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Abstract
Haze seriously reduces the quality of optical remote sensing images, resulting in poor
performance in many applications, such as remote sensing image change detection and clas-
sification. In recent years, deep learning models have achieved convincing performance in
image dehazing, which has attracted more and more attention in haze removal of remote
sensing images. However, the existing deep learning-based methods are less able to recover
the fine details of remote sensing images that suffered from haze, especially the cases of
nonhomogeneous haze. In this paper, we propose a two-branch neural network fused with
Transformer and residual attention to dehaze a single remote sensing image. Specifically,
our upper branch is a U-shaped encoder–decoder architecture, using an efficient multi-head
self-attention Transformer for capturing long-range dependencies. The lower branch is an
attention stack of residual channels to enhance fitting capability of models and complement
fine-detailed features for upper branch. Finally, the features of the two branches are stacked
and mapped to the haze-free remote sensing image by fusion block. Extensive experiments
demonstrate that our TransRA achieves superior performance against other dehazing com-
petitors both qualitatively and quantitatively.

Keywords Transformer dehazing · Residual attention · Fusion block · Remote sensing
images

1 Introduction

The camera of optical remote sensing images is easily disturbed by clouds, atmospheric
humidity, and bad weather, resulting in color distortion and information loss Liu et al. (2011).
The area covered by haze in remote sensing images directly affects the analysis and utiliza-
tion of the image, thus limiting the application of remote sensing images. Therefore, haze
removal technology has attracted more and more attention in improving the visibility of opti-
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cal satellites. However, how to achieve haze removal in a single degraded remote sensing
image is still a challenging and ill-posed task, because the area covered by haze contains both
the ground surfaces and haze components Li and Chen (2020).

The early image dehazing processing methods relied on different assumptions and prior
knowledge to solve this problem. Dehazing algorithms can be roughly divided into two
categories: image enhancement and image restoration Long et al. (2014). Image enhancement
is to modify pixels, including contrast enhancement, histogram equalization, homomorphic
filtering, and Retinex theory Kim et al. (2013); Makarau et al. (2014). These enhancement
methods can only improve the quality of the image to a certain extent, but cannot substantially
remove haze. They treated remote sensing images as a whole and not considered the high-
resolution features.

While image restoration employs the imaging principle of hazy images and estimates the
latent parameters of atmospheric scattering model (ASM) Oakley and Satherley (1998) to
restore clear images. Mathematically, ASM can be formulated as follows:

I (x) = J (x)t(x) + A(1 − t(x)) (1)

where I and J respectively represent haze and non-haze images, A is the global atmospheric
light, t(x) = e−βd(x) represents the transmission map, and β and d (x) represent the atmo-
spheric scattering parameters and scene depth, respectively.

Although many ASM-based methods Berman and Avidan (2016); Fattal (2015); He et
al. (2011); Meng et al. (2013) have achieved good performance, A and t must be accurately
estimated to restore clear images with ASM. However, the inaccurate estimation of A and t
usually leads to unpleasant results when the images captured in a complex environment. In
addition, since t s determined by the depth of the scene, ASM requires strong assumptions.
In other words, the thickness of the haze is closely related to the depth of the scene. Due
to this attribute, it is difficult for ASM-based methods to process degraded remote sensing
images. In recent years, deep learning-based method LeCun et al. (2015) has achieved great
success in single image dehazing field Cai et al. (2016); Li et al. (2017); Qin et al. (2020);
Ren et al. (2018); Zhang and Patel (2018); Zhou et al. (2020). By using deep learning, the
shortcomings of ASM can be avoided to a certain extent. With the availability of powerful
convolutional neural networks (CNN), one can readily train them on large-scale datasets to
learn a correct mapping from input hazy images to clear outputs. However, it is costly (and
in some cases impossible) to obtain a large number of hazy images and corresponding clear
ground truths in the real world.

