
Multidimensional Systems and Signal Processing (2022) 33:1045–1068
https://doi.org/10.1007/s11045-022-00831-1

Estimation of parameters of two-dimensional random
amplitude chirp signal in additive noise

Swagata Nandi1 · Rhythm Grover2 · Debasis Kundu3

Received: 24 January 2021 / Revised: 16 March 2022 / Accepted: 9 April 2022 /
Published online: 10 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we consider a two-dimensional random amplitude chirp signal model. It is
assumed that the additive error is independent and identically distributed. This is an exten-
sion of the one dimensional random amplitude chirp model proposed by Besson et al. (IEEE
Trans Signal Process 47(12):3208–3219, 1999) to two-dimension. The random amplitudes
can be thought of as a multiplicative error and are assumed to be independent and identically
distributed with non-zero mean such that the fourth order moment exists. The parameters
are estimated by maximizing a two-dimensional chirp periodogram like function and discuss
their theoretical properties. The proposed estimators are consistent and we obtain the asymp-
totic distribution as multivariate normal. Under normality of the additive error, the proposed
estimator attains the Cramer–Rao lower bound. We propose a general multicomponent two-
dimensional model of similar form. The performances of the proposed estimators for finite
samples are evaluated based on numerical experiments and are reported graphically.
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1 Introduction

A two-dimensional (2-D) complex-valued chirp signal model with random amplitude is
expressed as

y(m, n) = ψ(m, n)ei(α
0
1m+α0

2m
2+β0

1n+β0
2n

2) + X(m, n), m = 1, . . . , M; n = 1, . . . , N .

(1)

Here i = √−1; and y(m, n) = yR(m, n) + iyI (m, n) are the complex-valued signals; α0
1

and α0
2 are the frequency and the chirp rate, respectively in the first dimension and β0

1 and
β0
2 are the corresponding frequency and the chirp rate, respectively in the second dimension.

Further, 0 < α0
1, α

0
2, β

0
1 , β

0
2 < π and the amplitude {ψ(m, n)} is a 2-D sequence of real-

valued random variables which can be viewed as multiplicative error as ψ(m, n) is random
and enters the model as product of the non-random signal component. The additive error
{X(m, n)} is a 2-D sequence of complex-valued random variables with zero mean and it is
assumed that the fourth moment exists. The problem is to estimate the unknown parameters
α0
1 ,α

0
2 ,β

0
1 andβ0

2 based onMN observations {y(m, n);m = 1, . . . , M; n = 1, . . . , N } under
certain assumptions on the sequence of random amplitudes {ψ(m, n)} and the sequence of
additive error {X(m, n)}. The specific assumptions on {ψ(m, n)} and {X(m, n)} are given in
Appendix A.

The 2-D chirp model as well as 2-D sinusoidal model has many applications in image
analysis and telecommunications. The later is one of the basic models in statistical signal
processing literature. Different other applications are found in biomedical spectral analysis,
texture analysis; see Kliger and Francos (2008), Kliger and Francos (2013), Cao et al. (2006)
etc. Similar models have been used in analysis of synthetic aperture radar data by Djurović
et al. (2010). Grover et al. (2020) illustrated that 2-D chirp model can be effectively used in
black and white texture analysis. Apart from these applications, such signals are commonly
observed in surveillance system, in sonar and radar, mobile telecommunications, finger print
images etc., see for example Zhang et al. (2008), Simeunović et al. (2019), Djurović and
Simeunović (2018), Porwal et al. (2019) and the references cited therein.

Model (1) is a natural extension of one-dimensional (1-D) random amplitude chirp model
to two dimension. Nandi and Kundu (2020b) considered this model and proved the con-
sistency of the estimators proposed by Besson et al. (1999) and obtained their asymptotic
distribution. In case of constant amplitude instead of random amplitude, this model is the
usual 1-D chirp model which again generalizes the complex-valued exponential or sinu-
soidal model. The complex-valued exponential model is the most basic model in this class
of models. The 2-D random amplitude chirp model is a more generalized version of these
models.

The 2-D random amplitude chirp model can be viewed as a generalized version of 2-D
chirp model when ψ(m, n) is identically equal to a non-zero constant. Several authors have
studied the 2-D chirp model, see for example, Zhang et al. (2008), Cao et al. (2006), Lahiri
et al. (2013), Lahiri and Kundu (2017) and Grover et al. (2018a, 2020). Model (1) can also
be seen as a generalization of 2-D random amplitude sinusoidal model when α0

2 = β0
2 = 0.

The 2-D sinusoidal model has many applications in grey symmetric textures. When ψ(m, n)

is constant and the frequency rates α0
2 and β0

2 are simultaneously equal to zero, then model
(1) is nothing but the 2-D sinusoidal model. Therefore, model (1) is quite a general model.

The aim of this paper is to consider the problem of estimation of the unknown parame-
ters, the frequencies α0

1 and α0
2 and the frequency rates β0

1 and β0
2 and study the theoretical

properties of these estimators. The estimation method considered in this paper is based
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on the maximization of the 2-D periodogram function of y2(m, n), interlaced with zeros.
We have shown that the proposed method is equivalent to the nonlinear least squares estima-
tionmethod. It is an extension of themethod proposed byBesson et al. (1999) for 1-D random
amplitude chirp model to two dimension. Although, this estimator has not been studied, and
its properties have not been explored. We have shown that the proposed estimators of the
unknown parameters are consistent and asymptotically normally distributed. A consistent
estimator of an unknown parameter means that as the number of observations increase, the
resulting sequence of estimators converges to the true value of the parameter. The asymptotic
normality here means that the proposed estimator is asymptotically distributed with Gaussian
behavior as the data sample size goes up. This asymptotic distribution also provides different
rates of convergence of the estimators of the frequency and the chirp rate parameters. Based
on the asymptotic distribution, the approximate variance of the estimator can be obtained
at least for large sample sizes. It has also been observed that the proposed estimator attains
the Cramer–Rao lower bound when the additive error is normally distributed. We perform
numerical experiments extensively to see the behavior of the estimates for different sample
sizes and different variances for additive as well as multiplicative error. The performances
are quite satisfactory and gives an idea how the large sample results will be useful in practice
for finite samples.

The rest of the paper is organized as follows. In Sect. 2,we discuss themethod of estimation
of the unknown parameters of model (1) and its equivalence to the nonlinear least squares
method. In Sect. 3, we consider the multicomponent model and discuss how the estimation
problem of the one component model can be applied to this case. In Sect. 4, numerical
experiments are presented andwe conclude the paper in Sect. 5. All the required assumptions,
theoretical results and proofs are provided in Appendices. In Appendix A, the theoretical
results of the proposed estimator for the one component model is presented including the
assumptions. Similarly, for multicomponent model, the results are stated in Appendix B.
The consistency of the proposed estimator for the one component model has been proved
in Appendix C. The asymptotic distribution of the same has been derived in Appendix D.
The outline of the proof of the consistency of the estimator for multicomponent model is
presented in Appendix E.

2 Estimation of parameters of 2D-random amplitude chirp signal

In this section, we first discuss the problem of estimation of unknown parameters, namely,
the frequency and the chirp rate parameters present in model (1). We consider a method of
estimation which is equivalent to the nonlinear least squares estimation method.

In order to describe the estimation method, write α = (α1, α2)
�, β = (β1, β2)

�; α0 and
β0 are the true values of α and β, respectively. Also denote ξ = (α1, α2, β1, β2)

� as the
unknown parameter vector and ξ0 be the true value of ξ . Then consider the estimator̂ξ of ξ0

which maximizes the following four dimensional function.

