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Abstract
Detecting small-scale pedestrians in aerial images is a challenging task that can be diffi-
cult even for humans. Observing that the single image based method cannot achieve robust 
performance because of the poor visual cues of small instances. Considering that multiple 
frames may provide more information to detect such difficult case instead of only single 
frame, we design a novel video based pedestrian detection method with a two-stream net-
work pipeline to fully utilize the temporal and contextual information of a video. An aggre-
gated feature map is proposed to absorb the spatial and temporal information with the help 
of spatial and temporal sub-networks. To better capture motion information, a more refined 
flow net (SPyNet) is adopted instead of a simple flownet. In the spatial stream subnetwork, 
we modified the backbone network structure by increasing the feature map resolution with 
relatively larger receptive field to make it suitable for small-scale detection. Experimen-
tal results based on drone video datasets demonstrate that our approach improves detec-
tion accuracy in the case of small-scale instances and reduces false positive detections. 
By exploiting the temporal information and aggregating the feature maps, our two-stream 
method improves the detection performance by 8.48% in mean Average Precision (mAP) 
from that of the basic single stream R-FCN method, and it outperforms the state-of-the-art 
method by 3.09% on the Okutama Human-action dataset.

Keywords  Pedestrian detection · Feature aggregation · Drone vision · Neural network · 
Deep learning

1  Introduction

The detection of small pedestrians in aerial images is widely utilized in many applications 
such as human rescue, smart drone monitoring, and video surveillance systems. Detect-
ing pedestrians in single images (Redmon and Farhadi 2018; Ren et  al. 2015; Xie et  al. 
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2019; Barekatain et al. 2017) has achieved momentous progress because of the emergence 
of deep convolutional neural networks (CNNs). In this field, groundbreaking and rapid 
adoption of deep learning architectures have produced highly accurate detection methods 
for traditional pedestrian datasets. The state-of-the-art performance (Liu et  al. 2019) on 
the Caltech pedestrian dataset (Dollar et al. 2011) has achieved about a 4% miss rate for 
the reasonable case. In another popular dataset, the INRIA pedestrian dataset (Wojek et al. 
2009), a 5% miss rate was reported with the method proposed in (Lin et al. 2018). For the 
KITTI benchmark (Geiger et al. 2012), the accuracy of pedestrian detection is close to 90% 
according to the KITTI website leaderboards.

Although existing methods can make reasonably good detections for large-scale groups 
of pedestrians who are close to the camera, their performance suffers serious deteriora-
tion with small-scale pedestrians as in drone images because of low resolution, distortional 
appearances from the top view, small instance sizes, and poor visual cues. Single image 
detection methods usually lack robustness, especially in small object detection. The drone-
view small-scale instances often present obscure appearances and blurred boundaries, thus 
they result in less effective feature representations for objects in aerial images. Current 
detectors frequently fail to effectively leverage appearance information to distinguish these 
objects from the surrounding background or similar objects. In addition, small instances 
somehow can be suddenly missed in certain frames.

There are two main limitations of single-image detectors. First, the detectors based on a 
single image are not robust enough because of the fluctuation of detection confidence val-
ues, since they can not incorporate temporal consistency and constraints. Second, compli-
cated backgrounds influence detection performance to some extent. Single-image detectors 
are more likely to generate false positives because information in only one frame is used. 
However, if the context information of the whole video is exploited, these false positives 
can be effectively removed as demonstrated in (Kang et al. 2017).

Most of the video-based object detection methods are implemented based on the Ima-
geNet VID dataset (Russakovsky et al. 2015) in which the object lies in the center of an 
image, and the scale is large enough. However, drone vision is more challenging due to 
the various view points and scales. Therefore, we make use of the advantages of both the 
single-image based object detection methods and video-based object detection methods. 
Among the advanced deep CNN architectures for general object detection, we follow the 
pipeline of R-FCN (Dai et al. 2016) because it shows superior and faster performance than 
the R-CNN counterpart (Girshick 2015; Ren et al. 2015) for object detection. We exploit 
the advantages of video-based object detection as well. Videos or sequences can provide 
multi-frames of images, and thus per-frame feature learning can be improved by temporal 
aggregation. Furthermore, motion information, such as an optical flow network (Dosovit-
skiy et al. 2015), can appraise the motions between frames to further enhance the features.

