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Abstract
In recent years, to improve the nonlinear feature mapping ability of the image super-reso-
lution network, the depth of the convolutional neural network is getting deeper and deeper. 
In the existing residual network, the the residual block’s output and input are added directly 
through the skip connection to deepen the nonlinear mapping layer. However, it can not be 
proved that every addition is useful to improve the network’s performance. In this paper, 
based on Dirac convolution, an improved Dirac residual block is proposed, which uses the 
trainable parameters to adaptively control the balance of the convolution and the skip con-
nection to increase the nonlinear mapping ability of the model. The main body network 
uses multiple Dirac residual blocks to learn the nonlinear mapping of high-frequency infor-
mation between LR and HR images. In addition, the global skip connection is realized by 
sub-pixel convolution, which can learn to use linear mapping of low-frequency features of 
input LR image. In the training stage, the model uses Adam optimizer for network train-
ing and L1 as the loss function. The experiments compare our algorithm with some other 
state-of-the-art models in PSNR, SSIM, IFC, and visual effect on five different benchmark 
datasets. The results show that the proposed model has excellent performance both in sub-
jective and objective evaluation.

Keywords Super-resolution · Deep learning · Convolutional neural network · Dirac 
residual network

1 Introduction

Super-resolution (SR) technology refers to the reconstruction of high resolution (HR) 
images or videos from one or more low resolution (LR) images of the same scene. SR can 
be generally classified into three types according to input and output, such as single input 
single output (SISO), multiple input single output (MISO), and multiple input multiple out-
put (MIMO). It can also be directly divided into two categories, such as single image SR 
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reconstruction (SISR) and multi-frame image SR reconstruction. SISR refers to estimating 
an HR image with a given single LR image if the original image cannot be acquired.

SISR is widely used in tasks of image processing, such as security and surveillance 
imaging (Zou & Yuen, 2011), medical imaging (Shi et al., 2013), remote sensing image 
processing (Yang et al., 2011), and so on. There are many methods to implement the image 
SR. For the same LR image, different ways often lead to different HR images. The sim-
plest SR method is analytical interpolation methods, such as linear interpolation, bicubic 
interpolation, etc., which takes the average of the pixels in the known LR image as the 
missing pixel of the HR image. Analytic interpolation works well in the smooth region 
of the image. However, it has a weak effect on the image edge area, which results in ring-
ing and blurring. In addition to the analytical interpolation method, the learning-based and 
reconstruction-based SR methods, such as sparse coding (Yang et al., 2010), neighborhood 
embedded regression (Chang et  al., 2004; Timofte et  al., 2013), random forest (Schulter 
et al., 2015), have better reconstruction effects. Most of the newly proposed algorithms take 
advantage of deep learning. The latest SR method based on deep learning has achieved 
amazing reconstruction results, which has attracted extensive attention from researchers.

The SR convolutional neural network (SRCNN) (Dong et al., 2014) is the first SR algo-
rithm based on convolutional neural network (CNN). SRCNN directly learns the pixel-to-
pixel mapping between LR image blocks and HR image blocks. The interpolated LR image 
is used as input and mapped to the feature map through a convolutional layer. The entire 
network has three convolution layers for nonlinear mapping. The reconstruction perfor-
mance of the network is superior to the most advanced existing algorithms. Subsequently, 
Dong et al. continue to propose a fast SR convolutional neural network (FSRCNN) (Dong 
et al., 2016), which can directly use the input LR image. Also, FSRCNN uses more con-
volution kernels for nonlinear mapping and introduces a deconvolution layer at the end to 
reconstruct the HR image.

Kim et  al. construct a very deep network for SR (VDSR) (Kim et  al., 2016a) and a 
deeply-recursive convolutional network (DRCN) (Kim et al., 2016b). In VDSR, the author 
believes that the LR image is similar to the HR image in low-frequency information so that 
it is more efficient only to learn the high-frequency residual between them during training. 
DRCN recurs the same convolution layer 16 times. When the depth increases, it avoids 
introducing additional parameters and increasing the intermediate loss function.

Shi et al. (2016) propose an efficient sub-pixel convolutional neural network (ESPCN). 
In this model, several convolution layers are used to learn the image features for input 
LR images. Then HR images are reconstructed using a novel sub-pixel convolution layer 
according to the convolution features learned from the deep convolution network.