Recently, Transformer Vaswani et al. (2017) has attracted widespread attention in the field
of computer vision. Transformers were initially used for natural language processing (NLP),
such as translation Wang et al. (2019) and question answering Tan and Bansal (2019). It
can achieve such great success in NLP tasks because it has been pre-trained based on the
transformer model on a large text corpus and fine-tuned on the dataset of the specific task.
Transformer variants, such as BERT Devlin et al. (2019) and GPT-3 Brown et al. (2020),
further enriched the training data and improved the pre-training performance. There are some
interesting attempts to extend the transformer to the computer vision. For example, Wang et
al. (2017) and Fu et al. (2019) use a self-attention model to obtain global image information;
Carion et al. (2020) use a transformer architecture for end-to-end object detection; Dosovit-
skiy et al. (2020) introduce the visual transformer (ViT) treats the input image as 16 × 16
words, and has achieved good results in image recognition; Chen et al. (2020) proposed a
pre-training model that based on transformer architecture for image processing, which uses
multi-heads and multi-tails design handling three different tasks at the same time, including
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super-resolution, denoising, and deraining, and has achieved good results on the low-level
visual tasks.

In this paper, Transformers are employed for remote sensing image dehazing for the first
time. Specifically,we designed a neural network integratingTransformer and residual channel
attention for haze removal from remote sensing images. Our neural network is divided into
two branches. The first branch is called Transformer U-Net, and the efficient transformer
block in Zhang and Yang (2021) is used as the main backbone to form a u-shaped encoder–
decoder structure for modelling the long-range dependencies. While in the second branch,
called RCAG-Net, is an end-to-end network structure. Due to the powerful feature mapping
capabilities of the residual channel attention network (RCAN) Zhang et al. (2018), we design
it as a residual channel attention group (RCAG-Net) to enhance fitting capability of models
and complement fine-detailed features for upper branch. To better fuse the output features of
the two branches, we design a fusion block to learn and aggregate these features of the two
branches to form the final clear remote sensing image.

In general, the main contributions of our work are: (1) We employ Transformer model in
the task of remote sensing image dehazing for the first time. (2) In order to learn a specific
data distribution, we use a residual attention group, which can extract more features from
the current data distribution and provide feature compensation for the upper branch. (3) We
design a learnable fusion block to better fuse the outputs of the two branches and produce the
final clear remote sensing image. (4) We present a large number of experimental results to
demonstrate the effectiveness of our TransRA network in remote sensing images dehazing.

2 Related works

2.1 Single image dehazing

Single image dehazing methods can be roughly divided into two categories: priori-based
methods and learning-based methods. Based on priori methods, the transmission map and
global atmospheric light in ASM Oakley and Satherley (1998) are estimated. Many prior-
based methods Berman and Avidan (2016); Fattal (2015) have shown good performance in
single image dehazing. However, in practice, since the priors are easily violated, the prior-
based methods are not always robust when encountering complicated scenarios. In addition,
most of the existing dehazing algorithms are designed for natural images. Considering that the
physical models of remote sensing images are different from those of natural images, IDeRS,
Xu et al. (2019) proposed a concept of virtual depth for physical models of remote sensing
images and introduced an iterative dehazing algorithm for remote sensing images, which
has achieved good results on some existing public datasets. With the success of deep CNN,
methods based on deep learning have received extensive attention in recent years. DehazeNet
Cai et al. (2016) is the first dehazing model based on deep learning methods. It uses CNN
to estimate the transmission map and uses the ASM Oakley and Satherley (1998) to produce
the final dehazing clear image. Unlike DehazeNet, AOD-Net Li et al. (2017) reformulated
the ASM Oakley and Satherley (1998) and presented a lightweight CNN to produce clear
images fromhazy images. In addition, there are currentlymanymethods that can restore haze-
free images without using ASM Oakley and Satherley (1998). Ren et al. (2016) proposed a
multi-scale CNN by designing a set of coarse and fine scale networks to predict the image
transmission map independently, then using multi-scale fusion to complete image dehazing.
Qin et al. (2020) proposed FFA-Net with a new feature attention module, including pixel
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attention and channel attention. This work has achieved high performance on the RESIDE
Li et al. (2019) dataset. GFN Ren et al. (2018) is a gated fusion network that restores haze
images by transforming the input image using white balance and gamma correction. Yu et al.
(2021) proposed a two branch dehazing framework for non-uniform dehazing by integrated
learning, which uses the idea of transfer learning with channel attention fusion and achieves
good results on all four different datasets. Shao et al. (2020) introduced a domain adaptation
framework of dehazing tasks, which builds a bridge between the real world and the synthetic
haze image. It is sub-optimal to directly use these above-mentionedmethods to dehaze remote
sensing images because the remote sensing image is inconsistent with the natural image in
many aspects. To solve this problem, some studies have explored different learning strategies
to extract haze-related features or heuristic clues in remote sensing images, such as CNN in
Qin et al. (2018), Ke et al. (2019), Guo et al. (2021), Grohnfeldt et al. (2018) and Generative
Adversarial Networks (GAN) in Huang et al. (2020), Mehta et al. (2021). For example, Qin
et al. (2018) introduced a deep CNN with residual structure, and Ke et al. (2019) designed a
complete CNN to remove haze from RS images. Huang et al. (2020) introduced conditional
GAN preprocessing on SAR images to eliminate image haze. FCTF-Net Li and Chen (2020)
is a first-coarse-then-fine two-stage dehazing neural network combining a channel attention
mechanism with a basic convolutional block, which is trained in an end-to-end manner and
has achieved better results on synthetic datasets and some real images. SkyGANMehta et al.
(2021) is proposed to use HSI guidance and multi-color input for haze removal from satellite
images. However, previous networks are less effective in preserving good spatial details and
encoding contextual information. Thus, an effective dehazing model should be designed that
not only removes the haze from degraded images but also retains the required spatial details
(e.g., real textures and edges).

