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Abstract
Orthogonal moments are the projections of image functions on particular functions of the
kernel. They play an essential role in image extraction: rotation, scaling, translation invari-
ance, object recognition, image classification, image noise robustness, and low information
redundancy. These moments are derived from orthogonal polynomials that can be contin-
uous or discrete. This paper focuses on the fractional-order modified generalized Laguerre
moment invariants (FMGLMIs), which is a generalization of the traditional integer order one.
In this research, we have developed a new algorithm to compute the 3D invariant moments of
FMGLMIs based on the 3D image cuboid representation, our proposed calculation method
can improve the efficiency of 3D invariantmoment calculation tomaintain numerical stability
and significantly reduce calculation time with very satisfactory accuracy. To check this new
algorithm, the calculation of 3D invariant moments gives very encouraging results for the
invariability property of the proposed method with respect to different geometric transfor-
mations and noise degradations of 3D images, classification and recognition of 3D images
and the calculation time of fractional-order invariants proposed. Finally, the experimental
results show that the proposed method makes it possible to construct fractional-order modi-
fied generalized Laguerre invariant moments offering better performances for image analysis
and pattern recognition.
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FGGMI Fractional-order generalized geometric moment invariants
FMGLMI Fractional-order modified generalized Laguerre moment invariants
RST Rotation, scaling and translation
ICR Images cuboid representation
FDE Fractional differential equations
GMI Geometric moment invariants
CMI Chebychev moment invariants
GegMI Gegenbauer moment invariants
JMI Jacobi moment invariants
GHMI Gauss–Hermite moment invariants
FC-FMGLMI-ICR Fast computation of the fractional-order modified generalized Laguerre

moment invariants by images cuboid representation

1 Introduction

Image moments in the field of image processing are essentially weighted digital measure-
ments of the intensity of the pixels in the image. These moments form functions that inherit
special properties to specify a particular set of image characteristics. These moments and
the functions of the moments have been widely used in pattern recognition (Flusser and
Suk 1993; Heywood and Noakes 1995), fingerprint recognition (Qader et al. 2007), object
representation and retrieval (Karakasis et al. 2015; Höschl and Flusser 2016), medical image
analysis (Dai et al. 2010; Daoui et al. 2019), texture analysis (Bharathi and Ganesan 2008),
and image watermarking (Yamni et al. 2020; Xiao et al. 2020; Yuan et al. 2013). There are
popular non-orthogonal moments, such as moments of rotation (RM), complex moments
(CM) and geometric moments (GM) (Teh and Chin 1988). These are not as effective as
orthogonal moments due to redundancy of information and robustness to noise due to non-
orthogonality. Teague (1980) gave the idea to use orthogonal moments for image analysis
that give better results than non-orthogonal moments, with very little information redun-
dancy and increased noise resistance. Teague was the pioneer of image reconstruction from
a moment on, pointing out that the image can be reconstructed from a set of orthogonal
moments (Zhu et al. 2010). Several works of the literature treat the methods of extraction
of the invariant moments and their uses for the classification of 2D images. Hu presented
the theory of algebraic invariants to define seven invariants of linear transformations based
on geometric moments (Hu 1962). These descriptors are widely used in several applications
thanks to their invariance to the geometric transformations of rotation, translation and scaling.
So far, several continuous orthogonal moments have been introduced, Legendre (Shu et al.
2000; Rao et al. 2010), Chebyshev (Yang et al. 2018; Yap et al. 2001), Gegenbauer (Hosny
2014; Liao et al. 2002), Jacobi (Ping et al. 2007), Zernike (Qader et al. 2007; Khotanzad and
Hong 1990), Gaussian-Hermite (Yang et al. 2015; Hosny 2012) and Fourier-Mellin (Shao
et al. 2016). However, these moments generally involve several major problems such as the
numerical approximation of continuous integrals, the transformation of the coordinate space,
high computation costs, etc.… Recently, a set of new types of discrete orthogonal moments
based on discrete orthogonal polynomials, the Tchebichef (Xiao et al. 2020; Pee et al. 2017),
Krawtchouk (Xiao et al. 2016; Sayyouri et al. 2015), Charlier (Yamni et al. 2020; Karmouni
et al. 2019), Meixner (Karmouni et al. 2019; Sayyouri et al. 2015), Hahn (Sayyouri et al.
2016; Sayyouri et al. 2013) and Racah (Zhu et al. 2007) polynomials, has been successfully
introduced as alternatives to continuous orthogonal moments. In addition, we can construct
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different moments in other spaces like Radon transform invariant moments (Xiao et al. 2015)
and histogram invariant moments in the Radon transform space (Tabbone et al. 2008). Note
that all the above orthogonal moments are limited to a traditional first order integer. How-
ever, since these polynomials use series of integer powers to approximate fractions, it cannot
accurately represent the properties of fractional computation. Further experimental results
showed that the fractional order orthogonal moments were better than the traditional orthogo-
nal moments based on the integer order in image reconstruction, noise robustness, and image
recognition. Xiao et al. (2017) introduced two types of fractional orthogonalmoments defined
in polar and Cartesian coordinates, based on Legendre polynomials shifted to the fractional
order. Although Legendre’s rotation invariants of fractional moments have been studied in
Xiao et al. (2017). Zhang et al. (2016) presented the fractional orthogonal Fourier-Mellin
moments for pattern recognition. Hosny et al. (2020) derived fractional-order shifted Gegen-
bauer moments for image analysis and recognition. Pandey et al. (2018) defined the fractional
order Tchebichef moment and its invariants. Bhrawy et al. (2012, 2014) and Baleanu et al.
(2013) presented the fractional-order modified generalized Laguerre functions (FMGLFs)
based on fractional order generalized Laguerre polynomials to find the numerical solution
of fractional differential equations (FDEs) and concluded that their method is accurate, effi-
cient and easy to implement. This type of orthogonal polynomials implies the introduction
of a fractional parameter λ � 0, in order to generalize the notion of integer order n with
n ∈ N to fractal order nλ. In such cases, we have to consider the fractional-order generalized
Laguerre approximation with weight functionw(α,λ)(x) � x (α+1)λ−1e−xλ