Ledig et al. (2017) design an SR generative adversarial network (SRGAN). Instead of 
using the usual L2 norm, the network design a loss function which accords with the char-
acteristics of human visual perception. In addition, a residual network (RESNET) is intro-
duced into the whole system to learn image features more effectively. Experiments show 
that SRGAN can restore realistic textures like photographs from larger down-sampled LR 
images.

Lim et  al. (2017) construct an enhanced deep SR network  (EDSR), which is based 
on RESNET (Ledig et  al., 2017). EDSR modifies the residual structure, which includes 
removing the batch normalization layer (BN layer), increasing the dimension of each con-
volution feature, scaling the residual after each residual block, and reconstructing with sub-
pixel convolution layer.

Tong et al. (2017) present a SR dense network (SRDenseNet), which introduces the skip 
connection into a very deep neural network. The network propagates the feature map of 
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each convolutional layer to subsequent layers and upsamples by deconvolution at the end, 
which alleviates the vanishing gradient problem.

The residual dense network (RDN) (Zhang, Li, et al., 2018) fully utilizes the features 
from all the convolution layers. The network adaptively learns more significant features 
based on local feature fusion technology. In addition, the global feature fusion is used to 
determine global hierarchical features holistically and adaptively. Zhang et  al. (Zhang, 
Tian, et  al.,  2018) also propose the residual channel attention network (RCAN), which 
adaptively adjusts channel-wise features through channel attention mechanism, making the 
network focus on learning high-frequency information.

Yu et al. (1808) prove that models with the Relu activation function and more features 
have better performance when the parameters and computational load are the same. On this 
basis, Wide activation SR(WDSR) (Yu et  al. 1808) network is proposed, in which there 
is a wider channel before the activation function of each residual block. Also, the weight 
normalization (WN) layer is designed to improve the accuracy of the network. Wang et al. 
(1904) further propose an adaptive weighted SR network (AWSRN), which devises a local 
fusion block for more efficient residual learning. In addition, an adaptive weighted multi-
scale module is developed to reconstruct features.

Cao et al. (2019) propose an improved deep residual network (IDRN), which can mod-
ify the residual structure and skip connection easily and effectively. Besides, the model 
uses a new energy-aware (EA) training loss function and lightweight network architecture 
to obtain fast and accurate results. Zhang et al. propose a deep plug-and-play SR network 
(DPSR) (Zhang et  al., 1903), which can process LR images with arbitrary blur kernels. 
Zhang et al. (2019) also use the optical zoom to obtain real sensor data for model train-
ing. Xu et al. (2019) generate training data by simulating the imaging process of a digi-
tal camera. Experiments demonstrate that SR with raw data helps recover fine details and 
clear structures. The deep back-projection network (DBPN) (Haris et  al., 1904) exploits 
the iterative up-sampling and down-sampling layers to represent different types of image 
degradation and image reconstruction components to solve the interdependence between 
LR and HR images. The SR feedback network (SRFBN) (Li & Yang, 1903) proposed by 
Li et al. adopt the recurrent neural network (RNN) with the constraints to process feedback 
information and perform feature reuse. Dai et al. (2019) propose a second-order attention 
network (SAN). A new second-order channel attention module (SOCA) designed by the 
network uses second-order feature statistics to adjust channel characteristics adaptively. 
Furthermore, the model also constructs a non-locally enhanced residual group structure to 
learn more abstract feature representation.

To deepen the nonlinear mapping layer of the network, the output and input of the resid-
ual block are directly added by the skip connection in the existing RESNET. However, it 
can’t be proved that every addition in the network is useful. It will undoubtedly affect the 
network’s fitting ability to SR task, and then affect the reconstruction effect. To make the 
network adaptively adjust the proportion of the convolution feature and the skip connection 
in each level of the residual block output, we propose a new residual block (Res-block) for 
image SR based on Dirac convolution. It can use the trained parameter adaptive control the 
weights of the convolution feature and the skip connection, so as to increase the nonlinear 
mapping ability of the network.

In summary, we construct a novel Dirac Residual SR(DRSR) network for the SISR 
task in this paper. The model uses the Dirac residual layer to learn the high-frequency fea-
tures of the input LR image, uses the global skip connection to utilize the low-frequency 
feature of the input LR image directly, and reconstructs the image by sub-pixel convolu-
tion. Then, DRSR improves the residual layer of the traditional SR algorithm by weight 
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parameterization. Finally, the convolution feature of the input image and the learning fea-
ture of the RESNET are combined to reconstruct the output HR image. Our network does 
not only add hyperparameters to the branches of the two networks, but also we design a 
new SR network which is derived from ResNet. It is also an attempt to non-skip connection 
to find another way to implement residuals.