Q(ξ) = 1

MN

∣

∣

∣

∣

∣

M
∑

m=1

N
∑

n=1

y2(m, n)e−i2(α1m+α2m2+β1n+β2n2)

∣

∣

∣

∣

∣

2

. (2)

Observe that Q(ξ) is the 2-D chirp periodogram function of y2(m, n)with exponent replaced
by twice the usual 2-D chirp periodogram exponent. The usual nonlinear least squaresmethod
is behind themotivation of taking this particular form of the criterion function of our proposed
estimationmethod. In the following,we startwith the formof the usual residual sumof squares
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corresponding to the additive error and derive the equivalence of the nonlinear least squares
and the estimation method addressed in this paper.

The following derivation motivates us to maximize Q(ξ) to obtain the nonlinear least
squares estimators of the unknown parameters present in model (1). Write model (1) as

y(m, n) = ψ(m, n)eiφ
0(m,n) + X(m, n), m = 1, . . . , M; n = 1, . . . , N

whereφ0(m, n) = (α0
1m+α0

2m
2+β0

1n+β0
2n

2). Consideringψ(m, n) as unknownparameters
form = 1, . . . , M and n = 1, . . . , N , the usual nonlinear least squares estimators ofψ(m, n)

and α0
1 , α

0
2 , β

0
1 and β0

2 are obtained by minimizing

R(ψ, ξ) = 1

MN

M
∑

m=1

N
∑

n=1

∣

∣

∣y(m, n) − ψ(m, n)ei(α1m+α2m2+β1n+β2n2)
∣

∣

∣

2
, ψ = ((ψ(m, n)))

with respect to ψ(1, 1), . . . , ψ(M, N ) and ξ = (α1, α2, β1, β2)
�. Denote

ym = (y(m, 1), . . . , y(m, N ))�, ψm = (ψ(m, 1), . . . , ψ(m, N ))�,

Am = diag
{

eiφ(m,1), . . . , eiφ(m,N )
}

, φ(m, n) = (α1m + α2m
2 + β1n + β2n

2),

for m = 1, . . . , M and n = 1, . . . , N . Then, the criterion function R(ψ, ξ) can be written
as

R(ψ, ξ) = 1

MN

M
∑

m=1

∣

∣

∣

∣ym − Amψm

∣

∣

∣

∣

2
.

In order to minimize R(ψ, ξ), differentiating it with respect to ψm for fixed ξ , we have

∂R(ψ, ξ)

∂ψm
= 1

MN

M
∑

m=1

[

−A�
my

∗
m − A∗

mym + 2ψm

]

,

where y∗
m and A∗

m are complex conjugate of ym and Am , respectively. Therefore, for a given
ξ , the vectors ψ1, . . . ,ψM which minimize R(ψ, ξ) is given by

̂ψm(ξ) = 1

2

[

A�
my

∗
m + A∗

mym
]

, m = 1, . . . , M .

Replacing ψm by ̂ψm(ξ) in R(ψ, ξ)

R(̂ψ(ξ), ξ) = 1

MN

M
∑

m=1

∣

∣

∣

∣

∣

∣

∣

∣

ym − 1

2
AmA�

my
∗
m − 1

2
AmA∗

mym

∣

∣

∣

∣

∣

∣

∣

∣

2

= 1

MN

M
∑

m=1

∣

∣

∣

∣

∣

∣

∣

∣

ym − 1

2
A2
my

∗
m − 1

2
ym

∣

∣

∣

∣

∣

∣

∣

∣

2

= 1

4MN

M
∑

m=1

∣

∣

∣

∣ym − A2
my

∗
m

∣

∣

∣

∣

2

= 1

2MN

M
∑

m=1

yHm ym − 1

2MN

M
∑

m=1

Re
[

y�
mA

2∗
m ym

]

,
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where yHm is the conjugate transpose of ym . Now minimizing R(̂ψ(ξ), ξ) with respect to ξ is
equivalent to maximizing

1

MN

M
∑

m=1

Re
[

y�
mA

2∗
m ym

]

= 1

MN

M
∑

m=1

Re
[

N
∑

n=1

y2(m, n)e−2iφ(m,n)
]

= 1

MN

M
∑

m=1

Re
[

N
∑

n=1

y2(m, n)e−2i(α1m+α2m2+β1n+β2n2)
]

.

Therefore, taking into consideration of the corresponding imaginary part, we base our esti-
mation method on maximization of Q(ξ) with respect to ξ .

The nonlinear least squares estimation method has been addressed through the peri-
odogram like function Q(ξ). The unknown parameters α1, α2, β1 and β2 are estimated

by maximizing Q(ξ). Denotêξ
� = (̂α�,̂β

�
) = (̂α1, α̂2,̂β1,̂β2) as the maximizer of Q(ξ),

then

̂ξ = argmax(α1,α2,β1,β2)
Q(ξ). (3)

Using notation y2(m, n) = z(m, n), and 2α1 = a1, 2α2 = a2, 2β1 = b1 and 2β2 = b2, we
note that Q(ξ) is the usual 2-D chirp periodogram function for 2-D chirp model. The real and
imaginary parts of the squared responses z(m, n), say zR(m, n) and zI (m, n) are explicitly
given in Appendix C. These will be required to establish the consistency and the asymptotic
distribution of the proposed estimator̂ξ . It is observed that the maximization of Q(ξ) can be
carried out by any four-dimensional optimization method over �.

In model (1), if we fix n = s, then {y(m, s);m = 1, . . . , M} represents the sth column of
the M × N data matrix ((y(m, n))). Therefore, the sth column is a sample of the following
1-D complex-valued random amplitude chirp model

y(m, s) = δ(m, s, β0
1 , β

0
2 )e

i(α0
1m+α0

2m
2) + e(m, s),

where the amplitude δ(m, s, β0
1 , β

0
2 ) = ψ(m, s)ei(β

0
1 s+β0

2 s
2) is complex-valued. If we sum

the columns over s,

N
∑

s=1

y(m, s) =
[

N
∑

s=1

δ(m, s, β0
1 , β

0
2 )
]

ei(α
0
1m+α0

2m
2) +

N
∑

s=1

e(m, s),

⇒ z1(m) = a(m, β0
1 , β

0
2 )e

i(α0
1m+α0

2m
2) + ε1(m), m = 1, . . . , M .

Similarly, each row of the data matrix ((y(m, n))) and their sum say z2(n) represent 1-D
complex-valued random amplitude model of the same form with unknown parameters β0

1
and β0

2 . Efficient estimation of α0
1 and α0

2 as well as β0
1 and β0

2 may be developed based on
the above observation.

Model (1) is a highly nonlinear model in its parameters. Therefore, all the theoretical
results of the proposed estimator̂ξ will be valid for large samples. The theoretical properties
namely the consistency and asymptotic normality of̂ξ as well as the necessary assumptions
required to establish these properties are stated in Appendices A, C and D.
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3 Multicomponent random amplitude chirpmodel

In this section, we extend the idea of 2-D random amplitude chirp model to multiple com-
ponents when p pairs of a frequency and a chirp rate corresponding to both the dimensions
are present. The model can be formulated as

y(m, n) =
p

∑

k=1

ψk(m, n)ei(α
0
1km+α0

2km
2+β0

1kn+β0
2kn

2) + X(m, n);

m = 1, . . . , M; n = 1, . . . , N . (4)

For k = 1, . . . , p, the frequencies α0
1k and α0

2k and the frequency rates β0
1k and β2k are

unknown and needed to be estimated given a sample of size MN . The additive errors
{X(m, n)} is a 2-D sequence of complex-valued random variables similar to model (1).
The sequence of random variables {ψk(m, n)} corresponds to the kth component random
amplitude, k =, . . . , p; it is assumed that {ψ1(m, n)} . . . {ψp(m, n)} are sequences of inde-
pendent and identically distributed (i.i.d.) random variables. We assume that the number of
component, p is known in advance.