Inspired by these motivations, we developed a new video based, small-scale pedestrian 
detection method. To the extent of our knowledge, this is the first work that exploits the 
video based two-stream architecture for solving the small object detection problem. The 
main contributions are as follows:

1.	 A novel deep neural network architecture with two-stream subnetworks incorporates spa-
tial and temporal information to improve detection performance for small scale instances 
as well as partially occluded objects.

2.	 Feature aggregation with nearby frames is proposed for our two-stream network. An 
average operator is applied to aggregate the feature maps after mapping the spatial 
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feature maps of the nearby frames by flow-guided warping. A more refined flow net 
(SPyNet), instead of a simple flownet, is adopted as the temporal subnetwork to obtain 
the motion information and to generate flow feature maps.

3.	 Some effective techniques in single-image based methods are also adopted in our spatial-
stream network, including less downsampling and dilation convolution. Less downsam-
pling, which results in relatively larger resolution can keep more detailed information of 
small-scale instances in the spatial stream network. In order to offset for the receptive 
field, dilation convolution is applied in the deep layers of the network to generate a final 
spatial feature map that includes richer information.

4.	 Our method shows state-of-the-art performance in drone view datasets, such as the 
Okutama human action dataset (Barekatain et al. 2017) and the VisDrone dataset (P. 
Zhu et al. 2018). By additionally exploiting temporal information, it improves a mAP by 
3.09% more than the state-of-the-art method (Xie et al. 2019) on the Okutama Human-
action dataset. To further verify the performance for general drone view object detection, 
we have also performed experiments with the VisDrone dataset and achieved 14.06% 
improvement in mean Average Precision at a 0.5 IoU threshold (mAP@0.5) when com-
pared to the well-known SSD-PeleeNet method (Ozge Unel et al. 2019) on the VisDrone 
VID validation set.

The remainder of this paper is arranged in the following manners. Section 2 intro-
duces some recent works related to both single-image based detection and video-based 
detection methods. Section 3 explains the proposed two-stream detection network with 
feature aggregation (TDFA) in detail. Experiments and results are discussed in Sect. 4. 
At last, Sect. 5 summarizes conclusions and future work.

2 � Related works

2.1 � Single‑image based pedestrian detection

With the rapid growth of deep CNN technologies recently, many general pedestrian 
detectors have achieved good performance. For small pedestrian detection, a common 
and popular strategy is the multi-layer approach, which generates multi-branches or 
subnetworks for different scale training. The MS-CNN (Cai et al. 2016) is performed 
with output of multi-layers to detect pedestrians of various scales. Similarly, SAF 
R-CNN (Li et  al. 2017) proposes a divide-and-conquer approach with Fast R-CNN 
pipeline. This strategy detects pedestrians by two built-in subnetworks at diverse scales 
from disjoint ranges. Another way to enhance the feature presentation is by incorporat-
ing both the rich semantic information from deeper layer features and the fine-grained 
information from shallow layer feature maps. In order to extract strong semantics rep-
resentation at all scales, including small scales, lateral connections with a top-down 
pathway have been proposed in Feature Pyramid Network (FPN) (Dollár et al. 2014). 
YOLO-v3 (Redmon and Farhadi 2018) uses a similar method, but replaces the near-
est neighbor upsampling in deconvolution to achieve better performance of small-size 
object detection.
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2.2 � Video‑based object detection