2  Proposed method

2.1  The original Dirac block

In deep learning feild, the network with large depth means that it has a strong nonlinear fit-
ting ability. However, the depth of the network can not be increased unlimitedly. We need 
to train the depth neural network model through backpropagation. The gradient of each 
layer in the network is trained on the basis of the previous layer. Multilayer neural networks 
often need to face the problem of gradient disappearing, which shows that the more layers 
the network has, the greater the model error. RESNET provides a new way to solve the 
gradient disappearance (He et al., 2016). By adding the skip connections to the standard 
feedforward neural network, the RESNET can bypass some layers. In this way, a neural 
network with high depth can be built to pursue better performance. The advantage of the 
residual block is that it can make the network deeper. However, it can not be proved that it 
is useful to connect the feature map of each layer to the next layer. So RESNET has limits. 
When the network reaches a certain depth, deepening the network can not improve the 
accuracy. The structure of the residual block is shown in Fig. 1.

As shown in the figure, x and y are the input and output, respectively. In addition to the 
convolution layer, there are activation functions Relu and BN (Batch normalization) lay-
ers in the residual block. The function of the BN layer is to reduce the difficulty of model 
training. The input x is convoluted by two layers to get F(x). Then by a skip connection, the 
summing of x and F(x) are linked to the activation function Relu to obtain the final output 
y. The residual structure can be expressed as

F(x) = fBN
(
relu(w1 ∗ x + b1) ∗ w2 + b2

)
 , where wi is the convolution kernel of the ith 

convolution, bi is the corresponding bias term, and relu is the activation function ReLU, 
fBN is BN layer function. Then y can be written as

Our DRSR attempts to integrate residual connection into convolution operation through 
parameterization (Zagoruyko & Diracnets, 1706). In Eq.  (1), the residual connection 

(1)y = F(x) + x

(2)y = relu[fBN
(
relu(w1 ∗ x + b1) ∗ w2 + b2

)
+ x]

Fig. 1  Residual block structure 
in Resnet
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y = F(x) + x is a linear operation, and in Eq. (2), the convolution operation is also a linear 
operation. We assume that F(x) in the RESNET is a single convolution layer. In addition, 
in order to express concisely, we omit the bias term, then the residual can be expressed as:

where * represents convolution operation, x is the input feature map, y is the output feature, 
and W is the convolution parameter matrix.

2.2  DRSR Res‑block

In order to increase the adaptability of the network, we use the method of Dirac param-
eterization to combine the skip connection into the convolution parameter matrix and add 
the control parameters � and � . Then we have

where Ŵ represents the combined convolution parameter matrix, I is the unit matrix, which 
represents the skip connection in Resnet. Wnorm represents the normal convolution parame-
ter matrix. � and � are trainable parameters, which control the weight of convolution opera-
tion and the connection, respectively. If � approaches 0, the convolution is dominant. On 
the contrary, if � approaches to 0, it means that the skip connection is dominant.

Because � and � are trainable, Dirac residual can adaptively change the weight of con-
volution and skip connection output in the training process, so as to achieve the purpose 
of adaptive learning. According to this characteristic, we propose an improved Dirac 
Res-block.

Figure 2 shows the structure comparison between the EDSR residual block (Lim et al., 
2017) and the residual block used by our DRSR model. In each residual block of EDSR, 
the skip connection is realized by directly connecting the input to the output. In addition, 
each residual block is scaled to one-tenth of its original size by the residual scaling layer 
(Mult), which makes the training more stable. In the proposed DRSR Res-block, the skip 
connection is realized by the parameterization method of Eq.  (4), which is also given in 
Fig.  2. In summary, DRSR Res-block is equivalent to adding control parameters � and 
� to the convolution layer and the skip connection in the residual block of single-layer 
convolution.

Because � and � are parameters that can be trained, the model will adjust the value of � 
and � adaptively in the actual training process. It can control the weight of each layer of the 
model and avoid connecting the convolution output features directly to the next layer.

2.3  Model

DRSR is divided into two parts: the deep DRSR residual feature reconstruction network 
and the global skip connection reconstruction network, as shown in Fig. 2. In this paper, 
the deep DRSR residual feature reconstruction network is referred to by the upper-part net-
work, which is divided into the feature extraction layer, DRSR Res-body, and sub-pixel 
convolution layer. The global skip connection network is referred to by the lower-part net-
work, which is divided into feature extraction layer and sub-pixel convolution layer.

