. The consequence of such
complexity saving is just a small increase of the variance of the estimates, as shown in Fig. 3
below.

Note that the performance of the method, in terms of sensitivity and discernibility, does
not degrade. Indeed, the mean and median of the sequences do not vary a lot: They are
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Fig. 3 Boxplot of R̂Fr ,U , ν̂ j ,U , for different r , with K = 10 000

Table 2 Mean and Median of the estimates R̂Fr ,U , ν̂ j ,U

K
r

0.85 0.9 0.95 0.96 0.97 0.98 0.99 0.999

Mean (×10−3)
50 000 −0.5 0.2 0.2 0.9 −0.8 0.1 −2.9 0.4
10 000 −0.6 −0.8 1.3 −1.0 −0.7 3.2 1.0 6.9

Median (×10−3)
50 000 −0.5 0.1 0.3 0.6 −0.1 0.3 −3.1 2.8
10 000 0.0 0.9 1.1 0.5 0.4 3.2 2.1 0.1

significantly different from 0 in case of instability (r > 1) and very close to zero when Fr is
strong structurally stable (r < 1) as shown in Table 2 above.

These experiment suggest that the number K of MC points is not a critical parameter.

5.4.2 Multiaffine polynomials

This section presents a setting in which the proposed method shows limitations, at least in
its form described so far. These limitations are then definitely lifted by a simple patch.

Following (Wagner, 2011) and (Borcea & Brändén, 2009), we introduce for n ∈ N
∗

the linear transformation Poln : C[z] → C[z1, . . . , zn] which associates to each monomial
z j ∈ C[z], the elementary symmetric and homogeneous polynomials e j ∈ C[z1, . . . , zn]
defined by e0(z1, . . . , zn) = 1 and

e j (z1, . . . , zn) =
(

n

j

)−1 ∑
1�i1<···<i j �n

zi1 · · · zi j , j = 1, . . . , n.
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Fig. 4 Multiaffine polynomials: boxplot of R̂Fr ,U and ν̂ j ,U , 1 � j � 6, for unstable Fr , r = 0.98

Let f (z) be a univariate polynomial of degree n. The nth-polarization of f is defined
by the multiaffine polynomial (Wagner, 2011; Borcea & Brändén, 2009), F(z1, . . . , zn) =
[Poln f ](z1, . . . , zn) obtained as the image of f by the transformation Poln . Then, we have

Theorem 8 (Borcea and Brändén 2009;Wagner 2011, Theorem 1.2, Lemma 4.2) Let f (z) ∈
C[z] be a polynomial of degree n. Then F(z1, . . . , zn) = [Poln f ](z1, . . . , zn) is Dn-BIBO
stable if, and only if, f is D-BIBO stable.

This theorem thus provides a procedure for designing multiaffine polynomials with known
stability properties. We therefore use it in the next experiment.

We generate univariate polynomials f (z) of degree n = 6, having 0 � � � 6 zeros
with a fixed modulus given by a parameter r , with phases uniformly distributed on (0, 2π).
The remaining n − � zeros are chosen randomly, out of the unit disk. For each couple
of such f , say f1, f2, we form the product of the two associated multiaffine polynomials
[Pol6 fi ], i = 1, 2 which results to a polynomial of 6 variables and total degree 12. We
subsequently denote this polynomial by Fr (z1, . . . , z6) = [Pol6 f1] · [Pol6 f2] to make
explicit the dependence on the parameter r which controls the stability. By Theorem 8, Fr

is strongly BIBO stable if, and only if, r > 1. Figure 4 shows the boxplot of the sequences
{R̂Fr ,Um }, {̂ν j,Um }, j = 1, . . . , 6; m = 1, . . . , 100 for r = 0.98.

Since Fr is unstable in this case, one expects that the numerical values of all the sequences
be significantly different from zeros. Now, this is not the behavior observed with � = 1 unsta-
ble zero (left plot). With � = 2 unstable zeros, the deviations from zero are still insignificant
even if they are more accentuated (right plot).
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Fig. 5 Probability of error

We consider the next experiment to investigate this seeming limitation of the proposed
method. For each given r , we compute the sample means

R̂Fr ,U = 1

M

M∑
m=1

R̂Fr ,Um ; ν̂ j,U = 1

M

M∑
m=1

ν̂ j,Um , j = 1, . . . , 6. (25)

For this experiment, the statistic S is set as

S(R̂F,U , ν̂1,U , . . . , ν̂n,U ) = max(|R̂Fr ,U |, |̂ν j,U |, j = 1, . . . , 6)

and we validate the hypothesis H0 (Fr is BIBO stable) if S(R̂F,U , ν̂1,U , . . . , ν̂n,U ) < γ ,
where γ is a given threshold. For each r , we repeat this experience 5000 times and compute
the correspondingprobability of errorwhich is displayed inFig. 5 above for different threshold
γ .

