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Abstract
To address the issue of steering vector mismatch, a robust adaptive beamforming design 
via steering vector optimization is proposed in this paper. Different from conventional stud-
ies, this paper resolves the exact desired signal (DS) steering vector through formulating 
an array output power maximization problem subjected to noise subspace (NS) based and 
interference subspace (IS) based constraints. Under the condition that the NS is ready to 
be attained while the IS is hard to be got, two efficient interference-plus-noise covariance 
matrix (INCM) reconstruction means, i.e. direct DS matrix removal from sample covari-
ance matrix and indirect DS blocking from training data and matrix transition, are derived 
to estimate the IS with high accuracy. Herein, after resolving DS steering vector, the weight 
vectors are thereby extracted with orthogonal projection (OP) criterion. Numerical simula-
tions verify that the devised methods can outperform the existing ones and obtain almost 
optimal performance across a wide range of DS power.

Keywords Adaptive beamforming · Steering vector optimization · Subspace-based 
constraints · INCM reconstruction · OP criterion

1 Introduction

As a practicable technique to preserve the desired signal (DS) and reject the interferences 
simultaneously, adaptive beamforming design garners much attention in radar, remote 
sensing, wireless communication, sonar, and seismology, etc. Reed et al., 1974; Lorenz & 
Boyed, 2005; Fabrizio et al., 2003). The Capon beamformer (Capon, 1969), as a prominent 
adaptive method, can hold outstanding performance when the true steering vector of the 
DS is employed. However, in view of the existence of the DS component in the training 
data, this beamformer may suffer from self-nulling effect when the steering vector of the 
DS mismatches its true value (Shahbazpanahi et al., 2003; Tu & Ng, 2014; Zhang et al., 
2021a).

To make the Capon beamformer insensitive to steering vector mismatch, several algo-
rithms have been promoted in past decades. For instance, the loading methods in (Li et al., 
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(2003); Mestre & Lagunas, 2006; Du et al., 2010; Zhuang et al., 2016) are known as fea-
sible techniques, including the diagonal loading (DL) approach in (Li et al., 2003) which 
adds a fixed identity matrix to the sample covariance matrix (SCM). The variable diago-
nal loading (VDL) approach in (Zhuang et al., 2016) loads a variable matrix that amends 
the loading factor in accordance with input signal-to-noise ratio (SNR). To proceed, the 
eigen-subspace beamformer (ESB) in (Feldman & Griffiths, 1994) and modified eigen-sub-
space beamformer (MESB) in (Huang et al., 2012) project the DS steering vector onto the 
signal-plus-interference subspace (SIS) and signal subspace (SS), respectively, to mitigate 
steering vector mismatch. Moreover, along with the fast development on convex optimiza-
tion theory, a class of robust algorithms based on steering vector constrained optimization 
appears (Hassanien & Wong, 2008; Khabbazibasmenj & Hassanien, 2012; Lie et al., 2011; 
Stoica et al., 2003), such as the robust Capon beamformer (RCB) in (Stoica et al., 2003), 
of which the core concept is to estimate the DS steering vector in a given uncertainty set 
by maximizing array output power. In (Hassanien & Wong, 2008), the sequential quadratic 
programming (SQP) algorithm aims to estimate the steering vector of the DS by finding the 
vector that owns maximum array output power and subjects to some specific constraints. 
Nonetheless, in terms of that the aforementioned approaches make use of the SCM, which 
contains significant DS component at strong input SNR case, to finish beamforming, they 
cannot work well because the exact DS would be wrongly suppressed as an interference.

Recently, a large deal of interference-plus-noise covariance matrix (INCM) reconstruc-
tion approaches in (Gu & Leshem, 2012; Huang et  al., 2015; Li et  al., 2019; Xie et  al., 
2019; Yang et al., 2017; Yuan & Gan, 2017; Zhu et al., 2020) has been studied to reduce 
the impact of the DS component in the SCM. The INCM-quadratically constrained quad-
ratically programming (INCM-QCQP) algorithm in (Gu & Leshem, 2012) reconstructs 
the INCM with the Capon spectrum in the outside region of the DS’s and establishes an 
QCQP problem to correct the DS steering vector. In (Yuan & Gan, 2017), a novel sub-
space- based-INCM (NS-INCM) estimation method suggests to pre-estimate the steering 
vectors of the interferences with the Capon spectrum in each interference region, then uti-
lizes the ESB to further improve the interference steering vectors. In addition, the middle 
sub-array-INCM reconstruction (MSA-INCM) algorithm in (Li et  al., 2019) proposes to 
determine a selection matrix to convert the training samples with mutual coupling into the 
middle sub-array training data without mutual coupling, then combines the similar idea in 
the INCM-QCQP to estimate the INCM. Unfortunately, since the aforesaid INCM recon-
struction algorithms always need to act Capon spectrum integral or interference steering 
vectors optimization with the help of prior information about the interference regions or 
directions, they are not only computationally inefficient in the situation of multiple interfer-
ences but also significantly vulnerable to the imprecise information of the interferences.

Lately, a steering vector of the DS and INCM alternative and iterative estimation robust 
beamformer (AIERB) is derived in (Yang et al., 2020), of which the steering vector of the 
DS and INCM are estimated by optimizing the vector nearing the SS as much as possible 
and separating the DS component from the training data, respectively. Although this algo-
rithm makes great progress in maintaining undistorted response on the DS without reduc-
ing anti-interference capability, it cannot be applied at low input SNR case in terms of the 
subspace swap effect. Additionally, this beamformer needs a lot of iterative processes to 
guarantee that the estimated DS steering vector and INCM can converge optimal values.