(3)y = W ∗ x + x

(4)
y = Ŵ ∗ x

Ŵ = 𝛼 × I + 𝛽 ×Wnorm
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DRSR uses sub-pixel convolution as the reconstruction layer, as shown in Fig. 3. The 
skip connection of the network reconstructs the low-frequency part of HR the image by 
using the low-frequency features of the LR image so that the DRSR Res-body concen-
trates on learning the high-frequency residual of the HR image.

Fig. 2  EDSR residual block and DRSR Res-block

Fig. 3  the Network model structure of DRSR
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DRSR consists of two network branches including the deep Dirac residual feature recon-
struction branch and the global skip connection reconstruction branch. As shown in Fig. 3, 
the input of the entire model is an LR image, and the output is the sum of the reconstructed 
images of the two branches.

For the deep Dirac residual feature reconstruction branch, its input is LR image. Define 
ILR as the input LR image, IHR as the original HR image, and ISR as the reconstructed HR 
image. The Dirac residual feature reconstruction branch first extracts the shallow features 
through a convolutional layer, which is expressed as

where ESFE(⋅) is the shallow feature extraction operation, F1 is the extracted shallow fea-
ture. By inputting the extracted shallow features into the Dirac residual block, we have

where EDirac(⋅) represents the feature extraction operation of the Dirac residual block. In 
order to obtain more features of the LR image and focus on learning the high-frequency 
information in the LR image, we cascade 80 Dirac residual blocks to obtain a deep net-
work. By inputting the features extracted from the Dirac residual block F2 into the sub-
pixel convolution amplification module, we can obtain

where EPS(⋅) and FSR
Dirac

 are the images reconstructed by the sub-pixel convolution amplifi-
cation module and the Dirac residual branch, respectively.

For the global skip connection reconstruction branch network, the input image is still the 
LR image. The shallow feature is extracted through a convolutional layer and then directly 
amplified by a sub-pixel convolutional layer. It can allow the reconstruction network to pay 
more attention to the reconstruction of low-frequency features in the LR image. The whole 
process can be expressed as

where FSR
GS

 is the image reconstructed by the global skip connection branch, HSFE(⋅) and 
HPS(⋅) are the shallow feature extraction operation and the sub-pixel convolution amplifica-
tion operation.

The output of the entire model is the sum of the image reconstructed by the global skip 
connection branch and the image reconstructed by the Dirac residual branch, which is 
expressed as

2.4  Training

We uses the public DIV2K and Flickr2K data sets as the training sets of the network. 
DIV2K includes 800 training images, 100 validation images, and Flickr2K includes 2650 
training images. So there are 3450 2 K images in our training set. During the training, the 
801th–810th images in DIV2K are selected as the validation set, and the model with the 
best PSNR is saved.

(5)F1 = ESFE

(
ILR

)
.

(6)F2 = EDirac

(
F1

)

(7)FSR
Dirac

= EPS

(
F2

)
,

(8)FSR
GS

= HPS

(
HSFE

(
ILR

))
,

(9)ISR = FSR
GS

+ FSR
Dirac

.
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After a lot of training experiments, it is shown that if the residual of Dirac is greater 
than 64 layers and α, β is set to 1, the loss value of the model is very large at the beginning 
of training, which is not conducive to convergence. When α = β = 0.1, the gradient disap-
pears and the model cannot converge during the training. When α = 1, β = 0.1 or α = 0.1, 
β = 1, the model can be trained normally. In this paper, we set α = 1, β = 0.1.

Before training, the HR image is reduced to the LR image by bicubic interpolation. The 
LR image is input directly into the network, and the corresponding HR’ image is recon-
structed. For the SR task, L1 loss function, L2 loss function and perceptual loss function are 
common. The L1 and L2 loss are expressed as

where ISR
i

 and IHR
i

 are the pixel in ISR and IHR , respectively.
The perceptual loss function is often used to evaluate the visual perception quality of 

an image, which is usually set according to specific SR model. For L2 loss function, the 
previous researches have proven that it is not as effective as L1 loss function. Therefore, we 
choose L1 to optimize our model. ADAM is set to the optimizer, and the two parameters 
r1 and r2 in ADAM are set to 0.9 and 0.999, respectively. The learning rate is initially set 
to 1 × 10−4 , and then it is halved every 2 × 105 iterations. The total number of iteration is 
6 × 105 . 16 RGB image blocks of size 48 × 48 are input for each iteration. So the input size 
is [16, 48, 48, 3] . A single RTX2080Ti graphics card (11 GB memory) is used in training. 
On Ubuntu 18.4 system, Pytorch 1.1.0, CUDA 10.0, and cuDNN 7.5.0 are exploited as the 
deep learning frameworks. It takes about four days to complete the model training.