Since ImageNet proposed the challenge for video-based object detection (VID) and pro-
vided the dataset, there have been many various works that have focused on the video 
object detection. One of the typical architectures is ConvNets + LSTM, which extracts 
features individually on each frame, then pools the predictions through the entire video. 
For example, ROLO (Ning et al. 2017) develops a recurrent convolutional neural network 
(RCNN) with spatially supervised for the task of visual object tracking. It concatenates 
high-level spatial features captured by convolutional networks with regional information 
and executes Long Short Term Memory (LSTM) in the temporal domain. This type of 
ConvNets + LSTM approach can deliver high-level semantic information but is not able 
to obtain fine low-level detailed information, which is important for small-scale detection. 
It is also time-consuming for training due to the network unrolling with multiple frames 
for backpropagation across time. The second typical architecture is 3D ConvNets (Varol 
et al. 2017), which directly creates hierarchical representations of spatio-temporal features. 
However, the 3D ConvNets models take many more parameters than those of 2D Con-
vNets, owing to the extra kernel dimension, which makes the training more difficult. The 
third typical architecture is the two-stream network structure put forward by Simonyan and 
Zisserman (Simonyan and Zisserman 2014). To capture spatio-temporal information about 
the appearance as well as the movement of objects, both the RGB and optical flow frames 
are given into deep ConvNets architectures separately, and finally their softmax scores 
are joined with late fusion. An extended work (Feichtenhofer et  al. 2016) combines the 
spatial and flow branches at the last convolutional layer of the network. In more recent 
works such as FGFA (Zhu et al. 2017) and MANet (Wang et al. 2018a, b), the features of 
a single frame are enhanced by utilizing an optical flow network to measure the motions 
between the reference frame along with the nearby frames and by using a more advanced 
deep learning framework. This framework investigates temporal information based on the 
feature level, rather than the final box level, as ConvNets + LSTM does. Compared with 
two other typical architectures, this type of two-stream network shows better performance 
and requires relatively less time for training and testing.

2.3 � Video‑based pedestrian detection

In TLL (Song et al. 2018), somatic topological line localization (TLL) is integrated with 
a temporal feature aggregation that utilizes a joint Conv-LSTM model for detecting multi-
scale pedestrians. ADM (Zhang et al. 2018) introduces a RCNN based localization policy 
that uses the sequences of coordinate transformation actions to get the final detection of 
the pedestrian instances. In (Wang et al. 2018a, b), a part and context network (PCN) is 
proposed by incorporating a primary branch, a context branch, and a part branch into an 
integrated architecture with an LSTM module for communicating the body part semantic 
information.

In this research, we also adopt a similar two-stream network architecture to incorporate 
temporal as well as spatial information for better accuracy and effectiveness. To effectively 
capture the features of small-scale instances, we design a network architecture based on 
the R-FCN pipeline, and a variant ResNet is used as the backbone network in the spa-
tial stream. Furthermore, we aggregate the features of the nearby frames to acquire more 
temporal information. Our method achieves more robust detection performance in difficult 
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examples such as the detection of small-scale instances from drone-view images and can 
effectively reduce false positive detections.

3 � Two‑stream detection network with feature aggregation

In this section, we demonstrate the details of our proposed method. The main notations 
adopted in this paper are declared in Table 1.

3.1 � Two‑stream network design

Our architecture consists of two subnetworks. For one subnetwork, a variant ResNet is uti-
lized to extract the spatial feature map fi on frame Ii , and the other is the temporal stream 
network. Given a reference frame Ii and a nearby frame Ii+k , a two-dimensional flow filed 
Mi→i+k = F

(
Ii, Ii+k

)
 is obtained by the optical flow estimation algorithm (Ranjan and Black 

2017). F
(
Ii, Ii+k

)
 denotes the flow field estimated from frame Ii to Ii+k . Figure  1 shows 

a flowchart of the two-stream detection network with feature aggregation. By using a 
sequence of images, a series of spatial feature maps fi−k,… , fi+k are generated by passing 
the frame Ii−k,… , Ii+k through the spatial stream, and then the temporal feature map Mi→i+k 
is calculated by applying the FlowNet with frame Ii and frame Ii+k . The feature warping is 
used to generate the warped feature wfi+k→i . Similarly, the warped feature map wfi−k→i to 
wfi+k→i is generated. These features are then aggregated as afi and delivered to the PS ROI 

Table 1   Notations
i Reference frame index
k Nearby frame index
I Video frame
f, wf, af Spatial feature map, warped 

feature map and aggre-
gated feature map

p, q 2D location
M

i→i+k
2D flow field

F Functions of flow estimation
W, G Bi-linear interpolation 

function and the bilinear 
interpolation kernel

Fig. 1   Architecture of our proposed two-stream detection network with feature aggregation (TDFA)
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pooling layer. At last, we can get the final detection results by detection module with soft-
max classification and bounding box regression.