2.2 Transformer

Transformer Vaswani et al. (2017) and its variants have proven its success as a powerful unsu-
pervised or self-supervised pre-training framework in various natural language processing
tasks. For example, GPTs Radford et al. (2018, 2019); Brown et al. (2020) are pre-trained in
an autoregressive manner to predict the next word in a huge text dataset. Due to the success
of the Transformer model in NLP, many attempts have been made to explore the application
of the Transformer model in computer vision tasks. These attempts can be roughly divided
into two categories. First, self-attention is introduced in the traditional convolutional neural
network. Yuan et al. (2018) introduced spatial attention in image segmentation. Fu et al.
(2019) proposed DANET that combines spatial attention and channel attention to use con-
textual information. Wang et al. (2018), Chen et al. (2019), Jiang et al. (2019) and Zhang
et al. (2019) also used self-attention to enhance features to improve the performance of the
model in some high-level visual tasks. The other is to replace convolutional neural networks
with self-attention blocks. For example, Kolesnikov et al. (2020), Dosovitskiy et al. (2020),
use a transformer block for image classification. Carion et al. (2020) and Zhu et al. (2020)
implemented Transformer-based models in detection. Chen et al. (2020) introduced a pre-
trained GPT model for generation and classification tasks. Wu et al. (2020) and Zhao et
al. (2020) proposed a transformer model-based pre-training method for image recognition
tasks. Jiang et al. (2021) introduced TransGAN that used Transformer to replace convolution
to form a strong GAN. However, there are few related studies focusing on low-level visual
tasks. In this paper, we explore a novel remote sensing image dehazing network including
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Fig. 1 Wepropose the structure of TransRAmodel. Ourmodel includes transformer U-Net branch and RACG-
Net branch. The model finally combines the output of the two branches to obtain the dehazing result through
fusion block

Transformer and residual attention group. Specifically, two branches are trained separately
and then passed through the fusion module to obtain a haze-free remote sensing image.

3 Proposedmethod

In this section, we will introduce two branches of remote sensing image dehazing neural
network in detail, including the network of TransformerU-Net, RCAG-Net, and loss function.

3.1 Network structure

Ourmethod includes both upper and lower networks, namely Transformer U-Net and RCAG-
Net (as shown in Fig. 1). Each network is used for a specific purpose: Transformer U-Net
extracts a robust global representation from the input remote sensing image by encoding and
decoding. Here, Transformer is used to form the upper network because its own structure
contains a self-attentionmechanism,which can obtainmore robust global context information
than CNN. RCAG-Net is designed to work on a specific training image domain of the current
remote sensing data to obtain more fine-grained remote sensing image features. The output
feature maps of the two networks are concatenated together and then sent to the fusion block
to output a clear haze-free image.
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Fig. 2 Illustration of the transformer block. Among them, Norm represents the layer normalization operation,
and MLP adopts the multi-layer perceptron operation proposed in Zhang and Yang (2021)

3.1.1 Transformer U-Net

The Transformer U-Net is an encoding–decoding structure, see the upper branch in Fig. 1.
In order to better distinguish haze information from background texture information, and
extract global robust features. Inspired by Zhang and Yang (2021), we use the ResT-large
four-stage down-sampling structure as the encoder layers for our network. The decoder is also
a four-stage process, each stage consists of a deconvolution upsampling patch embedding
module and the transformer block shown in Fig. 2. There is an intermediate transition layer
between encoding and decoding, which is composed of a down-sampling patch embedding
module and a transformer block to transmit the encoded feature information to the decoding
stage. To be specific, in the encoding stages, our Transformer U-Net consists of the following
basic modules, namely stem block, patch embedding layer, and transformer block.