In this paper, a DS steering vector optimization problem with subspace-based con-
strains is provided to tackle steering vector mismatch. The basic principle of the proposed 
optimization problem is to maximize the array output power as well as force the revised 
steering vector not approaching the noise subspace (NS) and interference subspace (IS) 
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simultaneously. The NS can be easily acquired by eigen-decomposing the SCM but the IS 
is tough to be estimated because the training samples involve the DS in general. In such 
cases, two original INCM reconstruction means, i.e. direct DS matrix removal and indi-
rect DS blocking and matrix transition, are thus developed to get a faithful IS. Up to now, 
through settling the optimization problem with the NS and IS, the steering vector of the DS 
is estimated indeed, which follows the beamforming weight vector extractions by means of 
orthogonal projection (OP) criterion (Subbaram & Abend, 1993). Unlike the AIERB, the 
devised approaches are free of iterative procedures, and able to provide satisfactory output 
SINR at low DS power level case.

This paper contributes to the adaptive beamforming field in the following aspects.

(1) A novel steering vector of the DS optimization problem using subspace-based con-
straints is proposed to mitigate steering vector mismatch, whose core idea is to estimate 
the DS steering vector by maximizing array output power and compelling the steering 
vector after correction getting away from the NS and IS. The derived steering vector 
optimization problem with such constraints is capable of overcoming the steering vec-
tor of the DS mismatch at both weak and strong DS scenarios.

(2) Two efficient INCM reconstruction ways, which are based upon direct DS matrix 
removal and indirect DS blocking and matrix transition, respectively, are developed to 
estimate the IS needed in the DS steering vector optimization. The presented INCM 
reconstruction means can operate well in the case of direction error and array imper-
fections without performing Capon spectrum integral or interference steering vectors 
estimation.

(3) Two OP criterion-based weight vector extraction schemes are investigated to improve 
the robustness of the promoted robust adaptive beamformers. Thus, the designed meth-
ods can be used in limited number of snapshots scenario due to the fast convergence 
of the OP criterion.

(4) The computational complexity of the offered algorithms are analyzed, and some impor-
tant factors on completing the derived beamformers are discussed in detail. Moreover, 
the output SINR of the proposed and state-of-the-art methods are simulated to validate 
the effectiveness of ours through typical experiments.

The rest of this paper is organized as follows. The signal model is given in Sect. 2. Con-
ventional optimization algorithms are presented in Sect. 3. In Sect. 4, the proposed algo-
rithms are introduced in detail. Section 5 contains several simulations. Conclusion is drawn 
in Sect. 6.

2  Signal model

Consider a linear array with M elements, receiving far-field narrowband signals includ-
ing one DS from �0 and J interferences from �i, i = 1, 2,⋯ , J . The training data at the kth 
snapshot is modeled as:

(1)�(k) = �(�0)s0(k) +

J∑

i=1

�(�i)si(k) + �(k)
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where �(�i), i = 0, 1,⋯ , J and si(k), i = 0, 1,⋯ , J represent the signal steering vectors and 
waveforms, respectively, �(k) denotes the Gaussian white noise component. Here the DS 
component, interference component, and noise component are constantly incoherent at 
each snapshot. Then, the ideal covariance matrix can be written as:

where E{⋅} and (⋅)H denote the statistical expectation and conjugate transpose, respectively, 
�S = �2

0
�(�0)�

H(�0) and �IN =
∑J

i=1
�2

i
�(�i)�

H(�i) + �2
n
� stand for the ideal DS matrix with 

the DS power �2

0
 and INCM with the interference powers �2

i
, i = 1, 2,⋯ , J , respectively, �2

n
 

and � denote the noise power and identity matrix, respectively.
Aiming at minimizing array output power with maintaining permanent response to the DS, 

the Capon beamformer can achieve maximum output SINR in the case of actual DS steering 
vector �(�0) . The Capon beamformer is always formulated as (Shahbazpanahi et al., 2003):

with the solution �Capon = �−1�(�0)∕�
H(�0)�

−1�(�0).
Since the ideal covariance matrix � cannot be reached in practical engineering, it is always 

replaced by the SCM:

where K denotes the number of snapshots.

3  Conventional algorithms

As mentioned earlier, if the DS steering vector is not accurate, the performance of the Capon 
beamformer will severely drop. To combat this issue, Li et al. have created the steering vector 
of the DS optimization problem as (Stoica et al., 2003):

where 𝜃0 and � stand for the presumed direction of the DS and uncertainty set level, respec-
tively, || ⋅ ||2 is the L-2 norm operator. The main weaknesses of this method are that the 
uncertainty set level is hard to be optimally determined and �(�0) may converge to the 
interference directions.