, α > −1 , λ � 0.
Indeed, from both theoretical and computational points of view, it is more interesting
to consider an fractional-order orthogonal system with a more general weight function:
w(α,β,λ)(x) � x (α+1)λ−1e−βxλ

, α � −1, β � 0, λ � 0. One obvious advantage is that it
can provide us a variety of choices of polynomial bases to fit exact solutions of underlying
differential equations with various asymptotic behaviors at infinity. Moreover, as we will see
later, some other good by-products can be obtained using this new family of orthogonal poly-
nomials. Unfortunately, to our knowledge, the 3D invariants of the generalized, fractional
modified geometric transformations of the Laguerre moment have not yet been studied. The
attractive characteristics of FMGLMIs motivated the authors to generalize the generalized
Laguerre functions to be defined with a fractional-order, and then, utilizing the successful the
image cuboid representation approach to derived a novel set of FMGLMIs based on image
cuboid representation for 3D image analysis.

In this paper, we present a new set of FMGLMIs up to any of their parameter values,
with respect to geometric transformations (RST). These new invariant fractional moments
can be used effectively in object recognition, 3D image classification, region of interest
(ROI) extraction and very robust to image noise. To summarize, the main motivation of this
paper contains three aspects: (1) Introduce a new set of fractional-order modified generalized
Laguerre moment invariants for 3D pattern recognition based on Laguerre polynomials of
fractional-order using the 3D image cuboid representation (ICR). (2) Provide the theoretical
framework for the derivation of FMGLMIs, which are independent to the change of shape’s
orientation, size and position, are efficiently evaluated through several appropriate experi-
ments concerning the invariability property and the 3D image classification performance.
(3) Propose a fast and accurate algorithm to compute the FMGLMIs based on the cuboid
representation of 3D images. This new algorithm is very efficient to maintain numerical sta-
bility and considerably reduces computation time of the moment invariants 3D, because the
computation of FMGLMIs by the proposed method depends only on the number of cuboids
instead of the size of the 3D image. The performance of the newly proposed fractional-order
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moment invariants is effectively evaluated through several appropriate experiments, with
regard to the computational time, the 3D pattern recognition, the invariability property and
the 3D image classification performance. Consequently, the experimental results conclusively
prove the effectiveness of this new technique, which can be considered as a new algorithm
for calculating 3D invariants.

This article is organized as follows: In “Classical 3D generalized Laguerre moments”
section, we will present the classical Laguerre continuous orthogonal moments. In “Frac-
tional-order modified generalized Laguerre moments” section, we will define new fractional-
order modified generalized Laguerre orthogonal moments. In “Proposed fractional-order
modified generalizedLaguerremoment invariants” section,will provide the proposedmethod
for the fast and accurate computation of the 3D fractional ordermodified generalizedLaguerre
moment invariant based on the algorithm ICR for obtaining fractional order generalized
Laguerre moment invariants (FC-FMGLMI-ICR) of rotation, scale and translation, validates
the property of invariability, noise resistance and 3D images recognition. The experimental
analyses are carried out in “Experimental results and discussions” and “Conclusion” sections
summarizes the conclusion.

2 Classical 3D generalized Laguerre moments

In this section, we present a brief study of classical generalized Laguerre polynomials and
Laguerre continuous orthogonal moments of two and three dimensions.

2.1 Generalized Laguerre polynomials

The generalized Laguerre polynomials, Lα
n (x), have the following Gauss hypergeometric

representation (Koekoek et al. 2010):

Lα
n (x) � (α + 1)n

n!
1F1(−n;α + 1; x);n � 0, 1, 2, . . . and α � −1 (1)

where (α + 1)n is Pochhammer’s symbol given by:

(α + 1)n � (α + 1)(α + 2) · · · (α + n), n ≥ 1 and (α + 1)0 � 1 (2)

where the hypergeometric function 1F1 is defined as:

1F1(a; b; x) �
∞∑

k�0

(a)k
(b)k

xk

k!
(3)

The finite power series of the shifted Laguerre polynomials Lα
n (x) of degree n is given by:

Lα
n (x) �

n∑

k�0

B(α)
n,k x

k with B(α)
n,k � (−1)kΓ (α + n + 1)

(n − k)! k!Γ (α + k + 1)
(4)

The calculation of generalized Laguerre polynomial values from Eq. (4) is very expensive
in terms of computation time. To overcome this problem, it is proposed to use the recursive
form of Laguerre polynomials.