Stemblock: The stemblock is designed to effectively extract low-level information, reduce
the height and width of the input feature, and expand the dimensions of the channels. It first
introduces three convolutional layers with strides [2,1,2], followed by Batch Normalization
and ReLU activation after the first two convolutional layers. After the stem block, the spatial
resolution is reduced by 4 times, and the dimension of the channel is expanded from 3 to 96.

Patch embedding block: In the 2, 3, and 4 stages of the encoder structure, the patch
embedding block is used to down-sample the spatial dimension by 4× and increase the
channel dimension by 2×. This function can be implemented using standard 3×3 convolution
with a stride of 2 and the BatchNorm layer. After this stage, there is an indispensable module
called position encoding (as shown in Fig. 3a). Position encoding is the key to use sequence
order. Here, our position encoding uses a simple and effective pixel-wise attention (PA)
module (as shown inFig. 4b). Tobeprecise, thePAmodule uses a 3×3depth-wise convolution
(with padding 1) operation to obtain the pixel-wise weight and then uses the sigmoid function
to scale. The position code of the PA module can be expressed as:

PA(x) = sigmoid(DWConv(x)) (2)

where Dwconv denotes 3 × 3 depth-wise convolution with stride 1. Since the input tokens
of each stage are obtained by convolutional operations, we can embed the position encoding
into the patch embedding module, so the patch embedding of stages 2, 3, 4 combined with
the position encoding can be written as:

PE(x ′) = x ′ ∗ PA(x) = x ′ ∗ sigmoid(DWconv(x ′)) (3)

x ′ = BN (Cs ∗ x) (4)

where x and x ′ denote the feature map, Cs epresents a convolutional layer with kernel size
s + 1 and stride s. To achieve hierarchical feature extraction, we set the hyperparameter to 2.
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(a)

(b)

Fig. 3 Illustration of position embedded in patch emdeding block (a) and effection multi-head self-attention
(EMHSA) in transformer block (b).These two parts of the structure constitute the transformer encode–decoder
in our proposed transformer U-Net branch

It is worth mentioning that there is also a PA layer in our Stem Block to add the input feature
map in the first stage position information.

Transformer block: Transformer block is composed of an efficient multi-head self-
attention (EMHSA) (see in Fig. 3b), multi-layer perceptron [MLP Zhang and Yang (2021)],
and layer normalization Ba et al. (2016) operations (see in Fig. 2). Each output of the Efficient
transformer block can be written as:

x̂ = x + EMHSA(LN (x)) (5)

y = x̂ + MLP(LN (x̂) (6)

where x denotes the feature map obtained after the patch embedding block and x̂ denotes the
intermediate feature map, as shown in Eq. 5. The feature map x first passes through the layer
norm, then EMHSA, and then sums with itself to obtain the feature map x̂ . It is worth noting
that EMHSA is the core of the whole efficient transformer block, which can be obtained in
the following way

EMHSA(Q, K , V ) = I N

(
Softmax

(
Conv

(
QKT

√
dk

)))
V (7)

Here, Conv denotes a standard 1× 1 convolution, IN denotes instance normalization, and
dk denotes head dimension. For more details about EMSA and MLP, see Zhang and Yang
(2021).