3  Experimental results

To verify the validity of the model, we take the Set5, Set14, B100, Urban100, and DIV2K 
data sets as the test sets, and compares with bicubic interpolation, Aplus(Timofte et  al., 
2014), self-exemplars SR(SelfExSR)(Huang et  al., 2015), SRCNN(Dong et  al., 2014), 
laplacian pyramid SR network (LapSRN) (Lai et  al., 2017), DRCN (Kim et  al., 2016b), 
deep recursive residual network (DRRN) (Tai et  al., 2017a), VDSR (Kim et al., 2016a), 
MemNet(Tai et  al., 2017b), Two-stage convolutional network (TSCN)(Hui et  al., 2018), 
and EDSR (Lim et al., 2017) (without image self-integration) algorithm in terms of Peak 
Signal to Noise Ratio (PSNR), Structural SIMilarity (SSIM), IFC (Information fidelity cri-
terion) and visual effects.

Table 1 provides the comparison of PSNR and SSIM on the Y channel with the magni-
fication factors of × 2, × 3, and × 4 on Set5, Set14, B100, Urban100, and DIV2K test sets. 
The experiments are obtained from the MATLAB program. Red and blue indicate the best 
and second-best performance, respectively. From the table, it can be seen that the perfor-
mance of DRSR is slightly better than that of EDSR, and has a certain improvement com-
pared with that of other algorithms.

Table 2 shows the comparison of IFC (Sheikh et al., 2005) on the Y channel with mag-
nification factors of × 2, × 3, and × 4 on Set5, Set14, B100, and Urban100 test sets. Red 
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and blue indicate the best and second-best performance, respectively. It can be seen from 
the table that DRSR achieves better performance compared with other algorithms, which 
proves that the image information restored by DRSR is more accurate than that by other 
networks.

Table 3 is a detailed comparison of DRSR and EDSR (Lim et al., 2017) with magnifica-
tion factor × 4. In training, the training set of DRSR is more than that of EDSR. Also, the 
depth of DRSR is relatively deeper. From the table, the PSNR value and IFC of DRSR on 
the test set are higher than those of EDSR.

Table 4 is a detailed ablation study with magnification factor × 4. All networks in the 
table have 64 channels. The models of EDSR and EDSR + skip have 16 residual blocks. 
There are 32 dirac residual blocks in DRSR. From the table, DRSR has fewer parameters 
and better results. When α = 1, β = 1, the model has the best performance. However, when 
the network deepens, it is difficult to converge. In this paper, we set α = 1, β = 0.1

Figures 4 and 5 show the loss convergence curve and PNSR value change curve of the 
model during the training process. As can be seen from the figure, our model works best 
when α = 1, β = 1. In addition, our model is basically superior to EDSR regardless of the 
value of α and β. It is because that compared with ordinary residual network, Dirac residual 
network can train deeper network model and enhance the ability of feature extraction by 
adaptively selecting parameters to control the weights of convolution operation and skip 
operation. In EDSR network, ordinary residual network is used to design feature extraction 
network, while DRSR network uses Dirac residual network to design feature extraction net-
work. Therefore, we can conclude that DRSR has better performance than EDSR because 
Dirac residual network has better feature expression ability.

Figures 6, 7, 8, 9, and 10 show the visual comparisons of the reconstruction effects 
of DRSR and other state-of-the-art networks with magnification factors × 2, × 3, 
and × 4 on Set2, Set14, B100, and Urban100. Figure 7 shows the model reconstruction 
effects with the magnification factor × 3 of “Barbara” in Set14. It can be seen that the 
HR image reconstructed by DRSR has been dramatically improved visually compared 

Table 2  Comparison of the IFC in the reconstruction effects of the algorithm and advanced SR network on 
Set5, Set14, B100, Urban100 and DIV2K

Bold and italic indicate the best and second-best performance

Dataset Scale Bicubic SRCNN 
(Dong et al., 
2014)

VDSR 
(Kim et al., 
2016a)

DRCN 
(Kim et al., 
2016b)

LapSRN 
(Lai et al., 
2017)

EDSR (Lim 
et al., 2017)