The method of estimation of the unknown parameters for the multicomponent model (4)
is based on the same chirp periodogram like function Q(ξ) defined in Sect. 2. The unknown
parameters are estimated by maximizing Q(ξ) locally. Denote ξ k = (α1k, α2k, β1k, β2k)

�
and suppose ξ0k is the true value of ξ k . The maximization is carried out in a neighborhood of
ξ0k to estimate the kth component parameters. Let Nk be a neighborhood of ξ0k such that for
j �= k, ξ0j /∈ Nk . That is, Nk has to be chosen in such a way that no other ξ0j belongs to Nk

and ξ0k and ξ0j , j �= k are needed to be well separated. The choice of Nk for small samples
depends on the variance of the additive error sequence {X(m, n)} also. Formally, estimate ξ k
as

̂ξ k = arg max
(α1,α2,β1,β2)∈Nk

1

MN

∣

∣

∣

∣

∣

M
∑

m=1

N
∑

n=1

y2(m, n)e−i2(α1m+α2m2+β1n+β2n2)

∣

∣

∣

∣

∣

2

where y(m, n) is given in (4). The whole process of estimation can be carried out by solving
p separate optimization problems and each one involves a four dimensional maximization
over a bounded region.

Similar to the one component model, the theoretical properties of the estimator̂ξ k of ξ0k
defined above are provided in Appendix B along with the assumptions required to develop
the properties of the estimator.

4 Numerical experiments

In this section, we perform simulation experiments to evaluate the accuracy of the proposed
estimators. These simulations are carried out for various choices of M , N and σ 2. For every
M = N = 25, 50, 75, 100 and σ 2 = 0.01, 0.1, 0.5, 1, 1000 replications are generated. In the
first set of experiments, we consider a simple synthetic signal generated using the following
model structure:

y(m, n) = ψ(m, n)ei(1.50m+0.15m2+2.50n+0.25n2) + X(m, n). (5)

Here, the multiplicative error ψ(m, n) is assumed to be i.i.d. sequence of Gaussian ran-
dom variables with mean 5 and variance 0.5. Similarly, the additive error random variables
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Fig. 1 MSEs and the asymptotic variances of the estimates when the data is from model (5)

{X(m, n)} are assumed to be i.i.d N(0, σ 2). The objective is to estimate the nonlinear param-
eters of the model by maximizing the function defined in (2). We use Nelder-Mead algorithm
to optimize the function Q(ξ). For the initial values for the optimization, we use the true
values of the parameters. For each generated data set, we compute the proposed estimators
and report their averages, mean squares errors (MSEs) and the corresponding theoretically
derived asymptotic variances (avar). Figure 1 shows the results of these simulations.

In the second set of simulations, we consider a more challenging set of samples from a
multiple component 2-D model with the following expression:

y(m, n) =ψ1(m, n)ei(1.50m+0.15m2+2.50n+0.25n2) + ψ2(m, n)

ei(1.00m+0.10m2+2.00n+0.20n2) + X(m, n).
(6)

The amplitude random variables ψ1(m, n) ∼ N (6, 0.5) and ψ2(m, n) ∼ N (5, 0.5). The
additive errors X(m, n) ∼ N (0, σ 2). The average estimates, the MSEs and the asymptotic
variances of the proposed estimators for the first and second component parameters are shown
in Figs. 2 and 3 respectively.

Some noteworthy observations from the simulation results are stated below:

• The biases of the estimates are small and are close to 0, which implies that the difference
between the average estimates and the true values of the parameters is negligible.

• For fixed values of M and N , the accuracy of the proposed estimators (measured in terms
of MSEs) progressively decreases as the error variance increases.

• TheMSEs of the estimates decrease as the dimension of the datamatrix increases, thereby
verifying consistency of the proposed estimators.

• The MSEs are observed to be smaller than the theoretical asymptotic variances for most
of the cases.

Clearly, the results of these experiments reveal that the performance of the estimators is
satisfactory. Therefore we can conclude that the proposed method yields accurate estimates
in practice.
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Fig. 2 MSEs and the asymptotic variances of the estimates of the first component when the data is frommodel
(6)

Fig. 3 MSEs and the asymptotic variances of the estimates of the second component when the data is from
model (6)

5 Concluding remarks

In this paper, we study the 2-D random amplitude chirp model and propose an estimation
method to estimate the unknown parameters, the frequencies and chirp rates. The proposed
method maximizes a 2-D periodogram-like function of the squared observations and are con-
sistent and asymptotically normally distributed. A 2-D multicomponent random amplitude
model has also been studied. The unknown parameters are estimated by maximizing the
same periodogram function locally. The maximization is carried out in a neighborhood of
the true value of the parameter vector. The implementation is done step by step. Numerical
experiments have been done to see the small sample performance and reported graphically.
In this paper, we have assumed that the additive error are i.i.d. It will be interesting to see how
the proposed estimators work if the additive error are from a stationary linear process. We
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have not discussed the estimation of parameters of multiplicative as well as additive error; it
needs to be addressed to use the theoretical results in practice. The number of components
in multicomponent model is assumed to be known which will not be the case in practice and
needs to be estimated. Further works are needed in that direction.
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of the Science and Engineering Research Board, Government of India. The authors would like to thank
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Appendix A

In this Appendix, we present the theoretical properties of the proposed estimator of the
unknown parameters present in single component model (1). The following assumptions
are required on the random amplitude sequence {ψ(m, n)} and the additive error sequence
{X(m, n)} to develop the theoretical properties. .

Assumption 1 The random amplitude sequence {ψ(m, n)} is a 2-D sequence of i.i.d. real-
valued random variables with mean μψ , variance σ 2

ψ , μψ �= 0 and σ 2
ψ > 0. The fourth

moment of {ψ(m, n)} exists.

Assumption 2 The sequence of additive error {X(m, n)} is a 2-D sequence of complex-valued
i.i.d. randomvariableswithmean zero and variance σ 2. If X(m, n) = XR(m, n)+i X I (m, n),
then both {XR(m, n)} and {XI (m, n)} are i.i.d. (0, σ 2

2 ), have finite fourth moment γ and they
are independently distributed.

Assumption 3 The sequence of random amplitudes {ψ(m, n)} is assumed to be independent
of the sequence of additive errors {X(m, n)}.

Define a set � = [0, π] × [0, π ] × [0, π ] × [0, π ]. The following assumption apart from
Assumptions 1–3, is required on the true values of the parameters.

Assumption 4 (α0
1, α

0
2, β

0
1 , β

0
2 ) is an interior point of �.

The existence of the fourth moment, stated in Assumption 1, of the random amplitudes
{ψ(m, n)} is required to obtain the theoretical properties of the proposed estimators. The
independence of {ψ(m, n)} and {X(m, n)} is an important assumption to prove the con-
sistency and the asymptotic distribution of the proposed estimators of the frequency and
frequency rate. In the following, we first discuss the method of estimation of the unknown
parameters present in model (1).

We state the consistency result and the asymptotic distribution of the proposed estimators
under Assumptions 1–4 in this Appendix and prove in Appendices C and D, respectively. In
order to prove the consistency it is required to have non-zero mean and finite fourth order
moment of the random amplitude ψ(m, n). The existence of non-zero mean is an essential
assumption for random amplitude which can be thought of as a multiplicative error. We need
the existence of the fourth moment to develop the asymptotic distribution. The following
theorems state the results on the consistency properties and the asymptotic distribution of the
proposed estimators. TheoremA.1 is proved in Appendix C and TheoremA.2 is in Appendix

D. Here
d−→ denotes convergence in distribution.
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Theorem A.1 Under Assumptions 1–4, α̂1, α̂2, ̂β1 and ̂β2 defined in (3), are consistent esti-
mators of α0

1 , α
0
2 , β

0
1 and β0

2 , respectively. 
�
Theorem A.2 Under Assumptions 1–4, as min{M, N } → ∞,

(̂ξ − ξ0)D−1 d−→ N4(0, 4(σ 2
ψ + μ2

ψ)2�−1��−1)

where D = diag

{

1

M
3
2 N

1
2

,
1

M
5
2 N

1
2

,
1

M
1
2 N

3
2

,
1

M
1
2 N

5
2

}

,

� = 2(σ 2
ψ + μ2

ψ)2

3

⎛

⎜

⎜

⎜

⎝

1 1 0 0

1 16
15 0 0

0 0 1 1

0 0 1 16
15

⎞

⎟

⎟

⎟

⎠

, � = Cψ

⎡

⎢

⎢

⎢

⎢

⎣

1
3

1
4

1
4

1
6

1
4

1
5

1
6

1
9

1
4

1
6

1
3

1
4

1
6

1
9

1
4

1
5

⎤

⎥

⎥

⎥

⎥

⎦

,

and Cψ = 8(σ 2
ψ + μ2

ψ)σ 2 + 1
2γ + 1

8σ
4. 
�

It is important to note that under the assumption of normality of the additive error X(m, n),
the asymptotic variance of the proposed estimator̂ξ is the Cramer–Rao lower bound.