In the decoding stage, our dehazing network includes up-patch embedding block, efficient
transformer block, and up-sampling block. Specifically, our up-Patch embedding block uses
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Fig. 4 The structure diagram of upsampling block (a), PA block (b) and fusion block (c). Among them,
upsample block is used in our proposed transformer U-Net branch to restore the feature size to be consistent
with the network input image; PA Block is used in Patch embedding block and upsample block to add position
information. Fusion block is to better fuse the output features of the two branches

deconvolution to enlarge the feature map of the i-th decoding stage upwards by the same
parameter factor s as the patch embedding block. Then pass through BatchNorm and add the
position module PA to form a complete up-patch embedding block. The efficient transformer
block in the encoding–decoding stage is the same and is used to extract the long-distance
dependency in the feature map. The up-sampling block is shown in Fig. 4a, which contains
two layers of 4×4 deconvolution with stride of 2, and two ReLU activation layers. The 3×3
convolution layer is the third layer of the block, and the PA block is the final output layer. The
up-sampling block converts the feature map obtained after decoding to the same resolution
as the input image, so as to better fuse with the feature map output from the lower branch.

3.1.2 RCAG-Net

Our RCAG-Net is based on the remaining channel attention block Zhang et al. (2018) (see the
lower part of Fig. 1). This block contains the convolutional layers and the channel attention
modules. Due to the remaining design and long-hop connections, the network is unlikely to
have the problem of vanishing gradients Pascanu et al. (2013). In addition, channel attention
highlights salient features to enhance the ability of themodel to fit the current data.Moreover,
to preserve the fine features, this branch avoids the use of down-sampling and up-sampling
operations. The detailed features can be seen as a supplement to the upper branch network.
Since our RCAG-Net is trained from scratch and is an end-to-end network built for full
resolution, it can complement fine-detailed features for upper branch.
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3.1.3 Fusion block

Our fusion block serves as an integrationmethod to produce thefinal output (shown inFig. 4c).
Specifically, the fusion block fuses the features of the two branches and then learns tomap the
features to a clear image. The fusion block is constructed from two different convolutional
layers and hyperbolic tangent activation functions. Although the two branches have provided
enough and distinct features for recovering a clear image, the number of channels after fusion
is 20 times more than that of the input image. Therefore, we use a two-layer convolution
operation to ensure that the number of channels is decreasingly learned layer by layer to finally
output a clear image. In contrast, we find that the single convolution operationmay jeopardize
the overall generalization ability of our method and lead to performance degradation. To
further illustrate the effectiveness of our fusion blocks, we empirically investigate the effect
of employing different sizes of fusion blocks from Table 3 in Sect. 4.3. It can be observed
that the performance of our method decreases accordingly by using different convolution
operations.

3.2 Loss functions

Our loss function consists of four different parts. Each loss function has a specific purpose.

3.2.1 Smooth L1 loss

We used the smooth L1 loss to ensure that the predicted image is close to a clean image. It
is a robust L1 loss Girshick (2015), which has been proven to be better than L2 loss in many
image restoration tasks. The smooth L1 loss can be written as:

Lsmooth = 1

N

N∑
i

smoothL1(yi − fσ (xi )) (8)

smoothL1(z) =
{
0.5z2 i f |z| < 1
|2| − 0.5 otherwise

(9)

where yi and xi represent the ground truth and hazy image at the pixel point i , respectively,
fσ (·) represents the neural network with parameter σ , and N denotes the total number of
pixels.

3.2.2 Perceptual loss

We used perceptual loss Zhu et al. (2017) to provide additional supervision in the high-level
feature space. It has been shown that training with perceptual loss allows the model to better
reconstruct details. The loss network is a pre-trained VGG-16 on ImageNet Simonyan and
Zisserman (2014). The loss function is as follows:

L per = 1

N

N∑
i

1

C j HjW j

∥∥φ j ( fσ (x)) − φ j (y)
∥∥2
2 (10)

where x and y represent the input with haze and the ground truth image, respectively, fσ (x)
represents the image after dehazing, and φ j (·) denotes the feature map of sizeC j ×Hj ×Wj .
The feature reconstruction loss is the L2 loss. N is the number of features used in the
perceptual loss.
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3.2.3 Adversarial loss

Contrast loss is effective in helping to recover photo-realistic images Ledig et al. (2017).
Especially for small-scale datasets, pixelated loss functions usually do not provide enough
monitoring signals to train the network to recover photo-realistic details. Therefore, we finally
implemented the adversarial loss with discriminators in Zhu et al. (2017). The adversarial
loss can be expressed as follows:

Ladv =
N∑
i

− log D ( fσ (x)) (11)

where D (·) is a discriminator. The probability that the dehazed image fσ (x) is a ground
truth image is shown as D ( fσ (x)).