3.2 � Feature aggregation

As motivated by (Zhu et al. 2017) and (Wang et al. 2018a, b), we adopt flow-guided fea-
ture warping to capitalize on the temporal information. In the spatial stream, the spatial 
network is applied to the nearby Ii−k,… , Ii+k frames to get the corresponding feature maps 
fi−k,… , fi+k . Then, the feature map on the nearby frame Ii+k is warped to the current frame 
Ii as follows:

where fi+k→i are the warped features that denote the feature map from frame Ii+k to frame 
Ii . W(⋅) denotes the bi-linear interpolation function, it applied to each location for all the 
feature maps. In the reference frame i, a location p maps to the location p + Δp in frame 
Ii+k , as presented in the Eqs. (2) and (3):

where q stands for all spatial locations in the feature maps fi+k , ∆p is the output of the flow 
estimation at location p, and G(·) is the bilinear interpolation kernel as

When the warped features of nearby frames wfi−k→i,… ,wfi+k→i are obtained, the feature 
map of the reference frame can be enhanced by accumulating the multiple feature maps of 
nearby frames, which provides the temporal information of the object instances. We aggre-
gate the feature maps by averaging them. The aggregated feature afi at the reference frame 
i is generated as

The procedure of generating the aggregated feature is presented in Algorithm 1.

(1)wfi+k→i = W
(
fi+k,Mi→i+k

)
= W

(
fi+k,F

(
Ii, Ii+k

))

(2)Δp = F
(
Ii, Ii+k

)
(p)

(3)wfi+k→i(p) =
∑

q

G(q, p + Δp)fi+k(q)

(4)G(q, p + Δp) = max (0, 1 − ‖q − (p + Δp)‖).

(5)afi =

∑i+k

t=i−k
wft→i

2k + 1
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3.3 � Flow network of the temporal stream

Instead of using a simple version of FlowNet (Dosovitskiy et  al. 2015), we adopted the 
Spatial Pyramid Network (SPyNet) (Ranjan and Black 2017) which captures residual flow 
based on a coarse-to-fine spatial pyramid structure. In our case, the motions of the object 
instances between the frames are small. SPyNet is better able to deal with a more detailed 
and precise motion optical flow. Furthermore, as proposed in (Ranjan and Black 2017), 
the SPyNet model is faster and smaller than FlowNet. To further reduce the computation 
time, we apply the flow network on non-adjacent frame pairs as in (Zhu et al. 2017). By 
compositing the intermediate flow fields, the flow field between the non-adjacent frames 
can be measured. As a result, the computation time can be reduced in half with almost the 
same accuracy.

In SPyNet, the residual flow is computed by convolution at the high level of the pyramid 
with the low-resolution feature map. At each pyramid level, the residual flow is computed 
and successively propagates to the next lower levels with higher resolution for every pyra-
mid level. Eventually, the flow is captured at the lowest levels of the pyramid. These types 
of procedures can be treated as a flow-block, which is illuminated in Fig. 2. We adopt a 
5-level SPyNet, the flow chart of the SpyNet architecture is also illuminated in Fig. 2.

3.4 � Feature network of the spatial stream

Following R-FCN (Dai et al. 2016), we adopt a variant ResNet-101 (ResNet101-M) as the 
backbone network for spatial feature extraction. Compared with the original ResNet-101 
network (He et al. 2016), the ending average pooling and the fully convolutional (fc) layer 
have been cut out for the object detection task. The proposed variant ResNet-101 is specifi-
cally designed for feature extraction of small objects. At the last block in conv5 stage, the 
stride of the convolution layer with 2 is modified to 1 in order to keep the relatively large 
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spatial resolution of the feature map. To further increase the feature resolution, the effec-
tive stride of the last block in the conv5 stage is changed from 32 to 16 pixels. Then, the 
dilation convolution is used to offset the size of receptive field, the kernel size of the dila-
tion convolutional layers larger than 1 is set as 2 in the last block of the conv5 stage.

4 � Experimental results

4.1 � Implementation details

Our experiments use the ResNet-101-M model pre-trained on the ILSVRC-CLS image 
classification dataset (Russakovsky et  al. 2015), and the base SPyNet model pre-trained 
on the Flying Chairs dataset (Dosovitskiy et al. 2015). To augment the training data, image 
flipping is adopted. We use single scale images with 720 × 1280 pixels in training to avoid 
GPU memory overflow. To fine-tune the detection bounding boxes and to choose hard 
examples automatically in training, non-maximum suppression (NMS) and online hard 
example mining (OHEM) (Shrivastava et al. 2016) were adopted. We chose Mxnet as the 
platform and trained the network on four parallel Nvidia GeForce GTX TITAN X GPUs 
with 12 GB of memory, while testing was performed on a single GPU.