The recurrence relation with respect to n of the generalized orthogonal Laguerre polyno-
mials is defined as (Koekoek and Meijer 1993):

Lα
n+1(x) � (2n + α + 1 − x)

(n + 1)
Lα
n (x) − (n + α)

(n + 1)
Lα
n−1(x); n � 1, 2, . . . (5)
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The first two polynomials are defined as:

Lα
0 (x) � 1, Lα

1 (x) � 1 + α − x (6)

The orthogonality relation of the generalized Laguerre polynomials with respect to the
weight function w(x) � xαe−x , is defined as follows:

∫ +∞

0
w(x)Lα

n (x)L
α
m(x)dx � hα

n δnm, (7)

with respect to the weight function and the squared norm hα
n � Γ (n+α+1)

n! , where δnm denotes
the Kronecker symbol.

Then, the generalized normalized Laguerre polynomials are defined by:

L̃α
n (x) �

√
w(x)

hα
n

Lα
n (x) (8)

The generalized normalized Laguerre polynomials satisfy the following orthogonality
property:

∫ +∞

0
L̃α
n (x)L̃

α
m(x)dx � δnm (9)

2.2 Generalized Laguerre moments

For an image f (x, y, z)with size N×M×K , the classical 3DGeneralizedLaguerremoments
(CGLMs) of order (n,m, p) are defined as follows:

CGLMα
nmp �

∫ +∞

0

∫ +∞

0

∫ +∞

0
L̃α
n (x)L̃

α
m(y)L̃

α
p(z) f (x, y, z)dxdydz (10)

where n,m, p � 0, 1, 2, . . . ∞
For a digital image of size N×M×K , the approximated classical 3DgeneralizedLaguerre

moments are computed by using the following formula:

CGLMα
nmp

�
N∑

i�1

M∑

j�1

K∑

k�1

L̃α
n (xi )L̃

α
m(y j )L̃

α
p(zk) f (xi , y j , zk)�x�y�z (11)

where L̃ (α)
n (xi , N ) is the nth order generalized orthonormal polynomials of Laguerre and

�x � xi − xi−1, �y � y j − y j−1 end �z � zk − zk−1 are sampling intervals in the ‘x’,
‘y’ and ‘z’ directions respectively,

(
xi , y j , zk

)
is the centre of (i, j, k) voxel. The image has

to be mapped inside the [0 b] × [0 b] × [0 b] with xi � b×i
N ; y j � b× j

M ; zk � b×k
K , with

b � 1, 2, 3, . . . ; i � 1, 2, . . . , N ; j � 1, 2, . . . , M and k � 1, 2, . . . , K .
Based on the orthogonality of classical generalized Laguerre polynomials L̃α

n (x), image
reconstruction only adds the individual components of each order to generate the recon-
structed image. The 3D image function f (x, y, z) can be written as an infinite expansion
series in terms of the classical generalized Laguerre polynomials over the cube [0 b]×[0 b]×
[0 b]:

f (x, y, z) f (x, y, z) �
∞∑

n�0

∞∑

m�0

∞∑

p�0

CGLMα
nmp

L̃α
n (x)L̃

α
m(y)L̃

α
p(z) (12)
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where the classical generalized Laguerre moments CGLMα
nmp

, are calculated on the maxi-
mum order. If only generalized Laguerre moments of order smaller than or equal to the order
(nmax,mmax, pmax) are given, then the function f (x, y, z) in Eq. (12) can be reconstructed
as follows:

f (x, y, z) �
nmax∑

n�0

mmax∑

m�0

pmax∑

p�0

CGLMα
nmp L̃

α
n (x)L̃

α
m(y)L̃

α
p(z) (13)

The triple integration in Eq. (10) is replaced by triple summations, which results in numer-
ical error. Based on the basis of mathematical analysis, triple summation is identical to the
triple integration only when the indices are reaching to infinity. In computing environment,
this is not possible. Therefore, numerical instabilities could be encounteredwhen themoment
order reaches a cretin value. The optimumway to overcome this problem is the accurate eval-
uation of the triple integration in Eq. (10). The classical generalized Laguerremoments above
are defined only for integer orders. In the next section, we propose a new type of moments
that are fractional-order modified generalized Laguerre moments, which is a generalization
of the traditional integer order one. These are extended to orthogonal moments of real order
(or fractional-order) using fractional-order generalized Laguerre moments.

3 Fractional-order modified generalized Laguerre moments

This section presents a description of the proposed fractional-order modified generalized
Laguerre moments (FMGLMs) more interesting to consider an orthogonal system with a
more general weighting function: w(α,β)(x) � xαe−β x , α � −1, β � 0. Novel fractional-
order modified generalized Laguerre polynomials are derived. Then, the new FMGLMs for
3D images derived.

3.1 Fractional-order Modified Generalized Laguerre Polynomials

This subsection, we have introduced a new functions based on the fractional-order modi-
fied generalized Laguerre polynomials (FMGLPs) to obtain the solution of some fractional
differential equations more simply and efficiently (Bhrawy et al. 2014; Baleanu et al. 2013;
Yan and Guo 2011). Next, let w(α,β)(x) � xαe−β x with α � −1 andβ � 0. The modified
generalized Laguerre polynomial of degree n is defined by

L (α,β)
n (x) � 1

n!
x−αeβ x∂nx

(
xn+αe−β x) n � 0, 1, . . . (14)

Let L (α,β)
n (x) be the usual generalized Laguerre polynomials that are mutually orthogonal

with the weight function w(x) � xαe−x . It is noted that L (α)
n (x) � L (α,1)

n (x), and

L (α,β)
n (x) � L (α)

n (y) � L (α)
n (βx), y � βx (15)