3.2.4 Wavelet SSIM loss

Wavelet SSIM loss was proposed in Yang et al. (2020), which is a loss function based on
SSIM, and it has been demonstrated that the Wavelet SSIM loss can improve PSNR and
SSIM. The equation is as follows:

LW -SSI M ( fσ (x), y) =
i∑
0

ri LSSI M
([ fσ (x)]ωi , yω

i

)
, ω ∈ {LL, K L, LH , HH} (12)

where ri controls the weight of each patch, x and y represent the input with haze and the
ground truth image, respectively, fσ (x) represents the image after dehazing. The LSSI M

refers to the SSIM loss function, which can be written as:

LSSI M = −SSI M (x, y) (13)

SSI M (x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2
x + μ2

y + C1

) (
σ 2
x + σ 2

y + C2

) (14)

where x and y represent the dehazed image and ground truth image, respectively. Equation 14
calculates the SSIM of the two images, where μ and σ represent the average, standard
deviation, and covariance of the image. For the details of this loss function, see Yang et al.
(2020).

The total loss function is defined as:

L = λ1Lsmooth + λ2L per + λ3Ladv + λ4LW -SSI M (15)

where λ1, λ2, λ3 and λ4 are the hyperparameters to balance between different losses.

4 Experiments

In this section, we start with the description of the datasets, training details, and evaluation
indicators. Then we conduct ablation studies to clarify the impact of the different modules
in our method. Finally, we compared the method with other competing dehazing algorithms
qualitatively and quantitatively.
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4.1 Experiment settings

4.1.1 Datasets

To verify the effectiveness of our network, we conducted dehazing experiments on two
recently synthesized remote sensing datasets, namely SateHaze1k Huang et al. (2020) and
RICE Lin et al. (2019). In particular, the SateHaze1k dataset was created by Huang et al.
(2020), which provided 1200 pairs of hazy remote sensing images, and divided the haze
into three levels: thin, medium, and thick. Each level of the dataset contains 400 pairs of
hazy images, where the training dataset accounts for 80% of the total data of each level,
the validaton dataset and the testing dataset contain 35 pairs and 45 pairs of remote sensing
images respectively. The RICE dataset was collected on Google Earth and consists of 500
pairs of hazy remote sensing images.

4.1.2 Implementation details

We use 90◦, 180◦, 270◦ of random rotation, horizontal flip, and vertical flip to increase the
training dataset. The input image is randomly cropped to a size of 256 × 256. We use the
Adam optimizer with batch 2 and the default β1 = 0.9 and β2 = 0.999 . The whole process
was trained for 1000 epochs, with an initial learning rate of 0.0001, and then reduced by
half to the 300th, 600th, and 800th epochs. The hyperparameters λ1 , λ2 , λ3 , and λ4 of the
loss function are 2.0, 0.001, 0.005, and 1.0, respectively. We implemented our model with
PyTorch on a single NVIDIA TITAN XP GPU. The training takes about 50h.

4.1.3 Evaluation metric and compatitors

To evaluate the performance of our method, we adopt the peak signal to noise ratio (PSNR)
and the structural similarity index (SSIM) as the evaluation metrics, which are usually used
as criteria to evaluate image quality in the image dehazing task. We compare with various
dehazing methods including DCP He et al. (2011), IDERS Xu et al. (2019), DehazeNet Cai
et al. (2016), MSCNN Ren et al. (2016), AOD-Net Li et al. (2017), GFN Ren et al. (2018),
FFA Qin et al. (2020), FCTF-Net Li and Chen (2020) and Two-Branch Yu et al. (2021).