In view of the shortcomings in (5), Gu et al. have provided to correct the DS steering vector 
with the following optimization problem (Gu & Leshem, 2012):

(2)� = E{�(k)�H(k)} = �S + �IN

(3)
min
�

�H��

s.t. �H�(�0) = 1

(4)�̂ =
1

K

K∑

k=1

�(k)�H(k)

(5)
min
�(𝜃0)

�H(𝜃0)�̂
−1�(𝜃0)

s.t. ||�(𝜃0) − �(𝜃0)||22 ≤ 𝜀

(6)
min
�⊥

(�(𝜃0) + �⊥)
H�−1

IN
(�(𝜃0) + �⊥)

s.t.
(�(𝜃0) + �⊥)

H�IN(�(𝜃0) + �⊥) ≤ �H(𝜃0)�IN�(𝜃0)

�H(𝜃0)�⊥ = 0
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where �⊥ stands for the mismatch vector orthogonal to �(𝜃0) . Even though the inequality 
constraint in (6) can keep the steering vector away from the interference directions, the 
objective function in (6) is incapable of guaranteeing �(𝜃0) + �⊥ converging to the actual 
DS direction.

On account of the persistent drawbacks in the aforementioned optimization models, Yang 
et al. have made the DS steering vector estimation model as (Yang et al., 2020):

where �N and �I represent the NS and IS, respectively. Apparently, if the DS power level 
is low, the actual steering vector of the DS cannot be comprised in the orthogonal subspace 
of �N , and thus solving problem (7) will lead to steering vector mismatch growing larger.

4  Proposed algorithm

In this section, a novel steering vector of the DS optimization problem using the NS based 
and IS based constraints is established firstly. Afterwards, in order to solve the derived opti-
mization problem, two efficient INCM estimation means are introduced in detail. Finally, the 
weight vectors based upon OP criterion are further studied to improve the robustness.

4.1  Steering vector of the DS optimization

Considering the disadvantages of the listed optimization models (5)-(7), we intend to optimize 
the steering vector of the DS by seeking the compensated steering vector which has maximum 
array output power and does not locate in the NS and IS all together.

As we all know, the signal direction can be found in the aid of the following searching 
function, which is generally termed as the Capon spectrum:

Enlightened by the direction finding schemes based on the Capon spectrum, we can opti-
mize the DS steering vector as below through assuming �(𝜃0) = �(𝜃0) + �⊥:

Clearly, in light of that the SCM also collects the interference-plus-noise components, solv-
ing optimization problem (9) may result in the corrected steering vector of the DS converging 
to the NS or IS, which will significantly reduce the output performance.

In such a situation, the following two constraints should be imposed to make sure that the 
corrected DS steering vector can get away from the NS and IS simultaneously:

(7)
min
�⊥

||�H

N
(�(𝜃0) + �⊥)||22

s.t.
||�H

I
(�(𝜃0) + �⊥)||22 ≤ ||�H

I
�(𝜃0)||22

�H(𝜃0)�⊥ = 0

(8)P(𝜃) =
1

�H(𝜃)�̂−1�(𝜃)

(9)
min
�⊥

(�(𝜃0) + �⊥)
H�̂−1(�(𝜃0) + �⊥)

s.t. �H(𝜃0)�⊥ = 0

(10)
||�H

N
(�(𝜃0) + �⊥)||22 ≤ ||�H

N
�(𝜃0)||22

||�H

I
(�(𝜃0) + �⊥)||22 ≤ ||�H

I
�(𝜃0)||22
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Then, through combining (9) and (10), the steering vector of the DS optimization prob-
lem can be reformulated as:

The first constraint in (11) is used to force �(𝜃0) + �⊥ not approaching the NS, the sec-
ond constraint in (11) is added to avoid �(𝜃0) + �⊥ getting close to the IS, and the third con-
straint in (11) is imposed to ensure the orthogonality between �⊥ and �(𝜃0) . Therefore, if we 
look for �(𝜃0) + �⊥ by minimizing the inverse of array output power, i.e. maximizing the 
array output power, the maximum output power of the DS will be reached indeed, which 
can result in the accurate estimation on the DS steering vector. It should be remarked that 
�̂−1 , �N�

H

N
 , and �I�

H

I
 are positive definite, and therefore (11) is a convex QCQP problem 

(Gu & Leshem, 2012), whose feasible solution can be easily obtained by employing the 
open CVX tool box (Grant et al., 2014).

Comparing the proposed steering vector of the DS optimization problem to the afore-
said ones (5)-(7), we note that the main differences between them are as follows. (i) The 
objective function in (11) is possible to find the steering vectors lying on the complete 
signal region while after solving the objective function in (6), we can only get the steering 
vectors locating in the interference region. Also, resolving the objective function in (7) will 
result in the corrected steering vector moving towards non-DS direction at low DS power 
level, whereas this consequence cannot happen after solving the objective function in (11). 
(ii) The IS based constraint in (11) can guarantee the revised steering vector getting away 
from each steering vector of the interference but the constraint in (5) fails to attain this 
result. (iii) Using the IS related constraint in (11) rather than the INCM-based constraint 
in (6) is more effective to avoid the steering vector after compensation nearing the interfer-
ence directions, which is due to the resolution advantage of the subspace-based direction 
finding approaches (Yang et al., 2020).

In order to tackle the problem (11), both the NS and IS need to be estimated in advance. 
As is said in the multiple signal classification (MUSIC) method (Schmidt, 1986), if the 
SCM inaccuracy from the finite number of snapshots is disregarded, a reliable estimation 
on the NS can be given as:

where �i, i = J + 2, J + 3,⋯ ,M represent the non-principal eigen-vectors of the SCM. It is 
noteworthy that the signal number J + 1 in this paper is always assumed to be a prior, thus 
the dimension of the NS or IS is easily to be confirmed.