The FMGLPs can be defined by introducing the change of variable x � tλ and λ � 0 on
generalized Laguerre polynomials as:

FL(α,β,λ)
n (t) � L(α,β)

n (tλ), t ∈ [0,+∞[ (16)

Moreover, for α � −1 andβ � 0, we have (Hosny et al. 2020)

∂x FL(α,β,λ)
n (t) � −β × FL(α+1,β,λ)

n−1 (t) , (17)
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FL(α,β,λ)
n+1 (t) �

(
2n + α + 1 − β tλ

)

(n + 1)
FL(α,β,λ)

n (t) − (n + α)

(n + 1)
FL(α,β,λ)

n−1 (t) , (18)

where n � 1, 2, . . .

The first two polynomials are defined as:

FL(α,β,λ)
0 (t) � 1 and FL(α,β,λ)

1 (t) � −β tλ +
Γ (α + 2)

Γ (α + 1)
(19)

The polynomials FL(α,β,λ)
n (t) forms an orthogonal basis on the interval t ∈ [0,+∞[ with

respect to the weight function w(α,β,λ)(t) � t (α+1)λ−1e−β tλ and the squared norm h(α,β,λ)
n ,

where the orthogonality relation is given by:
∫ +∞

0
FL(α,β,λ)

n (t)FL(α,β,λ)
m (t)w(α,β,λ)(t)dt � h(α,β,λ)

n δnm, (20)

where δnm is the Kronecker function and h(α,β,λ)
n � Γ (n+α+1)

λβ(α+1)n!
.

The FMGLPs FL(α,β,λ)
n (t) of degree n on the interval t ∈ [0,+∞[, are given by:

FL (α,β,λ)
n (t) �

n∑

k�0

B(α,β)
n,k tλk with B(α,β)

n,k � (−1)k
Γ (α + n + 1)βk

Γ (α + k + 1)(n − k)! k!
(21)

We can define the normalized FMGLPs, denoted by F̃ L
(α,β,λ)
n (t), by using the weight

function and the squared norm as:

F̃ L
(α,β,λ)
n (t) �

√
w(α,β,λ)(t)

h(α,β,λ)
n

FL (α,β,λ)
n (t); n � 0, 1, 2, . . . (22)

Therefore, the orthogonality relation of the normalized FMGLPs is given by:
∫ +∞

0
F̃ L

(α,β,λ)
n (t)F̃ L

(α,β,λ)
m (t)dt �δnm, (23)

Figure 1 shows the graphs of F̃ L
(α,β,λ)
n (t) with n � 0, 1, . . . , 6, for different values of

the fractional parameter λ and polynomials parameter α andβ. The FMGLPs control the
distribution of zeros and their positions, based on fractional parameter λ. As shown in Fig. 1.

• for λ � 1, one can obtain modified generalized classical Laguerre polynomials.
• forλ ≺ 1, the distribution of the FMGLPs zeros is shifted up and downwithin the definition
range.

• for the case where λ � 1, the distribution of the FMGLPs zeros is shifted up and down
outside the definition range.

3.2 Fractional-order modified 3D generalized Laguerre moments

Generally, the image moment is considered as an integral transform, which aims to map
an image intensity function from the image domain into the moment domain, where the
dimensionality of moment domain is usually very small in comparison with the original
domain (Xiao et al. 2017). In this respect, the FMGLMs noted by FLM (α,β,λ)

nmp of order
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Fig. 1 Plot of FMGLPs for different values of λ � 0.8, λ � 1, λ � 1.5, λ � 2 and for: α � 1 , β � 0.5,
α � 0 , β � 1 and α � 0.5 , β � 1.5 up to order 6, with t ∈ [0, 1]

(λ xn + λ ym + λ z p) with n,m, p ∈ N and (λ x , λ y , λ z � 0), for a function f (x, y, z)
defined in the square region [0,+∞[ × [0,+∞[ × [0,+∞[, is given by:

FLM (α,β,λ)
nmp �

∫ +∞

0

∫ +∞

0

∫ +∞

0
f (x, y, z)F̃ L

(α,β,λx )
n (x)F̃ L

(α,β,λy )
m (y)F̃ L

(α,β,λz )
p (z)dxdydz

(24)

where n,m, p � 0, 1, 2, . . . ∞.
Therefore, the FMGLMs of order (λ xn +λ ym +λ z p) for the digital image f (i, j, k)with

the size N × M × K , can be computed by using a suitable transformation of the discrete
coordinates (i, j, k) into the square region [0,+∞[ × [0,+∞[ × [0,+∞[, as follows:

FLM (α,β,λ)
nmp �

N∑

i�1

M∑

j�1

K∑

k�1

f (i, j, k)F̃ L
(α,β,λx )
n (xi )F̃ L

(α,β,λy )
m (y j )F̃ L

(α,β,λz )
p (zk)�x�y�z

(25)

where F̃ L
(α,β,λx )
n (xi , N − 1) is the nth order generalized orthonormal polynomials of

Laguerre. The image has to be mapped inside the [0 b]× [0 b]× [0 b] with xi � b×i
N ; y j �
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b× j
M ; zk � b×k

K ; b � 1, 2, 3, . . . ; i � 1, 2, . . . , N ; j � 1, 2, . . . , M and k �
1, 2, . . . , K .