The following facts can be deduced from the large sample distribution of̂ξ .

(1) The large-sample variances of α̂1 and α̂2 depend on the random amplitude ψ(m, n),
through its mean μψ and the variance σ 2

ψ as well as on the additive error through the

variance σ 2 and the fourth moment γ . We note that

α̂1 = Op(M
− 3

2 N− 1
2 ), ̂β = Op(M

− 1
2 N− 3

2 ),

α̂2 = Op(M
− 5

2 N− 1
2 ), ̂β2 = Op(M

− 1
2 N− 5

2 ),

according to Theorem A.2, where Op(.) denotes bounded in probability. Therefore, the
chirp rate parameters in both the dimension, α2 and β2 can be estimated more accurately
than the frequency parameters α1 and β1 for a given sample size.

(2) The marginal asymptotic distributions of the estimators of parameters in each dimension
are same when M = N . Then the asymptotic variances of the estimators α̂1, α̂2, ̂β1 and
̂β2 are given by

Var(̂α1) = Var(̂β1) = 93Cψ

M4(σ 2
ψ + μ2

ψ)2
, Var(̂α2) = Var(̂β2) = 135Cψ

M6(σ 2
ψ + μ2

ψ)2
.

(3) The 2-D random amplitude sinusoidal signal model of the form

y(m, n) = ψ(m, n)ei(α
0
1m+β0

1n) + X(m, n)

is a special case of model (1) when α0
2 = β0

2 = 0. The unknown frequencies α0
1 and β0

1
can be estimated by maximizing a similar periodogram function of y2(m, n) as Q(ξ),
defined in (2). The theoretical results related to the estimator follow in the same way as
model (1).

Appendix B

In addition to Assumption 2, the following assumptions are required to establish the theoret-
ical properties of the proposed estimators in case of multicomponent model.
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Assumption 5 The sequence of multiplicative error corresponding to the k-th component
{ψk(m, n)} is a sequence of i.i.d. real-valued random variables with mean μkψ �= 0, vari-
ance σ 2

kψ > 0, and finite fourth moment for k = 1, . . . , p. Additionally, {ψ j (m, n)} and
{ψk(m, n)} for j �= k are independent.

Assumption 6 The sequence of additive error {X(m, n)} is assumed to be independent of
{ψ1(m, n)}, . . . , {ψp(m, n)}.
Assumption 7 (α0

1k, α
0
2k, β

0
1k, β

0
2k) is an interior point of � for k = 1, . . . , p and

(α0
1k, α

0
2k, β

0
1k, β

0
2k) �= (α0

1 j , α
0
2 j , β

0
1 j , β

0
2 j ) for k �= j , j, k = 1, . . . , p.

Similar to the one componentmodel, the estimator̂ξ k of ξ
0
k defined in Sect. 3 is a consistent

estimator and stated below in Theorem B.1. The asymptotic distribution of̂ξ k is stated in
Theorem B.2. The outline of the proof of Theorem B.1 is discussed in Appendix E. The
proof of Theorem B.2 involves similar calculations as the proof of Theorem A.2 and is not
provided here.

Theorem B.1 Under Assumptions 2, and 5–7, ̂ξ k is a consistent estimator of ξ0k , for k =
1, . . . , p. 
�
Theorem B.2 Under Assumptions 2, and 5–7, as min{M, N } −→ ∞

(̂ξ k − ξ0k)D
−1 d−→ N4(0, 4(σ 2

kψ + μ2
kψ)2�−1

k �k�
−1
k )

where Ckψ = 8(σ 2
kψ + μ2

kψ)σ 2 + 1
2γ + 1

8σ
4; D is same as defined in Theorem A.2 and

�k = 2(σ 2
kψ + μ2

kψ)2

3

⎛

⎜

⎜

⎜

⎝

1 1 0 0

1 16
15 0 0

0 0 1 1

0 0 1 16
15

⎞

⎟

⎟

⎟

⎠

, �k = Ckψ

⎛

⎜

⎜

⎜

⎜

⎝

1
3

1
4

1
4

1
6

1
4

1
5

1
6

1
9

1
4

1
6

1
3

1
4

1
6

1
9

1
4

1
5

⎞

⎟

⎟

⎟

⎟

⎠

,

for k = 1, . . . , p. Additionally, (̂ξ k −ξ0k)D
−1 and (̂ξ j −ξ0j )D

−1 for k �= j are asymptotically
independently distributed. 
�

The estimators of the unknown parameters coming from the same chirp component are
asymptotically dependent whereas estimators corresponding to different components are
asymptotically independent. Because of independence of (̂ξ k − ξ0k)D

−1 and (̂ξ j − ξ0j )D
−1

for k �= j , we think that parameters can be estimated using sequential estimation method.

Appendix C

In this Appendix, we first state all the lemmas we require to prove Theorems A.1 and A.2.
Then the consistency of the proposed estimator̂ξ will be proved using these lemmas. Lemmas
1 and 2 will be used to get a compact form of the asymptotic distribution as well as to prove
the consistency of the proposed estimators of the unknown parameters. Lemma 6 provides
a sufficient condition for the proposed estimator to be consistent. Lemma 3 will be used to
verify the condition given in Lemma 6. Lemma 4 is important to prove the consistency of
the proposed estimator in case of multicomponent model (stated in Theorem B.1). Lemma
5 states the convergence of different series involving the squares of the random variable
y(m, n) under Assumptions 1–3.
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Write z(m, n) = y2(m, n) = zR(m, n) + i z I (m, n) and recall that ξ = (α1, α2, β1, β2)
T

and ξ0 = (α0
1, α

0
2, β

0
1 , β

0
2 )

T . Denote a(ξ0;m, n) = α0
1m + α0

2m
2 + β0

1n + β0
2n

2, then

zR(m, n) = ψ2(m, n) cos(2a(ξ0;m, n)) + (X2
R(m, n) − X2

I (m, n))

+2ψ(m, n)XR(m, n) cos(a(ξ0;m, n)) − 2ψ(m, n)XI (m, n) sin(a(ξ0;m, n)),

(7)

zI (m, n) = ψ2(m, n) sin(2a(ξ0;m, n)) + 2ψ(m, n)XI (m, n) cos(a(ξ0;m, n))

+2ψ(m, n)XR(m, n) sin(a(ξ0;m, n)) + 2XR(m, n)XI (m, n). (8)

We now provide the lemmas which are required to prove the consistency of ̂ξ stated in
Theorem A.1 in Appendix A.