4.2 Comparisons with various dehazingmethods

4.2.1 Results on SateHaze1k dataset

We demonstrate the performance of our TransRA and various dehazing methods on the
SateHaze1k dataset. As can be seen from the Table 1, our TransRA achieves the best results
at all three different levels of haze, with 25.20dB, 26.50dB, 22.73dB in terms of PSNR, and
0.9302, 0.9474, 0.8451 in terms of SSIM, respectively. In particular, our TransRA achieved
significant improvements averaging 0.54dB PSNR and 0.0064 SSIM over three different
levels of haze data compared to the suboptimal method. We also compare our TransRA with
various dehazing methods on the quality of the restored images, which is shown in Figs. 5, 6,
and 7. We can observe that DCP, IDERS, DehazeNet, MSCNN, AOD-Net, and GFN cannot
successfully remove haze from remote sensing images and exist color distortion, especially in
the cases of thick andmedium haze. Compared to DCP, IDERS, DehazeNet, MSCNN, AOD-
Net, and GFN, the methods of FFA, FCTF-Net and Two-Branch achieve the restored remote
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Table 1 Quantitative comparisons over SateHaze1k for different methods

Method Thin haze Moderate haze Thick haze

PSNR SSIM PSNR SSIM PSNR SSIM

DCP He et al. (2011) 15.61 0.7566 16.50 0.7902 15.94 0.7240

IEDRS Xu et al. (2019) 15.07 0.7699 14.73 0.7767 11.76 0.6958

DehazeNet Cai et al. (2016) 19.48 0.8698 18.86 0.8773 12.77 0.6633

MSCNN Ren et al. (2016) 19.61 0.8808 18.49 0.8972 13.10 0.7080

AOD-Net Li et al. (2017) 17.67 0.8565 14.77 0.7104 14.50 0.7143

GFN Ren et al. (2018) 17.15 0.8585 16.92 0.8833 13.82 0.7441

FFA Qin et al. (2020) 24.41 0.9261 25.85 0.9368 22.26 0.8638

FCTF-Net Li and Chen (2020) 20.41 0.8848 23.59 0.9313 18.37 0.8022

Two-branch Yu et al. (2021) 24.20 0.9226 25.89 0.9434 22.50 0.8637

Ours 25.20 0.9302 26.50 0.9474 22.73 0.8751

The best results are in bold and the second best are with underline

Fig. 5 Qualitative comparisons of all the comparing methods and ours TransRA(k) on the StaeHaze1k (thin
haze) dataset

senesing images with higher quality. However, they still exist some defects in processing
high-frequency details. In contrast, our method can better retain the high-frequency details
and recover the color information of the whole remote sensing image.
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Fig. 6 Qualitative comparisons of all the comparing methods and ours TransRA(k) on the StaeHaze1k (mod-
erate haze) dataset

4.2.2 Results on RICE dataset

Wealso compare the performance of our TransRAand various dehazingmethods on theRICE
dataset. As shown in Table 2, we can observe that our TransRA has a PSNR of 31.13dB and
a SSIM of 0.9551 on the RICE dataset, outperforming other dehazing methods except FFA.
Note that FFA only achieves 0.65dB over our method in term of PSNR, however, our results
are closer to the ground truth on subjectively, which can be seen in Fig. 8. In addition,
our results are the best both qualitatively and quantitatively compared with other methods.
Although the results of FFA are higher than our method in terms of PSNR, our method
performs better in terms of SSIM and qualitative performance.

4.3 Ablation studies

To analyze and evaluate the effectiveness of each component of our approach, we combine
five factors for the ablation study: fusion block, PA block, Transformer U-net, RCAG Net,
contribution of each loss function and ablation study of its hyperparameters. The ablation
experiments are shown below: (1) Differences in fusion blocks: Ablation studies were per-
formed using a different fusion block than the one we proposed. (2) Transformer U-Net and
fusion block TF: Only the combination of Transformer U-Net and fusion block is used. (3)
RCAG with fusion block RF: Only RCAG with fusion block is used. (4) Contribution of
Each Loss: The constraints of each loss on the algorithm in this paper. (5) Without PA Block:
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Fig. 7 Qualitative comparisons of all the comparing methods and ours TransRA(k) on the StaeHaze1k (thick
haze) dataset

Table 2 Quantitative
comparisons over RICE for
different methods

Method RICE
PSNR SSIM

DCP He et al. (2011) 16.91 0.7590

IEDRS Xu et al. (2019) 14.21 0.6364

DehazeNet Cai et al. (2016) 23.74 0.8645

MSCNN Ren et al. (2016) 22.72 0.8792

AOD-Net Li et al. (2017) 19.84 0.7396

GFN Ren et al. (2018) 16.53 0.7792

FFA Qin et al. (2020) 31.78 0.9543

FCTF-Net Li and Chen (2020) 28.49 0.9170

Two-branch Yu et al. (2021) 30.49 0.9525

Ours 31.13 0.9551

The best results are in bold and the second best are with underline

We without to add position information by used PA Block in Transformer U-Net. (6) Ours:
Using a combination of Transformer U-Net and RCAG with our fusion block.