To continue, the IS is still unknown because the INCM is generally unavailable. In the 
next two subsections, two INCM reconstruction ways will be presented to resolve the IS.

4.2  INCM Reconstruction

4.2.1  Direct DS matrix removal way

On the basis of the possible DS region Θ , we can estimate the direction extension-based 
DS matrix as follows according to its definition:

(11)

min
�⊥

(�(𝜃0) + �⊥)
H�̂−1(�(𝜃0) + �⊥)

s.t.

||�H

N
(�(𝜃0) + �⊥)||22 ≤ ||�H

N
�(𝜃0)||22

||�H

I
(�(𝜃0) + �⊥)||22 ≤ ||�H

I
�(𝜃0)||22

�H(𝜃0)�⊥ = 0

(12)�̂N = [�J+2,�J+3,⋯ ,�M]
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where �̃�2

i
= 1∕�(𝜃0 + iΔ)�̂−1�H(𝜃0 + iΔ), i = −l,−l + 1,⋯ , l denote the corresponding 

Capon powers of the steering vectors �(𝜃0 + iΔ), i = −l,−l + 1,⋯ , l , l and Δ denote the 
direction extension number and extension interval, respectively. Presently, we can directly 
remove the DS matrix from the SCM to reconstruct the INCM as:

The direction extension-based DS matrix �̃S is apparently an overestimated one (i.e. �̃S 
will contain more DS component than �S due to the direction extension processing), so the 
reconstructed �̃IN might suffer from rank deficiency. As a result, we need to revise �̃IN as:

where � denotes a small loading factor. Then, we can realize the estimate of the IS as:

where �i, i = 1, 2,⋯ , J denote the principal eigen-vectors corresponding to �̃IN,1.
It is worth emphasizing that the reconstructed INCM in (15) can be viewed as an improved 

version of that in (Ruan & Lamare, 2014), which cannot completely remove the DS matrix 
from the SCM when the steering vector mismatch exists. Although the INCM reconstruc-
tion way based on direct DS matrix removal is robust to arbitrary-type mismatches, it cannot 
obtain the accurate INCM because of the remaining cross-term between the DS component 
and interference component or noise component (Zheng et al., 2019). Even worse, in the situ-
ation of strong input SNR, a minor steering vector mismatch may leads to a major INCM 
imprecision. That is to say, using the direct DS matrix removal way to get the INCM is not a 
wise choice to offer the IS. To settle these issues, another INCM estimation scheme via indi-
rect DS blocking and matrix transition is devised in the next subsection.

4.2.2  Indirect DS blocking and matrix transition way

The blocking matrix is firstly specified as �̃−1
SN

 , where �̃
SN

 represents the direction extension-
based DS-plus-noise covariance matrix (DSNCM) and has an expression as:

where ⌢

𝜎
2

i
, i = −l,−l + 1,⋯ , l and �̃�2

n
 respectively stand for the pre-defined signal pow-

ers associated to the steering vectors �(𝜃0 + iΔ), i = −l,−l + 1,⋯ , l and estimated noise 
power.

Notably, if both ⌢𝜎
2

i
≫ �̃�2

n
, i = −l,−l + 1,⋯ , l and 2l + 1 < M can be met, �̃−1

SN
 performs 

the characteristic as (for details of derivation, see Appendix 1):

with � being the all-zero column vector.
Utilizing �̃−1

SN
 herein to process the training data in (1), we can obtain:

(13)�̃S =

l∑

i=−l

�̃�2

i
�(𝜃0 + iΔ)�H(𝜃0 + iΔ)

(14)�̃IN = �̂ − �̃S

(15)�̃IN,1 = �̃IN + 𝜓�

(16)�̃I = [�1,�2,⋯ ,�J]

(17)�̃SN =

l∑

i=−l

⌢

𝜎
2

i
�(𝜃0 + iΔ)�H(𝜃0 + iΔ) + �̃�2

n
�

(18)�̃−1
SN
�(𝜃0 + iΔ) ≅ �, i = −l,−l + 1,⋯ , l
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It should be stated that the DS component has been greatly reduced due to (18), then 
the term �̃−1

SN
�(𝜃0)s0(k) can be dropped, which leads to the approximate expression of 

(19) as:

Accordingly, the covariance matrix termed as the quasi INCM, can be calculated as:

The noise component in (20) has been changed, thus the quasi INCM 
⌢

�IN should be 
revised as:

Subsequently, the quasi INCM after revision 
⌢

�IN,2 can be eigen-decomposed as:

where �i, i = 1, 2,⋯ ,M stand for the descending eigen-value, and �i, i = 1, 2,⋯ ,M 
denote the related eigen-vectors. Hence, we can implement the matrix transition to real-
ize the INCM reconstruction as (for details of derivation, see Appendix 2):

After that, we can obtain the estimated IS as:

where �i, i = 1, 2,⋯ , J denote the primary eigen-vectors corresponding to �̂IN.
It is worth noticing that the indirect DS blocking and matrix transition way does bet-

ter than that in (Yang et  al., 2020) in blocking the DS component from the training 
data, and this is because that the blocking matrix in (Yang et al., 2020) only removes 
the signal associated to the estimated DS steering vector whereas ours can reduce the 
signals related to the presumed steering vector of the DS and its proximal ones. Further-
more, the indirect way also differs from the direct way in the following aspects. (i) The 
estimated steering vector powers in (13) are variable but the pre-defined ones in (17) 
stay fixed. (ii) The accuracy on the DS matrix in (13) depends on both steering vectors 
and their related powers while the accuracy on the DSNCM in (17) only relies on the 
steering vectors. iii) The direct way is just able to eliminate signals from some par-
ticular directions {𝜃|𝜃 = 𝜃i + iΔ, i = −l,−l + 1,⋯ , l} whereas the indirect way can block 
signals from the entire region {𝜃|𝜃 ∈ [𝜃0 − lΔ, 𝜃0 + lΔ]} if the parameters l and Δ are 
soundly selected.