4.2 � Okutama human‑action dataset

The Okutama Human-action Dataset is a real-word aerial view video dataset with high 
image resolution. A total of 43 video sequences are captured at 30 FPS, including 33 
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Deconv
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Fig. 2   Flowchart of SPyNet architecture
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training sequences and 10 testing sequences. The videos were recorded with UAVs flying 
varying 10–45 m altitudes. The camera angle is between 45 and 90 degrees. The dataset 
can be used for both human detection and action understanding. In this paper, we aim at 
the human detection task. The dataset is spatio-temporal fully-annotated. Each instance has 
a tracking id. In experiments, we used 54,503 images for training and 14,114 images for 
testing.

Following the object detection protocols in (Everingham et al. 2010; Barekatain et al. 
2017), the mean Average Precision at a 0.5 IoU threshold (mAP@0.5) is used as the evalu-
ation metric. The Intersection Over Union (IOU) considers the overlap of areas between 
the prediction bounding box and the ground truth bounding box, which is calculated by the 
Eq. (6):

If IOU ≥ 0.5 , the detection is classified as a true positive. Otherwise, the detection is 
false positive. Precision is the fraction of positive instances among the detected instances. 
Recall is the proportion of instances that are correctly detected among the ground truth. 
The Average Precision (AP) is computed by averaging the precision over a set of evenly 
spaced recall levels [0, 0.1, … 1.0]. The definitions of precision, recall, and AP, in terms of 
true positive (TP), false positive (FP), and false negative (FN), are as follows:

where pinterp(r) = max
r̃∶r̃≥r

p(r̃) , and p(r̃) is the measured precision at recall r̃ . The precision-
recall curves were drawn using the precision p(r) as a function of recall r. The area under 
the curve was summarized to obtain Average Precision. The mean Average Precision 
(mAP) for a set of classes is the mean of the Average Precision (AP) scores for each class, 
which is computed as:

where N is the number of classes. In our task, we only consider the class “pedestrian”. 
Therefore N = 1, the mAP equals to AP.

4.2.1 � Ablation experiments of aggregation number of frames in training 
and inference

In Table 2, a comparison of the performance and runtime for the utilization of a diverse 
number of frames is given. The case of k = 0 is the single image detection based on our 
network architecture without multi-frame input. The parameter k is the number of addi-
tional nearby frames that we used for feature aggregation. One can observe that the per-
formance improves with increasing additional input frames up to a certain level. When 
a greater number of frames are aggregated, the runtime gradually increases. Notice that 

(6)IOU = (area of intersection)∕(area of union).

(7)Precision = TP∕(TP + FP)

(8)Recall = TP∕(TP + FN)

(9)AP =
1

11

∑

r∈[0,0.1,…,1]

pinterp(r)

(10)mAP =

∑N

n=1
AP(n)

N
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the performance has a bit of a decrease with aggregating 10 frames in this example. This 
is probably because the information of an image 10 frames away is not very “useful” for 
the current frame image. Our model can reach the best performance of 87.18% mAP when 
k = 9.

4.2.2 � Ablation experiments

We evaluated the effect of each component of our proposed approach. In the spatial stream, 
we compared the performance of original ResNet-101 and ResNet-101-M, with R-FCN as 
the basic architecture. In the temporal stream, we compared the performance of FlowNet 
and SpyNet for capturing temporal information, with the number of input frames k = 9. As 
shown in Table 3, the ResNet-101-M performs better than the original ResNet by 0.75% in 
mAP, to extract the features of the spatial domain. A significant improvement of 5.94% in 
mAP has been achieved after using the temporal steam with FlowNet. Then the FlowNet 
is replaced with the SpyNet to capture a more detailed and precise motion optical flow, 
resulting an additional improvement of 2.54% in mAP.