DRSR

Set5  × 2 6.083 8.081 8.580 8.367 8.401 8.903 8.905
 × 3 3.580 4.658 5.203 5.180 5.178 5.529 5.540
 × 4 2.329 3.017 3.542 3.532 3.515 3.952 3.971

Set14  × 2 6.105 7.795 8.159 8.082 8.042 8.544 8.552
 × 3 3.473 4.337 4.691 4.699 4.674 4.996 5.014
 × 4 2.237 2.758 3.106 3.094 3.089 3.434 3.475

B100  × 2 5.619 7.175 7.494 7.236 7.295 7.669 7.675
 × 3 3.138 3.843 4.141 4.071 4.046 4.286 4.284
 × 4 1.978 2.401 2.679 2.583 2.618 2.825 2.846

Urban100  × 2 6.230 7.983 8.629 8.461 8.441 9.628 9.607
 × 3 3.522 4.578 5.159 5.153 5.112 5.976 5.981
 × 4 2.283 2.972 3.462 3.409 3.448 4.213 4.267
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to that of other advanced algorithms. The texture reconstructed by this algorithm is 
more real and accurate. In contrast, other algorithms have more or less reconstructed 
the wrong texture. In Figs. 6, 8, and 9, the reconstruction effect of DRSR is similar to 
that of EDSR and is much better than that of other algorithms. The reconstruction HR 
image details of DRSR are entirely accurate. For the Urban100 dataset, as shown in 
Fig. 10, the edges of the camera are sharper and more visible in the HR image recon-
structed by DRSR. Other textures are also accurate and precise.

Table 3  Detailed comparison of DRSR and EDSR

Bold indicates the best performance

Method EDSR(Lim et al., 2017) DRSR

Training set DIV2K (1–800) DIV2K (1–800)
Convolution Layer Number 71 87
Number of convolution channels 256 256
Loss function L1 L1
Number of iterations 6 ×  106 6 ×  106

Set5 × 4 (PSNR/IFC) 32.46/3.952 32.43/3.971
Set14 × 4 (PSNR/IFC) 28.80/3.434 28.86/3.475
B100 × 4 (PSNR/IFC) 27.71/2.825 27.74/2.846
Urban100 × 4 (PSNR/IFC) 26.64/4.213 26.69/4.267

Table 4  Comparison of parameters and ablation study (the magnification scale is × 4)

Method Params α β Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR 1.45 M  ×  × 31.97/0.8915 28.46/0.7787 27.49/0.7730 25.72/0.7743
EDSR + skip 2.23 M  ×  × 31.98/0.8921 28.48/0.7794 27.50/0.7333 25.75/0.7753
DRSR-1 1 1.11 M 1 1 31.94/0.8924 28.50/0.7790 27.50/0.7331 25.91/0.7794
DRSR-1 0.1 1.11 M 1 0.1 31.96/0.8921 28.45/0.7782 27.47/0.7323 25.73/0.7743
DRSR-0.1 1 1.11 M 0.1 1 31.50/0.8856 28.28/0.7740 27.37/0.7280 25.54/0.7659

Fig. 4  The loss convergence curve of our model DRSR
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Fig. 5  The PSNR convergence curve of our model DRSR

Fig. 6  Qualitative comparisons of DRSR and other models with scale × 2 using image “bird” on Set5

Fig. 7  Qualitative comparisons of DRSR and other models with scale × 3 using image “Barbara” on Set14
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4  Conclusion

In this paper, an SR reconstruction algorithm based on the original Dirac residual is pro-
posed for the SISR task. The network learns the high-frequency features of the input LR 
image through the Dirac residual layer, uses the global skip connection to utilize the low-
frequency features directly, and reconstructs the image through the sub-pixel convolution 
layer. In addition, the residual layer of the traditional SR algorithm is improved by weight 
parameterization. Finally, the reconstruction results of the input image and the RESNET 
learned feature are combined as the final reconstruction result. The network can adaptively 
adjust the proportion of the convolution feature and the skip connection in each level of the 
residual block output.

Fig. 8  Qualitative comparisons of DRSR and other models with scale × 4 using image “Baby” on Set5

Fig. 9  Qualitative comparisons of DRSR and other models with scale × 4 using image “210,088” on B100
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Our model does not only add hyperparameters to the branches of the two networks, 
but we also design a new SR network reconstruction model. This network is derived 
from ResNet, and it is also an attempt to non-skip connection to find another way to 
implement residuals. Experiments show that the algorithm has achieved excellent 
results in both objective performance indexes such as PSNR, SSIM, IFC, and subjective 
visual perception.
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