(19)
⌢

�(k) = �̃−1
SN
�(𝜃0)s0(k) +

J∑

i=1

�̃−1
SN
�(𝜃i)si(k) + �̃−1

SN
�(k)

(20)
⌢

�(k) ≅

J∑

i=1

�̃−1
SN
�(𝜃i)si(k) + �̃−1

SN
�(k)

(21)
⌢

�IN =
1

K

K∑

k=1

⌢

�(k)
⌢

�
H

(k)

(22)
⌢

�IN,2 =
⌢

�IN − �̃�2

n
�̃−1

SN
(�̃−1

SN
)H + �̃�2

n
�

(23)
⌢

�IN,2 =

M∑

i=1

𝜆i�i�
H

i
=

J∑

i=1

�i(𝜆i − �̃�2

n
)�H

i
+ �̃�2

n
�

(24)�̂IN =

J∑

i=1

�̃SN�i(𝜆i − �̃�2

n
)�H

i
�̃H

SN
+ �̃�2

n
�

(25)�̂I = [�1,�2,⋯ ,�J]
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4.3  Weight vector computation

Substituting the estimated NS �̂N in (9) and IS �̃I in (16) or �̂I in (25) back into the 
devised optimization problem (11), the compensated DS steering vector is easily 
resolved as below:

Currently, the estimations on the DS steering vector and IS are finished, then we can 
adopt the OP criterion (Subbaram & Abend, 1993) to respectively compute the weight 
vectors of the proposed beamformers as:

and

where �̃⊥
I
= (� − �̃I�̃

H

I
) and �̂⊥

I
= (� − �̂I�̂

H

I
) are the orthogonal complement projection 

matrices of �̃I and �̂I , respectively. It should be noted that the normalization factors are 
ignored in (27) and (28) because they have no effect on increasing the output SINR.

For convenience, the proposed steering vector optimization beamformers using direct 
DS matrix removal way and indirect DS blocking and matrix transition way are respec-
tively abbreviated as SVO-DDMR and SVO-IDBMT. The overall steps of the SVO-DDMR 
and SVO-IDBMT are summarized in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Steps of the SVO-DDMR

1: Calculate the SCM �̂ with (4);

2: Estimate the NS �̂
N

 with (12);
3: Reconstruct the INCM �̃

IN,1 with (13)-(15);
4: Estimate the IS �̃

I
 with (16);

5: Solve the mismatch vector �⊥ with (11);
6: Compensate the DS steering vector �̃(𝜃0) with (26);
7: Obtain the weight vector �

SVO−DDMR
 with (27)

Algorithm 2: Steps of the SVO-IDBMT

1: Calculate the SCM �̂ with (4);

2: Estimate the NS �̂
N

 with (12);

3: Obtain the quasi INCM 
⌢

�
IN,2 with (17), (19), (21), and (22);

4: Reconstruct the INCM �̂
IN

 with (23) and (24);
5: Estimate the IS �̂

I
 with (25);

6: Solve the mismatch vector �⊥ with (11);
7: Compensate the DS steering vector �̃(𝜃0) with (26);
8: Obtain the weight vector �

SVO−IBDMT
 with (28)

(26)�̃(𝜃0) =

√
M(�(𝜃0) + �⊥)

���(𝜃0) + �⊥��2

(27)�SVO−DDMR = �̃⊥
I
�̃(𝜃0)

(28)�SVO−IDBMT = �̂⊥
I
�̃(𝜃0)
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4.4  Complexity analysis

In this part, we detailed analyze the complexity of the proposed beamforming approaches. 
The computational complexity of the SVO-DDMR is dependent on calculating the SCM 
with O(KM2), estimating the NS with O(M3), reconstructing the INCM and estimat-
ing the IS with O((2  l + 1)M2) + O(M3), solving the mismatch vector and compensating 
the DS steering vector with O((M-J-1)M2) + O(JM2) + O(M3) + O(M3.5), and obtaining 
the weight vector with O(M2). As a result, the overall computational complexity of the 
SVO-DDMR is O(M3.5) + O(4M3) + O((K + 2  l + 1)M2). The computational complexity of 
the SVO-IDBMT depends on calculating the SCM with O(KM2), estimating the NS with 
O(M3), obtaining the quasi INCM, reconstructing the INCM, and estimating the IS with 
O((2  K + 2  l + 2)M2) + O(3M3), solving the mismatch vector and compensating the DS 
steering vector with O((M-J-1)M2) + O(JM2) + O(M3) + O(M3.5), and obtaining the weight 
vector with O(M2). Consequently, the complete computational complexity of the SVO-
IDBMT is O(M3.5) + O(6M3) + O((3 K + 2 l + 2-J)M2).