4.2.3 � Comparison with the state of the arts on Okutama dataset

Table 4 gives a comparison of the detection results and runtime between our method and 
the state-of-the-art methods on the Okutama dataset. The R-FCN with ResNet-101-M is 
our base network of the spatial stream, which is based on single-image based detection 
with k = 0 . By exploiting the temporal information and aggregating the feature maps of 
nearby frames, our two-stream method finally improves the performance from 78.7 to 
87.18% in mAP. When compared with the existing best method DIF R-CNN (Xie et  al. 
2019), our method outperforms by 3.09%. In DIF R-CNN (Xie et al. 2019), which was our 
previous work, 90.3% mAP was reported on the Okutama validation set. However, the test 
set in (Xie et al. 2019) is different from the Okutama official test set, since (Xie et al. 2019) 
was published before the official data was released. DIF R-CNN (Xie et al. 2019) achieved 

Table 2   Comparison of the results by using a different number of frames as input

Frame num (k) 10 9 8 4 2 1 0

mAP@0.5 87.03% 87.18% 86.84% 83.65% 82.05% 81.25% 78.70%
Runtime (s/frame) 0.2955 0.2831 0.2746 0.2576 0.2554 0.2480 0.0862

Table 3   Influence of each component of our proposed method on the Okutama test dataset

Spatial stream (k = 0) Temporal stream (k = 9) Performance 
(mAP@0.5) 
(%)R-FCN + ResNet-101 R-FCN + ResNet-

101-M
FlowNet SpyNet

√ 77.95
√ 78.70
√ √ 84.64
√ √ 87.18
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84.09% of mAP for the official test set. All the results presented in Table 4 are by using the 
official test set. The proposed approach takes about 50–52 h to train the best model with 
k = 9 on the Okutama dataset, and the runtime is 0.28 s/f for testing with the original image 
size of 3480 × 2160 pixels. Figure 3 indicates the precision-recall curve of our proposed 
TDFA and other existing methods on the Okutama human-action dataset.

Figure 4 is a visualization comparison of the detection results. Our proposed method 
generates less false positive detections and is better to handle the partially occluded cases 
than SSD-Okutama (Barekatain et al. 2017) and DIF R-CNN (Xie et al. 2019). Figure 5 
compares the detection results for a sequence by using the test set Drone 2-Noon-1.2.1. 
For this example, we choose the frame id = {1100, 1105, 1110, 1115} . The images are dis-
played with partial magnification. Compared with these single-image based methods (Xie 
et al. 2019; Barekatain et al. 2017), our approach is more robust to detect the persons in 
every frame without sudden missing.

4.3 � VisDrone dataset

To further verify the performance of our proposed method in general small-scale object 
detection with drone videos, we also use the Visdrone dataset (P. Zhu et al. 2018) for our 
experiment. The VisDrone dataset focus on advancing visual understanding tasks such as 
object detection and tracking for the drone applications. It was collected by drone-mounted 
camera with various aspects including diverse location, environment (urban and country), 

Table 4   Performance comparison with other existing methods on the Okutama test dataset

Methods mAP@0.5 (%) Runtime (s/frame)

SSD-Okutama (Barekatain et al. 2017) (baseline) 72.30 0.028
R-FCN with ResNet101-M (ours without multi-frame) 78.70 0.08
DIF R-CNN (Xie et al. 2019) 84.09 0.22
TDFA with ResNet101-M (k = 9) (Ours) 87.18 0.28

Fig. 3   The pedestrian detection 
comparison of our proposed 
TDFA and other methods on the 
Okutama human-action dataset
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density (crowded and sparse scenes), and 10 classes of objects (people, pedestrian, bicycle, 
bus, car, van, truck, motor, tricycle, awning-tricycle). Following the comparison method, 
SSD-PeleeNet (Ozge Unel et al. 2019), 10 classes were grouped into two main groups as 
pedestrian and vehicle. Training and validation were conducted only on the VisDrone-VID 
training set which contains 56 video clips with 24,201 frames. The performance metric 
was calculated on the VisDrone-VID validation set involving seven video clips with 2819 
images, in which the image sizes of video sequences are not uniform. We trained the net-
work based on variant ResNet (ResNet-101-M) and choose the best training model with 9 
frames (k = 9) to get the final results.