Lemma 1 If (ω, δ) ∈ (0, π) × (0, π), then except for a countable number of points

lim
min({M,N }→∞

1

MN

M
∑

m=1

N
∑

n=1

cos(ωm2 + δn2)

= lim
min({M,N }→∞

1

MN

M
∑

m=1

N
∑

n=1

sin(ωm2 + δn2) = 0, (9)

lim
min({M,N }→∞

1

MN

M
∑

m=1

N
∑

n=1

cos2(ωm2 + δn2)

= lim
min({M,N }→∞

1

MN

M
∑

m=1

N
∑

n=1

sin2(ωm2 + δn2) = 1

2
. (10)

Lemma 2 If (α1, α2, β1, β2) ∈ (0, π)× (0, π)× (0, π)× (0, π), then except for a countable
number of points and for l, k = 0, 1, . . ., the followings are true;

(a) lim
min({M,N }→∞

1

MN

M
∑

m=1

N
∑

n=1

cos(α1m + α2m
2 + β1n + β2n

2) = 0,

(b) lim
min({M,N }→∞

1

MN

M
∑

m=1

N
∑

n=1

sin(α1m + α2m
2 + β1n + β2n

2) = 0,

(c) lim
min({M,N }→∞

1

Mk+1Nl+1

M
∑

m=1

N
∑

n=1

mknl cos2(α1m + α2m
2 + β1n + β2n

2)

= 1

2(k + 1)(l + 1)
,

(d) lim
min({M,N }→∞

1

Mk+1Nl+1

M
∑

m=1

N
∑

n=1

mknl sin2(α1m + α2m
2 + β1n + β2n

2)

= 1

2(k + 1)(l + 1)
.

Lemma 3 (Lahiri 2013) Let {X(m, n)} be a 2-D sequence of i.i.d. real-valued random vari-
ables with mean zero and finite variance σ 2 > 0, then for k, l = 0, 1, . . .

lim
min({M,N }→∞ sup

α1,α2,β1,β2

∣

∣

∣

∣

∣

1

Mk+1Nl+1

M
∑

m=1

N
∑

n=1

mknl X(m, n)ei(α1m+α2m2+β1n+β2n2)

∣

∣

∣

∣

∣

a.s.−→ 0.
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Lemma 4 (Grover et al. 2018a) If (ω1, ω2, ω3, ω4) ∈ (0, π) × (0, π) × (0, π) × (0, π) and
(θ1, θ2, θ3, θ4) ∈ (0, π) × (0, π) × (0, π) × (0, π) and (ω1, ω2, ω3, ω4) �= (θ1, θ2, θ3, θ4),
then except for a countable number of points, for k, l = 0, 1, . . ., the following results hold.

(a) lim
min({M,N }→∞

1

M
2k+1
2 N

2l+1
2

M
∑

m=1

N
∑

n=1

cos(ω1m + ω2m
2 + ω3n + ω4n

2) ×

cos(θ1m + θ2m
2 + θ3n + θ4n

2) = 0,

(b) lim
min({M,N }→∞

1

M
2k+1
2 N

2l+1
2

M
∑

m=1

N
∑

n=1

sin(ω1m + ω2m
2 + ω3n + ω4n

2) ×

sin(θ1m + θ2m
2 + θ3n + θ4n

2) = 0,

(c) lim
min({M,N }→∞

1

M
2k+1
2 N

2l+1
2

M
∑

m=1

N
∑

n=1

cos(ω1m + ω2m
2 + ω3n + ω4n

2) ×

sin(θ1m + θ2m
2 + θ3n + θ4n

2) = 0.

Lemma 5 Under Assumptions 1–3, the following results are true for model (1).

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl zR(m, n) cos(2a(ξ0;m, n))
a.s−→ 1

2(k + 1)(l + 1)
(σ 2

ψ + μ2
ψ),

(11)

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl zI (m, n) cos(2a(ξ0;m, n))
a.s−→ 0, (12)

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl zR(m, n) sin(2a(ξ0;m, n))
a.s−→ 0, (13)

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl zI (m, n) sin(2a(ξ0;m, n))
a.s−→ 1

2(k + 1)(l + 1)
(σ 2

ψ + μ2
ψ),

(14)

for k, l = 0, 1, . . . , 4.

Proof of Lemma 5 Note that E[XR(m, n)XI (m, n)] = 0 and Var[XR(m, n)XI (m, n)] = σ 4

4

and so the 2-D sequence {XR(m, n)XI (m, n)} i .i .d.∼ (0, σ 4

4 ). Similarly, under Assumptions
1–3, it can be shown that

{

X2
R(m, n) − X2

I (m, n)
} i .i .d.∼

(

0, 2γ − σ 4

2

)

,

{

ψ(m, n)XR(m, n)
} i .i .d.∼

(

0, (σ 2
ψ + μ2

ψ)
σ 2

2

)

,

{

ψ(m, n)XI (m, n)
} i .i .d.∼ (0,

(

σ 2
ψ + μ2

ψ)
σ 2

2

)

. (15)
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Consider

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl zR(m, n) cos(2a(ξ0;m, n))

= 1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknlψ2(m, n) cos2(2a(ξ0;m, n))

+ 1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl(X2
R(m, n) − X2

I (m, n)) cos(2a(ξ0;m, n))

+ 2

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknlψ(m, n)XR(m, n) cos(a(ξ0;m, n)) cos(2a(ξ0;m, n))

+ 2

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknlψ(m, n)XI (m, n) sin(a(ξ0;m, n)) cos(2a(ξ0;m, n)).

Then, {(X2
R(m, n) − X2

I (m, n))} is a sequence of i.i.d. random variables with mean zero and
finite variance. Therefore, the second term converges to zero as min{M, N } −→ ∞ using
Lemma 3. Similarly, the third and fourth terms also converge to zero as min{M, N } −→ ∞
using (15). The first term in the above expression can be written as

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknlψ2(m, n) cos2(2a(ξ0;m, n))

= 1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl
(

ψ2(m, n) − E[ψ2(m, n)]
)

cos2(2a(ξ0;m, n))

+ 1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl E[ψ2(m, n)] cos2(2a(ξ0;m, n))

a.s.−→ 0 + 1

2(k + 1)(l + 1)
E[ψ2(m, n)]

= 1

2(k + 1)(l + 1)
(σ 2

ψ + μ2
ψ),

using Lemma 2. We have used the fact that the fourth moment of ψ(m, n) exists. The other
three results, given in (12), (13) and (14) can be proved in a similar way. 
�

Lemma 6 Let̂ξ = (̂α1, α̂2,̂β1,̂β2)
T be an estimate of ξ0 = (α0

1, α
0
2, β

0
1 , β

0
2 )

T thatmaximizes

Q(ξ), defined in (2) and for any ε > 0, let Sξ0

ε = {

ξ : |ξ − ξ0| > 4ε
}

for some fixed
ξ0 ∈ (0, π) × (0, π) × (0, π) × (0, π). If for any ε > 0, as min{M, N } −→ ∞

lim sup sup
Sξ0
ε

1

MN

[

Q(ξ) − Q(ξ0)
] ≤ 0, a.s. (16)

then as min{M, N } −→ ∞,̂ξ −→ ξ0 a.s.

Proof of Lemma 6 This lemma can be proved by contradiction similarly as Wu (1981). 
�
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Proof of Theorem A.1 Expanding Q(ξ) around ξ0 and using y2(m, n) = z(m, n) =
zR(m, n) + i z I (m, n), it can be written as

1

MN

[

Q(ξ) − Q(ξ0)
]

=
[ 1

MN

M
∑

m=1

N
∑

n=1

{

zR(m, n) cos(2a(ξ ;m, n)) + zI (m, n) sin(2a(ξ ;m, n))
}]2

+
[ 1

MN

M
∑

m=1

N
∑

n=1

{

−zR(m, n) sin(2a(ξ ;m, n)) + zI (m, n) cos(2a(ξ ;m, n))
}]2

−
[ 1

MN

M
∑

m=1

N
∑

n=1

{

zR(m, n) cos(2a(ξ0;m, n)) + zI (m, n) sin(2a(ξ0;m, n))
}]2

−
[ 1

MN

M
∑

m=1

N
∑

n=1

{

−zR(m, n) sin(2a(ξ0;m, n)) + zI (m, n) cos(2a(ξ0;m, n))
}]2

= T1 + T2 + T3 + T4.