These results reveal that, in its current form, the proposed MC based method can be
unreliable when the filter is in certain particular configuration and close to the boundary
of the stability domain. Indeed, the probability of error is all the more greater as the filter
approaches the stability limit while being unstable (see top plot of Fig. 5). Note however that
this probability is less important as the number of unstable zeros of the associated univariate
polynomial increases (see bottom plot of Fig. 5).
For a univariate polynomial f of degree n, we recall that by the Grace-Walsh-Szegö coinci-
dence Theorem (GWST) (Walsh, 1964; Borcea & Brändén, 2009), one can associate to every
point (z1, . . . , zn) ∈ D

n a point x ∈ D such that

[Poln f ](z1, . . . , zn) := F(z1, . . . , zn) = F(x, . . . , x) = f (x).

Now, during the K -points MC computation of the Ronkin function R̂F,U (17), it may happen
that the K sampled points ξ k = (ξ1,k, . . . , ξn,k), where ξ j,k = ei2πu j,k , k = 1, . . . , K are
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Fig. 6 Multiaffine polynomials: boxplot of R̂Fr ,U and ν̂ j ,U , 1 � j � 6, for unstable Fr , r = 0.98 - with
samples on the diagonal of the polycircle

associated by the GWST to points ζk that fall outside some arc of the unit circle. If such
situation occurs, then the computation of the Ronkin function and the exponents cannot be
accurate. Recall that each exponent is the degree of the corresponding loop in (9).

A simple solution will then be to complete the sample set {ei2πU } with points {ξ =
(ξ, . . . , ξ) ∈ C

n | |ξ | = 1} that are sampled uniformly on the diagonal of the unit polycircle.
Indeed, with this modification, the same experiment of Fig. 4 now produces sequences R̂Fr ,U
and ν̂ j,U , 1 � j � 6 with completely different behaviors are shown below.

Repeating the experiment in Fig. 5 with samples on the diagonal of the unit polycircle,
resulted in no error for all values of r , even for r = 0.999. We observe that with this
modification, the number K of MC points can be decreased very significantly without any
impact on the accuracy of the test. In particular, the last experiment in Fig. 6 is carried with
K = 2000 instead of K = 10000 in the previous case.

We observe that although the filter is unstable, the origin is located outside the amœba,
namely in the component Eβ , with β = (2, 2, 2, 2, 2, 2).

5.5 IsStable algorithm

We now summarize all the preceding developments and present the final algorithm for testing
the BIBO stability. As we will show, the test can be applied for multivariate polynomial of n
variables for high values of n and for high degree. In fact the number of variables does not
have any impact on the complexity of the method except on the evaluations of the polynomial
at the sampled points.

To proceed, we first clarify the choice of the statistic S, as announced at the end of
section 5.2. The illustrative examples treated so far suggest to define the statistic S as the
mean of the collected sequences {R̂F,U } and {(̂ν1,U , . . . , ν̂n,U )}:

S(R̂F,U , ν̂1,U , . . . , ν̂n,U ) = 1

2

⎡
⎣E(R̂F,U ) + 1

n

n∑
j=1

E(̂ν j,U )

⎤
⎦ (26)

This amounts to considering a single random variable RF,U defined by

RF,U = R̂F,U + 1

n

n∑
j=1

ν̂ j,U . (27)
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The test of BIBO stability then reduces to a classical test of zero mean for RF,U . The final
algorithm can thus be described as follow, where K , L, M stand respectively for the number
of MC integration points, the length of each sequence R̂F,U , ν̂ j,U , j = 1, . . . , n and the
number of trials:

Algorithm 1 IsStable: BIBO stability test for nD polynomial
1: function H = IsStable(F , K , M , L , α)
Require: F(z1, . . . , zn) – The multivariate polynomial
Require: α – Significance level of the zero mean test
2: if f (z) = F(z, . . . , z) is BIBO stable then
3: Normalize F so that |F(0)| = 1
4: for � = 1 to L do
5: for m = 1 to M do
6: Um ← (u j ,k ) : (K × n)–Matrix with u j ,k ∼ U(0, 1)
7: ComputeRF,Um using (27), (17) and (18)
8: end for
9: RF,� ← 1

M
∑M

m=1RF,Um
10: end for
11: Compute a test statistic with null hypothesis H0 : RF = 0
12: H ←F is BIBO stable iff H0 is not rejected with confidence α%
13: else
14: H ←F is unstable
15: end if
16: end function

The procedure of adding samples on the diagonal of the polycircle is equivalently replaced
here by the 1D-BIBO stability test of the diagonal slice of F , given by f (z). It is clear that
the stability of f (z) is a necessary condition for F to be stable.