Even if FLM (α,β,λ)
nmp is defined as a fractional-order moment (λ xn + λ ym + λ z p), using

the base function
{
FL (α,β,λx )

n (x)FL
(α,β,λy )
m (y)FL (α,β,λz )

p (z)
}
. It is important to specify that

the integer variables n,m and p are related to the number of roots of the polynomials basis
function. In fact, the lower values of n,m and p allow to capture lower frequency components
of the image, while the higher values can capture higher frequencies, like edges and small
image details (Xiao et al. 2010). Conversely, using the orthogonality property, the function
of the original image f (i, j, k) can be reconstructed as follows:

f̃ (i, j, k) �
max∑

i�0

max∑

j�0

max∑

k�0

FLM (α,β,λ)
nmp F̃ L

(α,β,λx )
n (xi )F̃ L

(α,β,λy )
m (y j )F̃ L

(α,β,λz )
p (zk) (26)

Moments have become important and frequently used as formdescriptors for classification
and pattern recognition. The properties of these moments aroused the interest of finding their
invariants in terms of translation, scale and rotation. The most efficient method for obtaining
the invariant moments with respect to translation, scaling and rotation is to express them
as a linear combination of geometric moments, then to use rotation invariants, scaling and
translation instead of geometric moments.

In the next section, we propose a new fast computation method of 3D invariant
moments for obtaining FMGLMIs with respect to translation and scaling and rota-
tion using the invariants of the corresponding fractional-order generalized geometric
moments.

4 Proposed fractional-order modified generalized Laguerre moment
invariants

In this section, we propose a precise (ICR) method for the calculation of fractional-order
modified generalized Laguerre moment invariants (FMGLMIs) (Karmouni et al. 2019; Jahid
et al. 2019). In fact, the FMGLMs are not precisely designed for pattern recognition, in the
sense that FMGLMs are not invariants with respect to the geometric transformation, like
rotation, scaling and translation. In this method, the 3D image is decomposed into a set
of 3D sub-image of single intensity and each intensity is represented by a set of cuboid,
and each cuboid corresponding to an object. These cuboids are defined as a set of con-
nected voxels. This method has the advantage of accelerating the process of extraction of
the invariant moments of FMGLMs, and it allows us to improve the classification result
without affecting the property of invariance compared to the classical method. For this, to
obtain the rotation, scale and translation invariants of the FMGLMs, we first need to define
the Fractional-order Generalized Geometric Moment Invariants (FGGMIs), which is a mod-
ified form of the traditional geometric moments invariants, by introducing three positive
fractional parameters λ x , λ y , λ z � 0 in the geometric basis function

{
xλx n yλymzλzk

}
,

with n,m, p ∈ N. Then, we establish algebraic relation between the FMGLMs and the
generalized geometric moments. Finally, we can express the FMGLMIs through the set of
FGGMIs.
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4.1 Fractional-order generalized geometric invariant moments

The three-dimensional fractional-order generalized geometric moments (FGGMs) of order{
λxn + λym + λzk

}
for a given image function f (i, j, k) of the size N ×M ×K , are defined

as follows:

m
λxλyλz
pqr �

N−1∑

i�0

M−1∑

j�0

K−1∑

k�0

xλx p
i y

λyq
j zλzrk f (i, j, k) (27)

where λx , λy, λz � 0, xi � i
N , y j � j

M , zk � k
K , i � 0, 2, . . . , N − 1; j �

0, 2, . . . , M − 1, and k � 0, 2, . . . , K − 1.
We can define the centroids of the x, y and z-coordinates, respectively x̂, ŷ and ẑ by:

x̂ � m
λxλyλz
100

m
λxλyλz
000

, ŷ � m
λxλyλz
010

m
λxλyλz
000

, ẑ � m
λxλyλz
001

m
λxλyλz
000

(28)

After the definition of 3D fractional-order generalized geometric moments as a function of
the 3D geometric moments. Due to the fact that the expressions xi − x̂, yi − ŷ and zi − ẑ may
take negative values, and since we are limited to work with real numbers in the computation
of moment invariants, we assume that λ x , λ y and λ z have an odd denominators and can be
written as a

/
2b + 1 with a, b ∈ N and a �� 0 For this, we will define the central moments of

3D fractional-order generalized geometric moments noted μ
λxλyλz
pqr that are invariant to the

translation as follows:

μ
λxλyλz
pqr �

N−1∑

i�0

M−1∑

j�0

K−1∑

k�0

(xi − x̂)λx p(y j − ŷ)λyq (zk − ẑ)λzr f (i, j, k) (29)

The rotation transformation of a 3D image is usually done as a series of three bi-
dimensional rotations around each axis. For this fact, we will use Euler angle sequences
conventions by matrix multiplication. For this analysis, we will rotate first about the x-axis,
then the y-axis, and finally the z-axis. Such a sequence of rotations can be represented as the
matrix product (Flusser et al. 2016; Batioua et al. 2017):

Rxyz(θ, φ, ψ) � Rx (θ)Ry(φ)Rz(ψ) (30)

Rxyz(θ, φ, ψ) �
⎛

⎝
1 0 0
0 cos θ sin θ

0 − sin θ cos θ

⎞

⎠

⎛

⎝
cosφ 0 − sin φ

0 1 0
sin φ 0 cosφ

⎞

⎠

⎛

⎝
cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎞

⎠ (31)

with Rx (θ) the rotation matrix around x-axis by angle θ , Ry(φ) the rotation matrix around
y-axis by angle φ and Rz(ψ) the rotation matrix around z-axis by angle ψ .where