Using Lemma 5 with k = l = 0, we have

1

MN

M
∑

m=1

N
∑

n=1

zR(m, n) cos(2a(ξ0;m, n))
a.s.−→ 1

2
(σ 2

ψ + μ2
ψ),

1

MN

M
∑

m=1

N
∑

n=1

zI (m, n) cos(2a(ξ0;m, n))
a.s.−→ 0,

1

MN

M
∑

m=1

N
∑

n=1

zR(m, n) sin(2a(ξ0;m, n))
a.s.−→ 0,

1

MN

M
∑

m=1

N
∑

n=1

zI (m, n) sin(2a(ξ0;m, n))
a.s.−→ 1

2
(σ 2

ψ + μ2
ψ).

Therefore,

lim
n−→∞ T3 = −(σ 2

ψ + μ2
ψ)2 and lim

n−→∞ T4 = 0.

Now

limmin{M,N }→∞ sup
Sξ0
ε

T1

= limmin{M,N }→∞ sup
Sξ0
ε

[ 1

MN

M
∑

m=1

N
∑

n=1

{

zR(m, n) cos(2a(ξ ;m, n))

+zI (m, n) sin(2a(ξ ;m, n))
}]2

= limM,N→∞ sup
Sξ0
ε

[ 1

MN

M
∑

m=1

N
∑

n=1

{

ψ2(m, n) cos[2a(ξ0 − ξ ;m, n)]

+2X2
R(m, n)X2

I (m, n) sin(2a(ξ ;m, n))
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+(X2
R(m, n) − X2

I (m, n)) cos(2a(ξ ;m, n))

+2ψ(m, n)XR(m, n) cos[a(2ξ0 − ξ ;m, n)]
+2ψ(m, n)XI (m, n) sin[(a(2ξ0 − ξ ;m, n)]

}]2

= limM,N→∞ sup
|ξ0−ξ |>ε

[ 1

MN

M
∑

m=1

N
∑

n=1

{

(ψ2(m, n)

−(σ 2
ψ + μ2

ψ)) cos[2a(ξ0 − ξ ;m, n)]
+2ψ(m, n)XR(m, n) cos[(a(2ξ0 − ξ ;m, n)]
+2ψ(m, n)XI (m, n) sin[(a(2ξ0 − ξ ;m, n)]
+(σ 2

ψ + μ2
ψ) cos[2a(ξ0 − ξ ;m, n)]

}]2

[

The second and third terms tend to zero for large M, N using Lemma 3
]

a.s.−→ 0,

using Lemmas 1 and 3. Similarly, we can show that limn−→∞ sup
Sξ0
ε

T2
a.s.−→ 0. Therefore,

limmin{M,N }→∞ sup
Sξ0
ε

1

MN

[

Q(ξ) − Q(ξ0)
] = limmin{M,N }→∞ sup

Sε

[

T1 + T2 + T3 + T4
]

→ −(σ 2
ψ + μ2

ψ)2 < 0 a.s.

Hence, using Lemma 6, α̂1, α̂2, ̂β1 and ̂β2 which maximize Q(ξ) are consistent estimators
of α0

1 , α
0
2 , β

0
1 and β0

2 , respectively. 
�

Appendix D

Theorem A.2 is proved in this Appendix which states the asymptotic distribution of the
proposed estimators of the unknown parameters of the single component model (1). The
proof first uses the multivariate Taylor series expansion of the first order derivative vector of
Q(ξ) up to the first order term. The first order derivatives of Q(ξ) with respect to αk , and βk ,
k = 1, 2 are given below;

∂Q(ξ)

∂αk
= 2

MN
f1(ξ)g1(k; ξ) + 2

MN
f2(ξ)g2(k; ξ), (17)

∂Q(ξ)

∂βk
= 2

MN
f1(ξ)h1(k; ξ) + 2

MN
f2(ξ)h2(k; ξ), (18)

where

f1(ξ) =
M
∑

m=1

N
∑

n=1

[

zR(m, n) cos(2a(ξ ;m, n)) + zI (m, n) sin(2a(ξ ;m, n))
]

,

f2(ξ) =
M
∑

m=1

N
∑

n=1

[

zI (m, n) cos(2a(ξ ;m, n)) − zR(m, n) sin(2a(ξ ;m, n))
]

,
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g1(k; ξ) =
M
∑

m=1

N
∑

n=1

2mk
[

zI (m, n) cos(2a(ξ ;m, n)) − zR(m, n) sin(2a(ξ ;m, n))
]

,

g2(k; ξ) =
M
∑

m=1

N
∑

n=1

2mk
[

−zI (m, n) sin(2a(ξ ;m, n)) − zR(m, n) cos(2a(ξ ;m, n))
]

,

h1(k; ξ) =
M
∑

m=1

N
∑

n=1

2nk
[

zI (m, n) cos(2a(ξ ;m, n)) − zR(m, n) sin(2a(ξ ;m, n))
]

,

h2(k; ξ) =
M
∑

m=1

N
∑

n=1

2nk
[

−zI (m, n) sin(2a(ξ ;m, n)) − zR(m, n) cos(2a(ξ ;m, n))
]

.

Now using Lemma 5 with k = l = 0, it immediately follows that

(a) lim
min{M,N }→∞

1

MN
f1(ξ

0) = (σ 2
ψ + μ2

ψ) and (b) lim
min{M,N }→∞

1

MN
f2(ξ

0) = 0 a.s.

(19)

Therefore, for large M and N ,

∂Q(ξ)

∂αk

∣

∣

∣

∣

ξ=ξ0
= 2

MN
f1(ξ

0)g1(k; ξ0) and

∂Q(ξ)

∂βk

∣

∣

∣

∣

ξ=ξ0
= 2

MN
f1(ξ

0)h1(k; ξ0), k = 1, 2,

due to (b)part of (19), ignoring second terms in (17) and (18)which involve f2(ξ). The second
order derivatives of Q(ξ) with respect to αk and βk for k = 1, 2 with proper normalizations
can be calculated.

Now, we can show the following using Lemma 5, for k, l = 0, . . . , 4,

lim
min{M,N }→∞

1

M3N

∂2Q(ξ)

∂α2
1

∣

∣

∣

∣

∣

ξ0

= −2

3
(σ 2

ψ + μ2
ψ)2 = lim

min{M,N }→∞
1

MN 3

∂2Q(ξ)

∂β2
1

∣

∣

∣

∣

∣

ξ0

,

lim
min{M,N }→∞

1

M5N

∂2Q(ξ)

∂α2
2

∣

∣

∣

∣

∣

ξ0

= −32

45
(σ 2

ψ + μ2
ψ)2 = lim

min{M,N }→∞
1

MN 5

∂2Q(ξ)

∂β2
2

∣

∣

∣

∣

∣

ξ0

,

lim
min{M,N }→∞

1

M4N

∂2Q(ξ)

∂α1∂α2

∣

∣

∣

∣

ξ0
= −2

3
(σ 2

ψ + μ2
ψ)2 = lim

min{M,N }→∞
1

MN 4

∂2Q(ξ)

∂β1∂β2

∣

∣

∣

∣

ξ0
,

lim
min{M,N }→∞

1

M2N 2

∂2Q(ξ)

∂α1∂β1

∣

∣

∣

∣

ξ0
= 0 = lim

min{M,N }→∞
1

M3N 3

∂2Q(ξ)

∂α2∂β2

∣

∣

∣

∣

ξ0
,

lim
min{M,N }→∞

1

M2N 3

∂2Q(ξ)

∂α1∂β2

∣

∣

∣

∣

ξ0
= 0 = lim

min{M,N }→∞
1

M3N 2

∂2Q(ξ)