Specifically, we used the thick haze dataset in SateHaze1k as the train and test datasets
for our ablation study. The quantitative results of the ablation study are shown in Tables 3,
4 and 5. Table 3 shows the results of our fusion block and the other two types of single
convolution fusion blocks. It can be seen that the double convolution fusion block designed
by our can significantly improve PSNR and SSIM. Table 4 shows the experimental results
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Fig. 8 Qualitative comparisons of all the comparing methods and ours TransRA(k) on the RICE dataset

Table 3 The performance of our
proposed method using fusion
blocks with different sizes

Fusion blocks PSNR SSIM

3 × 3 Conv + Tanh 22.62 0.8737

RefiectionPad + 7 × 7 Conv + Tanh 22.40 0.8726

Ours 22.73 0.8751

The best results are in bold
The evaluation is conducted on StakeHaze1k (thick haze) dataset

Table 4 Ablation studies of
different combinations

Methods PSNR SSIM

TFa 21.95 0.8637

RFb 22.50 0.8736

w/o PAc 22.62 0.8740

Ours 22.73 0.8751

The best results are in bold
The evaluation is conducted on StakeHaze1k (thick haze) dataset
a“TF” denotes transformer U-Net and fusion block
b“RF” denotes RCAG Net and fusion block
c“w/o PA” denotes without PA block in our network

obtained by combining our two-branch network and the fusion block respectively. In addition,
quantitative results without PA block in Transformer U-Net are also presented in Table 4.
We can see that our two-branch network is much better than a single-branch network, which
demonstrated the effectiveness of our two-branch design. The PSNR and SSIM of our model
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Table 5 Quantitative ablation
study of the contribution of each
loss (smooth L1 loss Lsmooth ,
perceptual loss L per , adversarial
loss Ladv , wavelet SSIM loss
LW -SSI M )

Ablation Loss function type Thick haze

Lsmooth L per Ladv LW -SSI M PSNR SSIM

1 w/o 22.46 0.8743

2 w/o 22.20 0.8726

3 w/o 22.64 0.8750

4 w/o 22.56 0.8629

Ours � � � � 22.73 0.8751

The best results are in bold
The evaluation is conducted on StakeHaze1k (thick haze) dataset

Fig. 9 Qualitative ablation study of the contribution of each loss (smooth L1 loss Lsmooth , perceptual loss
L per , adversarial loss Ladv , wavelet SSIM loss LW -SSI M ) and ours TransRA on the StakeHaze 1k (thick
haze) dataset

reached 22.73dB and 0.8751, respectively. When there is without PA block to add position
information in Transformer U-Net, the results obtained are significantly worse than the full
structure. This shows that the role of the PA block cannot be ignored. These scores show that
each component we considered plays a crucial role in performance of network.

We present the results of training TransRA with various loss combinations in Fig. 9 and
Table 5. The results without smooth L1 loss Lsmooth are partially noisy compared to the
full results (e.g., the red boxed area in Fig. 9). This shows the importance of Lsmooth in
removing noisy luminous surfaces. Removing the perceptual loss L per results in a reduction
in overall contrast and a large difference from the full results in PSNR and SSIM metrics.
The qualitative gap is not significant when the adversarial loss Ladv is discarded, but the full
results outperform quantitatively, suggesting that the Ladv plays a role in the training process.
Finally, removing the wavelet loss LW -SSI M causes the image color to be inconsistent with
the GT image, with slight distortion, and differs from the full result by 0.17 and 0.0122 on
PSNR and SSIM, respectively.

5 Conclusion

In this paper, we propose a remote sensing image dehazing neural network based on the
fusion of transformer and residual channel attention, and demonstrate its strong performance
in remote sensing image dehazing tasks. To preserve the clear spatial detail and color fidelity
of the resulting images, we use the fusion block to fuse the features of Transformer and
residual channel attention. Our method has significant advantages on two current remote
sensing dehazing datasets. It surpasses various dehazing methods in terms of qualitative and
quantitative. Moreover, the ablation study demonstrates the effectiveness of our proposed
individual modules.
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