Rxyz(θ, φ, ψ) �
⎛

⎝
cosφ cosψ cosφ sinψ − sin φ

sin θ sin φ cosψ − cos θ sinψ sin θ sin φ sinψ + cos θ cosψ cosφ sin θ

cos θ sin φ cosψ + sin θ sinψ cos θ sin φ sinψ − sin θ cosψ cos θ cosφ

⎞

⎠

(32)

More generally, the translation and rotation in 3D can be considered as a linear transfor-
mation of the 3D object coordinates, which can be described in a matrix form as

⎛

⎝
x ′
y′
z′

⎞

⎠ � Rxyz(θ, φ, ψ)

⎛

⎝
x − x̂
y − ŷ
z − ẑ

⎞

⎠ �
⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠

⎛

⎝
x − x̂
y − ŷ
z − ẑ

⎞

⎠ (33)
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with
(
Ai j
)
1≤i≤m
1≤ j≤n

are the elements of Rxyz(θ, φ, ψ) matrix.

The FGGMIs, denoted v
λxλyλz
pqr , which are independent of rotation, scaling and translation

transforms, can be written as:

v
λxλyλz
pqr � η−γ

N−1∑

i�0

M−1∑

j�0

K−1∑

k�0

⎧
⎪⎪⎨

⎪⎪⎩

(
A11

(
xi − x̂

)
+ A12

(
y j − ŷ

)
+ A13

(
zk − ẑ

))λx p

×(A21
(
xi − x̂

)
+ A22

(
y j − ŷ

)
+ A23

(
zk − ẑ

))λyq

×(A31
(
xi − x̂

)
+ A32

(
y j − ŷ

)
+ A33

(
zk − ẑ

))λzr

⎫
⎪⎪⎬

⎪⎪⎭
f (i, j, k)

(34)

By applying the ICR algorithm (Jahid et al. 2019), the 3D image is decomposed into a
set of 3D sub-image of single intensity and each intensity is represented by a set of cuboid,
and each cuboid corresponding to an object. These cuboids are defined as a set of connected
voxels, the 3D image f (i, j, k) containing L cuboids can be defined as:

f (i, j, k) �
n f∑

s�1

fs(i, j, k) (35)

with
{
fs, s � 1, 2, . . . , n f

}
is the sth intensity S of 3D image, and n f is the number of inten-

sity values. By using the ICR algorithm, the proposed FGGMIs of order
(
λx p + λyq + λzr

)th

of a 3D image f (i, j, k) of size N × M × K in Eq. (34), can be rewritten as:

v
λxλyλz
pqr � η−γ

N−1∑

i�0

M−1∑

j�0

K−1∑

k�0

⎧
⎪⎪⎨

⎪⎪⎩

(
A11

(
xi − x̂

)
+ A12

(
y j − ŷ

)
+ A13

(
zk − ẑ

))λx p

×(A21
(
xi − x̂

)
+ A22

(
y j − ŷ

)
+ A23

(
zk − ẑ

))λyq

×(A31
(
xi − x̂

)
+ A32

(
y j − ŷ

)
+ A33

(
zk − ẑ

))λzr

⎫
⎪⎪⎬

⎪⎪⎭

n f∑

s�1

fs

(36)

The 3D FGGMIs Eq. (36), can be computed as follows:

v
λxλyλz
pqr �

n f∑

s�1

v
λxλyλz
pqr (s) (37)

where v
λxλyλz
pqr (s) are the proposed FGGMIs computed by considering an intensity fs of the

3D image, are given by

v
λxλyλz
pqr (s) � fs

⎧
⎪⎪⎨

⎪⎪⎩
η−γ

N−1∑

i�0

M−1∑

j�0

K−1∑

k�0

⎡

⎢⎢⎣

(
A11

(
xi − x̂

)
+ A12

(
y j − ŷ

)
+ A13

(
zk − ẑ

))λx p

×(A21
(
xi − x̂

)
+ A22

(
y j − ŷ

)
+ A23

(
zk − ẑ

))λyq

×(A31
(
xi − x̂

)
+ A32

(
y j − ŷ

)
+ A33

(
zk − ẑ

))λzr

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

(38)

The v
λxλyλz
pqr (s) FGGMIs corresponding to an intensity fs are calculated from the cuboids

of each intensity. Then the
(
λx p + λyq + λzr

)th order of the Ls cuboid, having coordinates{
x
1,Cub fs

l
, x

2,Cub fs
l

}
,
{
y
1,Cub fs

l
, y

2,Cub fs
l

}
and

{
z
1,Cub fs

l
, z

2,Cub fs
l

}
, can be computed using

the following formula:

v
λxλyλz
pqr (s) �

Ls∑

l�1

fs

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
η−γ

x
2,Cub

fs
l∑

i�x
1,Cub

fs
l

y
2,Cub

fs
l∑

j�y
1,Cub

fs
l

z
2,Cub

fs
l∑

k�z
1,Cub

fs
l

⎡

⎢⎢⎢⎣

(
A11

(
xi − x̂

)
+ A12

(
y j − ŷ

)
+ A13

(
zk − ẑ

))λx p

×(A21
(
xi − x̂

)
+ A22

(
y j − ŷ

)
+ A23

(
zk − ẑ

))λy q

×(A31
(
xi − x̂

)
+ A32

(
y j − ŷ

)
+ A33

(
zk − ẑ

))λz r

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(39)
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v
λxλyλz
pqr (s) �

Ls∑

l�1

v
λxλyλz
pqr (Cub fs

l ) (40)

where Cub fs
l is the cuboid l of intensity fs , l � 1, . . . , Ls and L �

n f∑
s�1

Ls , Ls the number

of cuboid for each intensity fs .