∂α2∂β1

∣

∣

∣

∣

ξ0
. (20)

Write Q′(ξ) =
(

∂Q(ξ)

∂α1
,
∂Q(ξ)

∂α2
,
∂Q(ξ)

∂β1
,
∂Q(ξ)

∂β2

)T

as the 4×1 vector of first order deriva-

tives ofQ(ξ) and letQ′′(ξ)be the 4×4matrix of secondorder derivatives of ofQ(ξ). Consider
the diagonal matrix D given in Theorem A.2. The diagonal entries of D correspond to the
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rate of convergence of each parameter estimator. Expand Q′(̂ξ) using bivariate Taylor series
expansion around ξ0,

Q′(̂ξ) − Q′(ξ0) = Q′′(ξ̄)(̂ξ − ξ0),

where ξ̄ is a point lies on the line joininĝξ and ξ0. Observe that Q′(̂ξ) = 0 aŝξ maximizes
Q(ξ), the above equation can be written as

−[DQ′(ξ0)] = DQ′′(ξ̄)DD−1(̂ξ − ξ0)

⇒ D−1(̂ξ − ξ0) = −[DQ′′(ξ̄)D]−1[DQ′(ξ0)],
provided [DQ′′(ξ̄)D] is an invertible matrix a.s. Because ̂ξ −→ ξ0 a.s. and Q′′(ξ) is a
continuous function of ξ , we have

lim
min{M,N }→∞[DQ′′(ξ̄)D] = lim

min{M,N }→∞[DQ′′(ξ0)D] = −�,

using continuous mapping theorem. The matrix � can be obtained using limits given in (20)
as

� = 2(σ 2
ψ + μ2

ψ)2

3

⎛

⎜

⎜

⎝

1 1 0 0
1 16

15 0 0
0 0 1 1
0 0 1 16

15

⎞

⎟

⎟

⎠

.

Write G1 =
[

1 1
1 16

15

]

, then � =
[

G1 0
0 G1

]

where 0 is a 2 × 2 zero matrix. Using (19),

the elements of DQ′(ξ0) are

1

M
3
2 N

1
2

∂Q(ξ)

∂α1

∣

∣

∣

∣

ξ0
= 2

1

MN
f1(ξ

0)
1

M
3
2 N

1
2

g1(1; ξ0),

1

M
5
2 N

1
2

∂Q(ξ)

∂α2

∣

∣

∣

∣

ξ0
= 2

1

MN
f1(ξ

0)
1

M
5
2 N

1
2

g1(2; ξ0),

1

M
1
2 N

3
2

∂Q(ξ)

∂β1

∣

∣

∣

∣

ξ0
= 2

1

MN
f1(ξ

0)
1

M
1
2 N

3
2

h1(1; ξ0),

1

M
1
2 N

5
2

∂Q(ξ)

∂β2

∣

∣

∣

∣

ξ0
= 2

1

MN
f1(ξ

0)
1

M
1
2 N

5
2

h1(2; ξ0),

for large M and N . Therefore, to find the asymptotic distribution of DQ′(ξ0), we need to
study the large sample distribution of 1

M
3
2 N

1
2
g1(1; ξ0) in the first term, 1

M
5
2 N

1
2
g1(2; ξ0) in

the second term and so on. Replacing zR(m, n) and zI (m, n) in g1(k; ξ0), k = 1, 2, we have

1

M
2k+1
2 N

1
2

g1(k; ξ0) = 2

M
2k+1
2 N

1
2

M
∑

m=1

N
∑

n=1

mkzI (m, n) cos(2a(ξ0;m, n))

− 2

M
2k+1
2 N

1
2

M
∑

m=1

N
∑

n=1

mkzR(m, n) sin(2a(ξ0;m, n))

= 4

M
2k+1
2 N

1
2

M
∑

m=1

N
∑

n=1

mk XR(m, n)XI (m, n) cos(2a(ξ0;m, n))
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+ 4

M
2k+1
2 N

1
2

M
∑

m=1

N
∑

n=1

mkψ(m, n)XI (m, n) cos(a(ξ0;m, n))

− 4

M
2k+1
2 N

1
2

M
∑

m=1

N
∑

n=1

mkψ(m, n)XR(m, n) sin(a(ξ0;m, n))

− 2

M
2k+1
2 N

1
2

M
∑

m=1

N
∑

n=1

mk(X2
R(m, n) − X2

I (m, n)) sin(2a(ξ0;m, n)).

The sequence of random variables {XR(m, n)XI (m, n)}, {ψ(m, n)XR(m, n)}, {ψ(m, n)

XI (m, n)} and {(X2
R(m, n) − X2

I (m, n))} are all zero mean and finite variance i.i.d. random
variables (usingLemma5). Therefore, E[ 1

M
3
2 N

1
2
g1(1; ξ0)] = 0 and E[ 1

M
5
2 N

1
2
g1(2; ξ0)] = 0

for large M and N . We observe that all the terms above satisfy the Lindeberg-Feller’s con-
dition. So, 1

M
3
2 N

1
2
g1(1; ξ0) and 1

M
5
2 N

1
2
g1(2; ξ0) converge to normal distributions with zero

mean and finite variances.
Similarly, 1

M
1
2 N

3
2
h1(1; ξ0) and 1

M
1
2 N

5
2
h1(2; ξ0) also converge to normal distribution. In

order to find the large sample variances and covariances of elements of DQ′(ξ0), we first
find the variance of 1

M
3
2 N

1
2
g1(1; ξ0) for large M and N .

Var
[ 1

M
3
2 N

1
2

g1(1; ξ0)
]

= 1

M3N
Var

[
M
∑

m=1

N
∑

n=1

m
{

4XR(m, n)XI (m, n) cos(2a(ξ0;m, n))

+4ψ(m, n)XI (m, n) cos(a(ξ0;m, n))

−4ψ(m, n)XR(m, n) sin(a(ξ0;m, n))

−2(X2
R(m, n) − X2

I (m, n)) sin(2a(ξ0;m, n))
}]

= 1

M3N
E

[

16
M
∑

m=1

N
∑

n=1

m2X2
R(m, n)X2

I (m, n) cos2(2a(ξ0;m, n))

+16
M
∑

m=1

N
∑

n=1

m2ψ2(m, n)X2
I (m, n) cos2(a(ξ0;m, n))

+16
M
∑

m=1

N
∑

n=1

m2ψ2(m, n)X2
R(m, n) sin2(a(ξ0;m, n))

+4
M
∑

m=1

N
∑

n=1

m2(X2
R(m, n) − X2

I (m, n))2 sin2(2a(ξ0;m, n))

]

[

The cross-product terms become zero using Lemma 1 and independence of

ψ(m, n), XR(m, n) and XI (m, n).
]
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−→ 16.
σ 2

2
.
σ 2

2
.
1

6
+ 16.

σ 2

2
.(σ 2

ψ + μ2
ψ).

1

6
+ 16.

σ 2

2
.(σ 2

ψ + μ2
ψ).

1

6
+ 4.(2γ − σ 4

2
)
1

6

= 8

3

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4].

Similarly, we can show as min{M, N } −→ ∞,

Var
[ 1

M
5
2 N

1
2

g1(2; ξ0)
]

−→ 8

5

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Cov
[ 1

M
3
2 N

1
2

g1(1; ξ0),
1

M
5
2 N

1
2

g1(2; ξ0)
]

−→ 2
[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Var
[ 1

M
1
2 N

3
2

h1(1; ξ0)
]

−→ 8

3

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Var
[ 1

M
1
2 N

5
2

h1(2; ξ0)
]

−→ 8

5

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Cov
[ 1

M
1
2 N

3
2

h1(1; ξ0),
1

M
1
2 N

5
2

h1(2; ξ0)
]

−→ 2
[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Cov
[ 1

M
3
2 N

1
2

g1(1; ξ0),
1

M
1
2 N

3
2

h1(1; ξ0)
]

−→ 2
[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Cov
[ 1

M
5
2 N

1
2

g1(2; ξ0),
1

M
1
2 N

5
2

h1(2; ξ0)
]

−→ 8

9

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Cov
[ 1

M
3
2 N

1
2

g1(1; ξ0),
1

M
1
2 N

5
2

h1(2; ξ0)
]

−→ 4

3

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4],

Cov
[ 1

M
5
2 N

1
2

g1(2; ξ0),
1

M
1
2 N

3
2

h1(1; ξ0)
]

−→ 4

3

[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4].