Following the results shown in (Ruan & Lamare, 2014; Yang et al., 2020), and (Zhang 
et al., 2021b), we have listed the complexity of different algorithms in Table 1, where I1 
denotes the number of iterations in the SQP, S1 denotes the number of grids in the DS 
region, S2 denotes the number of grids in the interference region, N1 represents the dimen-
sion of the SS in the DS matrix, N2 represents the the dimension of the IS in the interfer-
ence matrix, S3 stands for the number of grids in the whole signal region, and I2 stands for 
the number of iterations in the AIERB.

4.5  Discussion

In the provided SVO-DDMR and SVO-IDBMT, there are four vital factors, i.e. direction 
extension number l and extension interval Δ in (13) and (17), loading factor � in (15), and 
signal powers ⌢𝜎

2

i
, i = −l,−l + 1,⋯ , l in (17), that will influence the performance. As for 

the signal powers ⌢𝜎
2

i
, i = −l,−l + 1,⋯ , l in (17), they can be directly fixed to 102trace(�̂) 

(Yang et al., 2020). In addition, the direction extension number l and extension interval Δ 
in (13) should be selected so that any signal involved in the possible DS region Θ can be 
reduced as much as possible, which means that the direction extension interval Δ should be 

Table 1  Complexity Of Different Algorithms

Algorithm Complexity

ESB O(2M3) + O((K + J + 2)M2)
RCB O(2M3) + O(KM2)
SQP O(I1M3.5) + O(3M3) + O((K + S1 + S2 + N1 + N2)M2)
INCM-QCQP O(M3.5) + O(2M3) + O((K + S2)M2)
NS-INCM O((J + 4)M3) + O((K + J + S3)M2)
ISVPE-INCM O(M3.5) + O((J + 4)M3) + O((K + S1 + N1)M2)
AIERB O(I2M3.5) + O((2I2J + 3I2 + 3)M3) + O((K + S1 + 2I2J + I2K + I2 + J + 1)M2)
SVO-DDMR O(M3.5) + O(4M3) + O((K + 2 l + 1)M2)
SVO-IDBMT O(M3.5) + O(6M3) + O((3 K + 2 l + 2-J)M2)
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small. Likewise, the direction extension number l and extension interval Δ in (17) should 
be set to meet [𝜃0 − lΔ, 𝜃0 + lΔ] ≅ Θ with the premise 2l + 1 < M . As regards the loading 
factor � in (15), it can be set as the mean of tiny eigen-value of the SCM to avoid rank 
deficiency.

5  Simulation

A uniform linear array (ULA) with M = 8 omnidirectional elements spaced half a wave-
length apart is considered, where the wavelength is set to be 0.05 m. One DS from 10° and 
two interferences from −25° and 45°, respectively impinge on the ULA. The INR of two 
interferences are equally fixed to 30 dB.

To accomplish the proposed beamformers, the DS region Θ is set as [𝜃0 − 5◦, 𝜃0 + 5◦] , 
and thus the direction extension number l and extension interval Δ in the SVO-DDMR 
and SVO-IDBMT are fixed to 10 and 1° and 3 and 2°, respectively, to fully cover this 
region. The noise power and loading factor are both fixed to the mean of the SCM’s minor 
eigen-values.

The compared approaches include the ESB (Feldman & Griffiths, 1994), RCB (Stoica 
et al., 2003), SQP (Hassanien & Wong, 2008), INCM-QCQP (Gu & Leshem, 2012), NS-
INCM (Yuan & Gan, 2017), and AIERB (Yang et al., 2020), and their simulation param-
eters are as follows. (i) The dimension of the SIS in the ESB is always given as 3. (ii) The 
uncertainty set level in the RCB is taken as 0.3 M. (iii) The DS region Θ in the SQP is set 
the same as that in the proposed methods, of which the number of grids S1 is fixed to 100, 
the interference region is chosen as [−90◦, 𝜃0 − 5◦) ∪ (𝜃0 + 5◦, 90◦] , of which the number 
of grids S2 is fixed to 500, the dimensions of the SS N1 and IS N2 are 4 and 6, respectively. 
(iv) The interference region in the INCM-QCQP is same as that in the SQP. (v) The signal 
region in the NS-INCM is set as [𝜃0 − 5◦, 𝜃0 + 5◦] ∪ [𝜃1 − 5◦, 𝜃1 + 5◦] ∪ [𝜃2 − 5◦, 𝜃2 + 5◦] 
with 𝜃1 and 𝜃2 being the presumed directions of the interferences, of which the number of 
grids S3 is fixed to 300. (vi) The DS region Θ and pre-defined signal powers in the AIERB 
are set the same as that in the proposed methods, and the iterative termination tolerance is 
selected as 0.00001. (vii) The optimal beamformer (OPT) is realized as:

In this section, every result is an average of 400 Monte-Carlo runs.

5.1  Steering vector mismatch due to direction error

The first example is performed in the scenario of steering vector mismatch due to direc-
tion error, where the direction error is set to obey uniform distribution of [−ed, ed]  with ed 
being the direction error upper bound.

Figure 1 displays the output SINR versus direction error of different algorithms, where 
the input SNR and number of snapshots are respectively fixed to 20  dB and 50. From 
Fig.  1, it can be readily found that the SVO-DDMR, SVO-IDBMT, INCM-QCQP, NS-
INCM, and AIERB operator better than other methods when the direction error upper 
bound is large, which can be owning to the effective INCM reconstructions.