The performance comparison of our detector with SSD-PeleeNet (Ozge Unel et  al. 
2019) is presented in Table  5, which presents that our method achieves significantly 
better performance in most cases. It produces a mAP@0.5 of 50.73% for overall classes 
which is a big improvement (14.06%), from 36.67 to 50.73%. The runtime is 0.26 s/f on 
a single TITAN X GPU for testing. It takes about 12 h to train the best model with k = 9 

Fig. 4   Visual comparison of the detection results. Top to bottom: a SSD-Okutama (Barekatain et al. 2017) 
(baseline method) showing two false negatives in the left case and two false positives in the right case. b 
DIF R-CNN (Xie et al. 2019) showing one false negative and one false positive in the left case, one false 
positive in the right case. c our results on the Okutama test set detected all persons without false positives. 
We denote ground truth in green and detection results in red (Color figure online)
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on the VisDrone dataset. For vehicle detection, ours performs 11.12% better than the 
SSD-PeleeNet (Ozge Unel et  al. 2019) in mAP@0.5. Our approach also improves the 
performance with different degrees in mAP (IoU:0.75 and 0.5:1.0) on both vehicle and 
pedestrian classes. The detection accuracy has a slight of decrease (1.49%) in pedestrian 
detection with mAP @0.5. In addition to the small-sized instance problem, this dataset 
contains night time detections without IR-aid, such as infrared images. Furthermore, 
heavy occlusion, complicated backgrounds, fog, and bad illumination make the detec-
tion task even more challenging. The detection examples of our approach are shown in 

Frame ID: 1100 1105 1110 1115

(a) 

(b) 

(c)  

Fig. 5   Comparison of sequence detection results. Top to bottom: a SSD-Okutama (Barekatain et al. 2017) 
(baseline method) with four errors, b DIF R-CNN (Xie et al. 2019) with two errors, and c our results on the 
Okutama test set without error. We denote ground truth in green and detection results in red  (Color figure 
online)

Table 5   Comparison of our method TDFA with SSD-PeleeNet on the VisDrone validation set

Bold values indicate the best results

Methods Avg. Precision (%), Iou:

Vehicle Pedestrian Overall (mAP)

0.5 0.75 0.5:1.0 0.5 0.75 0.5:1.0 0.5 0.75 0.5:0.95

SSD (Vino) 32.27 17.29 17.21 24.74 3.64 8.75 28.50 10.46 12.98
SSD (Pelee T5 × 3 I5 × 3) 41.39 19.55 21.07 30.26 2.94 9.61 35.82 11.24 15.34
SSD (Pelee38 T5 × 3 I5 × 3) 44.35 22.64 23.53 28.99 3.25 9.69 36.67 12.95 16.61
TDFA (Resnet101-M) (Ours) 55.74 33.45 28.44 28.77 8.77 10.84 50.73 27.94 27.27
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Fig. 6. The precision-recall curve of our proposed TDFA for each class of the Visdrone 
dataset is presented in Fig. 7.

Fig. 6   Visualization of our detection results on the VisDrone validation set. We denote ground truth in 
green and detection results in red (Color figure online)

Fig. 7   The precision-recall curve of our proposed TDFA for each class of the Visdrone dataset
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5 � Conclusion and future work

In this paper, a novel two-stream detection network with feature aggregation (TDFA) is 
proposed for small-scale pedestrian detection in drone-view videos. To make a more robust 
detection performance on drone-view videos, we introduce two-stream video-based detec-
tion techniques with the R-FCN pipeline. We follow the traditional single-image based fea-
ture map extraction method in the spatial stream. Additionally, we apply SPyNet to extract 
flow feature maps to catch the tiny motion and incorporate the temporal information. Then, 
the mapping and warping operations are performed from the flow features to the spatial 
features. Finally, the feature maps of nearby frames are aggregated. The aggregated feature 
can give a more effective feature representation with spatio-temporal information.

Experimental evaluations demonstrated that the proposed TDFA is superior when com-
pared to other single-image based detection method, in detecting small-scale pedestrian 
instances. The performance of our results is 3.09% better in mAP than that of the state-of-
the-art results on the Okutama Human-action Dataset. Furthermore, it also achieves good 
performance on general drone-view object detection tasks, such as the VisDrone VID task. 
Our method achieved a mAP@0.5 of 50.73% with 14.06% improvement than the SSD-
PeleeNet on the VisDrone VID validation set. In the future, we prone to focus on develop-
ing an algorithm for handling occlusion and bad illumination cases. By solving these two 
main challenging cases, we are able to further enhance the overall detection performance.
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