Now, note that DQ′(ξ0) can be written as

DQ′(ξ0) = 2

MN
f1(ξ

0)

×
[ 1

M
3
2 N

1
2

g1(1; ξ0),
1

M
5
2 N

1
2

g1(2; ξ0),
1

M
1
2 N

3
2

h1(1; ξ0),
1

M
1
2 N

5
2

h1(2; ξ0)
]

.

(21)

Then, as min{M, N } −→ ∞, 2
MN f1(ξ

0)
a.s.−→ 2(σ 2

ψ + μ2
ψ) using (19) and

[ 1

M
3
2 N

1
2

g1(1; ξ0),
1

M
5
2 N

1
2

g1(2; ξ0),
1

M
1
2 N

3
2

h1(1; ξ0),
1

M
1
2 N

5
2

h1(2; ξ0)
]

d−→ N4(0,�),

where

� = 8
[

(σ 2
ψ + μ2

ψ)σ 2 + 1

2
γ + 1

8
σ 4]

⎡

⎢

⎢

⎢

⎢

⎣

1
3

1
4

1
4

1
6

1
4

1
5

1
6

1
9

1
4

1
6

1
3

1
4

1
6

1
9

1
4

1
5

⎤

⎥

⎥

⎥

⎥

⎦

.

Therefore, Slutsky’s theorem can be applied in (21) and as n −→ ∞, we have

DQ′(ξ0) d−→ N4(0, 4(σ 2
ψ + μ2

ψ)2�),
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and hence

D−1(̂ξ − ξ0)
d−→ N4(0, 4(σ 2

ψ + μ2
ψ)2�−1��−1).

That proves the theorem. 
�

Appendix E

In this Appendix, we provide an outline of the proof of Theorem B.1. Write

J (ξ) = 1

MN

∣

∣

∣

∣

∣

M
∑

m=1

N
∑

n=1

y2(m, n)e−i2(α1m+α2m2+β1n+β2n2)

∣

∣

∣

∣

∣

2

where y(m, n) is from the multicomponent model (4). Also write x(m, n) = y2(m, n) and
x(m, n) = xR(m, n) + i xI (m, n), then xR(m, n) and xI (m, n) are explicitly given by

xR(m, n) =
p

∑

k=1

ψ2
k (m, n) cos(2a(ξ0k;m, n))

+2
∑

k �= j

ψk(m, n)ψ j (m, n) cos(a(ξ0k + ξ0j ;m, n))

+(X2
R(m, n) − X2

I (m, n)) + 2
p

∑

k=1

ψk(m, n)
{

XR(m, n) cos(a(ξ0k;m, n))

−XI (m, n) sin(a(ξ0k;m, n))
}

xI (m, n) =
p

∑

k=1

ψ2
k (m, n) sin(2a(ξ0k;m, n))

+2
∑

k �= j

ψk(m, n)ψ j (m, n) sin(a(ξ0k + ξ0j ;m, n))

+2XR(m, n)XI (m, n) + 2
p

∑

k=1

ψk(m, n)
{

XR(m, n) sin(a(ξ0k;m, n))

+XI (m, n) cos(a(ξ0k;m, n))
}

.

using the notation a(ξ0k;m, n) = α0
1km +α0

2km
2 +β0

1kn +β0
2kn

2. To prove Theorem B.1, an
equivalent lemma to Lemma 5 is required for the multicomponent model given in (4).

Lemma 7 Under Assumptions 2, 5 and 6, the following results are true for model (4).

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl xR(m, n) cos(2a(ξ0k;m, n))
a.s−→ 1

2(k + 1)(l + 1)
(σ 2

kψ + μ2
kψ),

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl xI (m, n) cos(2a(ξ0k;m, n))
a.s−→ 0,
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1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl xR(m, n) sin(2a(ξ0k;m, n))
a.s−→ 0,

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl xI (m, n) sin(2a(ξ0k;m, n))
a.s−→ 1

2(k + 1)(l + 1)
(σ 2

kψ + μ2
kψ),

for k, l = 0, 1, . . . , 4.

Proof of Lemma 7 Observe that we can show that

{

XR(m, n)XI (m, n)
} i .i .d.∼ (0,

σ 4

4
),

{

X2
R(m, n) − X2

I (m, n)
} i .i .d.∼

(

0, 2γ − σ 4

2

)

,

{

ψk(m, n)XR(m, n)
} i .i .d.∼

(

0,
(

σ 2
kψ + μ2

kψ

) σ 2

2

)

,

{

ψk(m, n)XI (m, n)
} i .i .d.∼

(

0, (σ 2
kψ + μ2

kψ)
σ 2

2

)

, k = 1, . . . , p. (22)

Consider

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl xR(m, n) cos(2a(ξ0k;m, n))

= 1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl

⎧

⎨

⎩

p
∑

j=1

ψ2
j (m, n) cos2(2a(ξ0j ;m, n))

⎫

⎬

⎭

cos2(2a(ξ0k;m, n))

+ 1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl(X2
R(m, n) − X2

I (m, n)) cos(2a(ξ0k;m, n))

+ 2

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl
p

∑

j=1

ψ j (m, n)XR(m, n) cos(a(ξ0j ;m, n)) cos(2a(ξ0k;m, n))

− 2

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl
p

∑

j=1

ψ j (m, n)XI (m, n) sin(a(ξ0j ;m, n)) cos(2a(ξ0k;m, n))

+ 2

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl
∑

j �=k

ψ j (m, n)ψk(m, n) cos(a(ξ0k + ξ0j ;m, n)) cos(2a(ξ0k;m, n)).

As {X2
R(m, n) − X2

I (m, n)}, {ψ j (m, n)XR(m, n)} and {ψ j (m, n)XI (m, n)} are sequences
of i.i.d. random variables with mean zero and finite variance, the second, third and fourth
terms vanish for large M and N using Lemma 3. Using independence of {ψ j (m, n)} and
{ψk(m, n)} and part (a) of Lemma 4, the last term goes to zero as M, N → ∞. Similarly as
in the proof of Lemma 5, using Lemma 2, the first term can be shown as

1

Mk+1

1

Nl+1

M
∑

m=1

N
∑

n=1

mknl

⎧

⎨

⎩

p
∑

j=1

ψ2
j (m, n) cos2(2a(ξ0j ;m, n))

⎫

⎬

⎭

cos2(2a(ξ0k;m, n))

a.s.−→ 1

2(k + 1)(l + 1)
(σ 2

kψ + μ2
kψ).

The other three results can be proved similarly. 
�
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In order to prove Theorem B.1, a lemma involving J (ξ), similar to Lemma 6 is also
required. Then, it can be shown that for k = 1, . . . , p

1

MN
J (ξ0k) → (σ 2

kψ + μ2
kψ), a.s.

and

limM,N→∞ sup
Skε

1

MN
J (ξ k) = 0 a.s.

where Skε = {

ξ k : |ξ k − ξ0k | > ε
}

for some fixed ξ0k ∈ (0, π) × (0, π) × (0, π) × (0, π).
Therefore,

limM,N→∞ sup
Skε

1

MN

[

J (ξ k) − J (ξ0k)
]

< 0 a.s.

and the estimator̂ξ k of ξ0k that maximizes J (ξ) locally, is a consistent estimator. 
�
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