(29)�OPT =
�−1

IN
�(�0)

�H(�0)�
−1
IN
�(�0)
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Further, Fig. 2 shows the output SINR versus input SNR of different algorithms, where 
the number of snapshots is fixed to 50 and the direction error is subject to uniform dis-
tribution of [−3◦, 3◦] . As we can view that due to the subspace swap effect, the output 
SINR of the AIERB will significantly drop in the case of low DS power level. Other SCM-
based methods cannot work well at high input SNR case because of the signal self-nulling 
effect presence. In contrast, the proposed and other INCM estimation approaches can reach 
desired output SINR at strong DS case. Although the SVO-DDMR is unable to preserve 
good performance at input SNR > 25 case, it at least works better than the SCM-based 
ones.
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Fig. 1  Output SINR versus direction error upper bound in the scenario of direction error

Fig. 2  Output SINR versus input 
SNR in the scenario of direction 
error
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To proceed, Fig. 3 presents the output SINR versus number of snapshots of different 
algorithms, where the input SNR is fixed to 0 dB and the direction error is subject to uni-
form distribution of [−3◦, 3◦] . No matter in small or large number of snapshots, the output 
SINR of the devised and other INCM reconstruction algorithms are relatively close, which 
indicates that the SVO-DDMR and SVO-IDBMT can be used in limited number of snap-
shots scenario.

5.2  Steering vector mismatch due to direction and element position errors

The second example is carried out in the scenario of steering vector mismatch due to direc-
tion and element position errors, where the direction error is subject to uniform distribution 
of [−3◦, 3◦] and the position error of each element is set to be away from its theoretical one, 
to obey uniform distribution of [−ep, ep] with ep being the position error upper bound.

Figure 4 exhibits the output SINR versus position error of different algorithms, where 
the input SNR and number of snapshots are respectively fixed to 20 dB and 50. From this 
figure, we can notice that the AIERB and proposed SVO-DDMR and SVO-IDBMT keep 
high output SINR in the whole range of position error upper bound, whereas other meth-
ods are incapable of offering good output SINR because of the steering vector of the DS 
and INCM estimation error. Further, since the AIERB costs high complexity in iterative 
estimation, its robustness is undoubtedly superior than that of the the SVO-IDBMT and 
SVO-DDMR.

Figure  5 also demonstrates the output SINR versus input SNR of different algo-
rithms, where the number of snapshots is fixed to 50 and the position error is subject 
to uniform distribution of [−0.005, 0.005] . Clearly, in light of the element position error 
existence, the output SINR of the SCM-based algorithms will rapidly decline once the 
signal self-nulling effect appears. For the INCM-QCQP and NS-INCM, which employ 
ideal array manifold information to yield the INCM, cannot adequately suppress the 
interferences, and thus their performance degrades severally. Instead, since the steer-
ing vector of the DS and INCM estimation in the presented methods are training 
data-based and the training data can reflect the exact array structure, the SVO-DDMR 

Fig. 3  Output SINR versus num-
ber of snapshots in the scenario 
of direction error
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and SVO-IDBMT behave better than other beamformers but the AIERB in the sce-
nario of high DS power level. Even the AIERB outperforms the proposed approaches 
at input SNR > 20 dB case, it cannot be applied in weak DS situation. Moreover, the 
output SINR of the SVO-IDBMT is higher than that of the SVO-DDMR when input 
SNR > 20  dB, and this can be owing to our advanced design of using indirect DS 
blocking and matrix transition way to estimate the INCM.

To continue, Fig. 6 assesses the output SINR versus number of snapshots of differ-
ent algorithms, where the input SNR is fixed to 20 dB and the position error is subject 
to uniform distribution of [−0.005, 0.005] . It can be concluded from Fig. 6 that the out-
put SINR of the proposed beamformers converge faster than that of the ESB, RCB, and 

Fig. 4  Output SINR versus ele-
ment position error upper bound 
in the scenario of direction and 
element position errors
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Fig. 5  Output SINR versus input 
SNR in the scenario of direction 
and element position errors
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SQP and can reach the peaks when the number of snapshots equals to 40. Apparently, 
the promoted two approaches enjoy enough robustness in the event of finite training 
samples.

5.2.1  Steering vector mismatch due to direction and element gain and phase errors

The third example is executed in the scenario of steering vector mismatch due to direction 
and element gain and phase errors, where the direction error is subject to uniform distribu-
tion of [−3◦, 3◦] and the gain error and phase error of each element are set to obey uniform 
distributions of [−eg, eg] and [−eph, eph] with eg and eph respectively being the gain error 
upper bound and phase error upper bound.

Fig. 6  Output SINR versus num-
ber of snapshots in the scenario 
of direction and element position 
errors
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Fig. 7  Output SINR versus gain 
and phase errors upper bound in 
the scenario of direction and gain 
and phase errors
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Figure  7 tests the output SINR versus gain and phase errors of different algorithms, 
where the input SNR and number of snapshots are respectively fixed to 20  dB and 50. 
As we can observe from Fig.  7, following the increases of gain error upper bound and 
phase error upper bound, the provided SVO-DDMR and SVO-IDBMT constantly outper-
form other approaches except the AIERB, and this can be owning our accurate DS steering 
vector and INCM estimation. Although the robustness of our methods would drop a little 
when the gain and phase errors are large, they are still close to the optimal value.