Whereas v
λxλyλz
pqr (Cub fs

l ) are the FGGMIs for each cuboids Cub fs
l , the computation of

the
(
λx p + λyq + λzr

)th order, they are defined as

(41)v
λxλyλz
pqr (Cub fs

l ) � η−γ

x
2,Cub

fs
l∑

i�x
1,Cub

fs
l

y
2,Cub

fs
l∑

j�y
1,Cub

fs
l

z
2,Cub

fs
l∑

k�z
1,Cub

fs
l

fs ×

⎡

⎢⎢⎢⎣

(
A11

(
xi − x̂

)
+ A12

(
y j − ŷ

)
+ A13

(
zk − ẑ

))λx p

× (
A21

(
xi − x̂

)
+ A22

(
y j − ŷ

)
+ A23

(
zk − ẑ

))λy q

× (
A31

(
xi − x̂

)
+ A32

(
y j − ŷ

)
+ A33

(
zk − ẑ

))λz r

⎤

⎥⎥⎥⎦

Therefore, the 3D proposed FGGMIs under translation, scaling and rotation of the 3D
image can be obtained from this is the sum of 3D geometric moments of each cuboid

v
λxλyλz
pqr (Cub fs

l ) of each intensity fs of the order
(
λx p + λyq + λzr

)th , can be computed
as

v
λxλyλz
pqr �

n f∑

s�1

Ls∑

l�1

v
λxλyλz
pqr (Cub fs

l ) (42)

The appropriate values for the parameters θ, φ,ψ, γ and η, are already defined in the
literature (Flusser et al. 2016; Batioua et al. 2017). Hence, they can be determined by using
the special case

(
λx � λy � λz � 1

)
as follows:

θ � 1

2
tan−1

(
2μ011

μ020 − μ002

)
, φ � 1

2
tan−1

(
2μ001

μ200 − μ002

)
, ψ � 1

2
tan−1

(
2μ110

μ200 − μ020

)
(43)

γ � λx p + λyq + λzr + 3

3
and η � m

λxλyλz
000 (44)

At last, we can obtain the translation, scaling and rotation of 3D FMGLMIs of the order(
λx p + λyq + λzr

)th , from the equations Eq. (42).

4.2 Fractional-order modified generalized Laguerre 3D invariant moments

The fractional-order modified generalized Laguerre polynomials are orthogonal over the
interval [0,+∞[ according to Eq. (23). To compute the Laguerre polynomialmatrix, onemust
work on a finite order N which will affect the property of orthogonality of the FMGLPs. In
addition, the method that we used, based on Laguerre polynomials of fractional-order using
the 3D image cuboid representation, ensured the numerical value in an optimal minimal order
of moments to compute the moment invariants of the image function, it is enough that i, j
and k between 1 ≺ i ≺ N , 1 ≺ j ≺ M and 1 ≺ k ≺ K . In this sub-section, we can derive
the RST invariants of FMGLMIs, based on the algebraic relation between the FMGLPs and
the geometric basis

{
xλ x n yλ ymzλ z l

}
.

First, we define FMGLMIs of order
(
λx p + λyq + λzr

)
for a given weighted image func-

tion f̃ (i, j, k) � [
w(α,β,λx )(x)w(α,β,λy )(y)w(α,β,λz )(z)

]−1/2
f (i, j, k), of size N × M × K

voxels, with w(α,β,λ) is the weight function of FMGLPs, as follows:

FLM (α,β,λ)
pqr � b3

NMK

N∑

i�1

M∑

j�1

K∑

k�1

F̃ L
(α,β,λx )
p (xi )F̃ L

(α,β,λy )
q (y j )F̃ L

(α,β,λz )
r (zk) f̃ (i, j, k)

(45)
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By the help of Eq. (22) and (45), we can express the FMGLMs:

FLM (α,β,λ)
pqr � b3χ (α,β,λx )

p χ
(α,β,λy )
q χ

(α,β,λz )
r

NMK

×
N∑

i�1

M∑

j�1

K∑

k�1

FL (α,β,λx )
p (xi )FL

(α,β,λy )
q (y j )FL (α,β,λz )

r (zk) f (i, j, k) (46)

with χ
(α,β,λ)
p � 1√

h(α,β,λ)
p

and b � 1, 2, 3, . . .