Before closing this section, we present some last experiments to confirm the claim that
the proposed algorithm does not stuck from the curse of dimensionality. How the algorithm
is effective for testing the BIBO stability even in high dimension is illustrated through the
example below. We consider the nD polynomial F(z1, . . . , zn) with n = 10 variables and
of degree deg F = 14,

F(z1, . . . , z10) = c16z31z32z23z34z310 + c15z21z39 + c14z1z2z9 + c13z1z3z4z7 + c12z1z4z7

+c11z1z37z10 + c10z1 + c9z2z23z6z28 + c8z2z4z6z8 + c7z2z5z6 + c6z3z29
+c5z4z26z29 + c4z35z38 + c3z25z8z10 + c2z5z210 + c1z8 + c0. (28)

where the coefficients ck, k = 1, . . . , 16 are given by

c1 = −0.4 + 0.8i c2 = 0.7 − 0.5i c3 = −0.1 + 0.7i c4 = −0.4 + 2.0i

c5 = 0.6 + 1.1i c6 = −0.5 − 0.1i c7 = 0.3 − 0.7i c8 = −0.8 + 1.3i

c9 = −1.4 − 0.1i c10 = 0.9 − 0.2i c11 = 0.6 + 2.4i c12 = 0.2 + 0.9i

c13 = −0.3 − 1.5i c14 = 0.2 + 0.6i c15 = −1.3 − 1.3i c16 = 1.1 − 1.6i

The constant term is then selected such that F vanishes at a given prescribed point Z ∈ C
10.

The points marked by ’∗’ in Fig. 7 represent the components Z j , j = 1, . . . , 10 of Z , for
c0 = −7.1616 − 6.3746i . The unit circle is displayed in dashed line, as a reference.

For this choice of c0, the resulting polynomial, noted by F0, is clearly unstable since |Z j | <

1 for all j . (The marks ’+’ represent the zeros of the diagonal slice f0(z) = F0(z, . . . , z),
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Fig. 7 Unstable zero of
F(z1, . . . , z10) (’∗’) and stable
zeros of f (z), (’+’)

which is clearly stable). Henceforth, the coefficients ck, k = 1, . . . , 16 are fixed as above
and the constant term c0 is allowed to vary in terms of a parameter τ > 0 as

|c0| = τ

16∑
k=1

|ck |.

To the knowledge of the authors, there is no example in the literature with such a large n
on which a BIBO stability test has been successfully applied. The numerical values of the
coefficients ck , k > 0, have been generated randomly and then rounded to a single significant
digit for display and easy reproducibility purposes.

Starting from the unstable polynomial F0, we increase progressively the module of the
constant term. Equivalently, we increase the value of τ , from τ0 = 0.4743, corresponding to
F0, up to some values of τ > 1, corresponding to polynomials lopsided at 0, hence BIBO
stable. For each τ , we compute the mean RF and the p-value of the associated t-test, as
described in the algorithm above. Figure 8 below displays the computed values RF,� as a
function of τ in the top subplot.

The parameters used in this experiment are : K = 104, M = 100 and L = 30. To
show the added value of combining several trials as in line 11 of Algorithm 1, we first
consider each trial separately with a t-test for zero mean, for each corresponding sequence
{RF,Um , m = 1, . . . , M}. The lower and upper hull of the p-values computed for the different
L sequences are displayed as a function of τ in the middle subplot, along with the median and
the 10-quantile curves resulting from the L trials. All individual tests clearly conclude that the
first 4 filters, including F0, are unstable (the corresponding p-values are equal to zero a.e.).
Based on a confidence level of α = 0.05, we observe that 90% of the tests conclude with the
stability of all the other polynomials except the fifth one. For the fifth polynomial, however,
the null hypothesis is rejected (at α = 5%), for some trials and accepted for others. As the
median is closer to the lower hull than to the upper one, a voting procedure would likely lead
to a rejection and, consequently, to the conclusion that the corresponding polynomial is not
BIBO stable. These discussions show that the different trials need to be combined and thiswas
the motivation of the loop at line 4 and 11 of Algorithm 1. With such combination, IsStable
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Fig. 8 IsStable algorithm on ten variables polynomial F(z1, . . . , z10)

provides clear-cut answers as shown in the bottom subplot of Fig. 8. This graph displays the
p-value resulting to the t-test for zero mean for the sequence {RF,�, � = 1, . . . , L}.

6 Conclusion

The paper has proposed a tropical geometry approach to the question of Bounded-Input,
Bounded-Output (BIBO) stability of multivariate n-rational systems. The notion of struc-
tural stability is shown to be equivalent to the membership of the origin of Rn to a specific
open connected component of the complement of the amoeba associated with the denomina-
tor of the coprime transfer function of the system. Considering the boundary of this connected
component, we have also introduced the notion of structural weak stability. This geometrical
standpoint is then exploited to devise a numerical algorithm for testing BIBO stability. Exten-
sive simulation examples are presented to asses the performance of the proposed algorithm.
It is based on the method of classical Monte-Carlo integration and it shows an efficiency all
the more surprising that it is conceptually simple. Regarding the computational complexity,
the simulation study shows that the algorithm escapes the curse of dimensionality unlike the
state-of-the-art methods which are practically effective only for a number of variables not
exceeding 5.
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