Likewise, Fig.  8 verifies the output SINR versus input SNR of different algorithms, 
where the number of snapshots is fixed to 50 and the gain and phase errors are subject to 
uniform distributions of [−0.3dB, 0.3dB] and [−3◦, 3◦] . In terms of the existence of gain 
and phase errors, the output SINR of the INCM-QCQP and NS-INCM are far away from 
that of the OPT, and this can be ascribed to their poor interference rejection capabilities. As 
for the ESB, RCB, and SQP, even they can sufficiently suppress the interferences, the self-
nulling effect occurred at strong input SNR case restrains their applications. On the con-
trary, the output SINR of the SVO-DDMR and SVO-IDBMT always remain outstanding 
levels across the whole range of input SNR. Moreover, there is no doubt that the AIERB 
is superior to the proposed methods at input SNR > 20 dB, but its high computational load 
cannot be ignored.

Also, Fig. 9 simulates the output SINR versus number of snapshots of different algo-
rithms, where the input SNR is fixed to 20 dB and the gain and phase errors are subject to 
uniform distributions of [−0.3dB, 0.3dB] and [−3◦, 3◦] . It is straightforward to find that the 
derived algorithms and other INCM reconstruction methods have better convergence than 
the SCM- based methods. Therefore, the SVO-DDMR and SVO-IDBMT can suit for small 
training size scenario.

Fig. 8  Output SINR versus input 
SNR in the scenario of direction 
and gain and phase errors
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6  Conclusion

A new DS steering vector optimization problem using subspace-based constraints has 
been introduced in this paper, whose main purpose is to alleviate steering vector mis-
match. In particular, the NS based and IS based constraints are employed to realize DS 
steering vector optimization via maximizing array output power. To solve the formed 
optimization problem, two efficient INCM reconstruction schemes are then put forward 
to estimate the IS with high accuracy. After getting the IS, the steering vector of the DS 
is precisely estimated, in what follows the OP criterion-based weight vector computa-
tions. Representative experiments have demonstrated that the proposed algorithms with 
high efficiency are robust to steering vector mismatch arisen from direction error and 
array imperfections at both weak and strong input SNR cases.

Appendix 1

Derivation Of (18).
The eigen-decomposition of the DSNCM �̃SN in (17) can be given as:

where �i, i = 1, 2,⋯ ,M denote the eigen-values in descend order, and �i, i = 1, 2,⋯ ,M 
denote the corresponding eigen-vectors. Therefore, the inverse of the DSNCM �̃SN can be 
represented as:

(30)�̃SN=

M∑

i=1

𝜇i�i�
H

i

Fig. 9  Output SINR versus num-
ber of snapshots in the scenario 
of direction and gain and phase 
errors
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As we can notice, if ⌢

𝜎
2

i
≫ �̃�2

n
, i = −l,−l + 1,⋯ , l and 2l + 1 < M are fulfilled, �̃−1

SN
 

can be approximated as:

In consideration of that 
∑M

i=1
�i�

H

i
= � is also held, �̃−1

SN
 can be further altered as:

The subspace spanned by [�1, �2,⋯ , �2l+1] is equivalent to that spanned by 
[�(𝜃0 − lΔ), �(𝜃0 − lΔ + Δ),⋯ , �(𝜃0 + lΔ)] , so �̃−1

SN
 owns the blocking feature as:

Appendix 2

Derivation of (24).
Alternatively, the revised quasi INCM 

⌢

�IN,2 in (23) can also be denoted as:

Clearly, it is simple to draw the following conclusion using the equivalence between 
(23) and (35):

For the sake of recovering 
∑J

i=1
�2

i
�(�i)�

H(�i) , we need to pre-multiply and post-multi-
ply both sides of (36) by �̃SN and �̃H

SN
 , that is:

Then, we add the obtained noise component �̃�2
n
� to (37), which leads to the recon-

structed INCM as:

(31)�̃−1
SN
=

M∑

i=1

�i�
H

i

𝜇i

(32)�̃−1
SN
=

2l+1∑

i=1

�i�
H

i

�̃�2

i
+ �̃�2

n

+

M∑

2l+2

�i�
H

i

�̃�2
n

≅

M∑

2l+2

�i�
H

i

�̃�2
n

(33)�̃−1
SN

≅
1

�̃�2
n

(
� −

2l+1∑

i=1

�i�
H

i

)

�̃−1
SN
�(𝜃0 + iΔ) ≅ �, i = −l,−l + 1,⋯ , l

⌢

�IN,2 =

J∑

i=1

𝜎2

i
�̃−1

SN
�(𝜃i)�

H(𝜃i)(�̃
−1
SN
)H + �̃�2

n
�

(36)
J∑

i=1

𝜎2

i
�̃−1

SN
�(𝜃i)�

H(𝜃i)(�̃
−1
SN
)H =

J∑

i=1

�i(𝜆i − �̃�2

n
)�H

i

(37)
J∑

i=1

𝜎2

i
�(𝜃i)�

H(𝜃i) =

J∑

i=1

�̃SN�i(𝜆i − �̃�2

n
)�H

i
�̃H

SN

(38)�̂IN =

J∑

i=1

�̃SN�i(𝜆i − �̃�2

n
)�H

i
�̃H
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