By substituting the FMGLPs expansion Eqs. (21) and (27) in the previous equation, we
can express the FMGLMs as a linear combination of FGGMs of the image f (i, j, k) by:

FLM (α,β,λ)
pqr � b3χ (α,β,λx )

p χ
(α,β,λy )
q χ

(α,β,λz )
r

NMK

p∑

n�0

q∑

m�0

r∑

l�0

B(α,β)
p,n B(α,β)

q,m B(α,β)
r ,l m

λxλyλz
nml (47)

In order to obtain the the invariants of rotation, scaling and translation of fractional-order
generalized Laguerre moment invariants, which will be designated by FMGLMIs in this

article noted by FLM (α,β,λ)
pqr , the terms m

λxλyλz
nml in the previous equation will be replaced by

the FGGMIs v
λxλyλz
nml of Eq. (47):

FLM I (α,β,λ)
pqr � b3χ (α,β,λx )

p χ
(α,β,λy )
q χ

(α,β,λz )
r

NMK

p∑

n�0

q∑

m�0

r∑

l�0

B(α,β)
p,n B(α,β)

q,m B(α,β)
r ,l v

λxλyλz
nml

(48)

where the fractional parameters λ x , λ y and λ z must satisfy the condition that they have
odd denominators. Finally, it is worth noting that the direct computation of the coefficients
B(α,β)
n,k defined in Eq. (21) involves the evaluation of factorial terms for each value of n and k,

thereby, this can increase the computational time of FMGLMIs and affect their numerical
accuracy, especially at the computation of higher-order moment invariants (Camacho-Bello
et al. 2014; Hmimid et al. 2015).

Based on the property that n!� (n − 1)! n, the coefficients B(α,β)
n,k of Eq. (21) can be easily

computed using the following recursive method:

B(α,β)
n,0 � α + n

n
B(α,β)
n−1,0; B(α,β)

0,0 � 1

B(α,β)
n,k � −β(n − k + 1)

(α + k)k
B(α,β)
n,k−1, 1 ≤ k ≤ n (49)

It is clearly seen from Eq. (39) that the proposed recursive method is free from factorial
terms and it is more adequate for the computation of the polynomial coefficients B(α,β)

n,k .
The following algorithm summarizes the calculation steps of the fractional-order modified

generalized Laguerre moment 3D invariants from the proposed fractional-order generalized
geometric moment invariants using ICR algorithm.
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The FMGLMIs based on image cuboid representation algorithm, it’s a new type generic
of continuous orthogonal moments with real order have been defined for image classifica-
tion and object recognition applications. It has considered modified generalized Laguerre
moments and converted them to FMGLMs, while comparing with integer order moments.
A new real number α is introduced to make fractional moments from integer one. After
extensive experimentation, it is found that fractional moments are highly robust to image
noise, capable of Region of Interest feature extraction and are better than conventional inte-
ger order moments in both image reconstruction and face recognition. In the next section, we
tested the effectiveness of the proposed newmethod, FMGLMIs based on the ICR algorithm,
will describe the shape characteristics independently of the geometric transformations and
desirable in the field of image recognition.

5 Experimental results and discussions

In this section, several experiments are performed to validate the performance and effec-
tiveness of the new FMGLMIs as well as to evaluate the accuracy of the invariance and the
newly introduced FMGLMIs recognition performance. It is important to note that all the
algorithms are implemented in Matlab and that all the experiments are carried out under
Microsoft Windows environment on PC with Intel i5 2.4 GHz processor and 8 GB RAM.
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Fig. 2 The 3D test images: a Four, b Octopus c Cup, of size 300×300×300 voxels d medical image IRM of
size 512×512×512voxels

Thanks to these experiments, we will test: (1) Invariance of FMGLMs with respect to RST of
3D images. (2) Invariability property of the proposed FMGLMIs against different geometric
transformations and noise degradations of 3D images. (3) Classification and recognition of
3D images. (4) The calculation time of the proposed fractional order invariants.

5.1 Invariants 3D of different geometric transformations of the FMGLMIs

In this subsection, we test the invariability of the proposed FMGLMIs introduced in this
paper against different geometric transformations. For that, we will compare the invariability
of the fractional-order modified generalized Laguerre moment invariants by two methods:
the classical method and the proposed method of fractional parameters λx � λy � λz � 0.8
and λx � λy � λz � 1.8 based on Eq. (48). Three 3D images “ Four “,” Octopus “ and “ Cup
“ of size 300×300×300 voxels also extracted from McGill 3D Shape Benchmark database
are used as test images and the fourth test image, 3D image medical (IRM) of size 512×
512×512 voxels shown in the figure (Fig. 2). In order to measure the ability of the proposed
invariants to remain unchanged under translation, scaling and rotation of the 3D image. The
accuracy of the invariant descriptors is measured by the Relative Standard Deviation (RSD)
with percentage spread, that is,

RSD (%) � σ

|μ| × (100%) (50)

where σ and μ denotes the standard deviation and the mean of the FMGLMIs respectively.
All invariant moments of FMGLMIs is calculated up to order three for each transformation.

In the first experiment, we verify the efficiency of the translation invariant descriptors
FMGLMIs. The 3D original “Four “ image shown in Fig. 2a is shifted with a set of translation
vectors along x, y and z-axes. The figure (Fig. 3) shows a set of translated images. The
numerical values of FMGLMIs are presented in Table 1, from this table, it can be seen that
the invariant moments FMGLMIs remain unchanged for all the translations and the ratio
of RSD (%) is very low whatever the values of the parameter fractional (λx , λy, λz), which
proves the invariability of the proposed 3D FMGLMIs moments concerning translation.

In the second experiment, we verify the efficiency of the scaling invariant descriptors
FMGLMIs. The original “ Octopus “ image shown in Fig. 2b scaled with a set of scaling
factors alongx, y and z-directions. Thefigure (Fig. 4) shows a set of scaled “Octopus “ images.
The Table 2 shows the numerical values of FMGLMIs, it can be seen from this Table that the
moment invariants FMGLMIs remain unchanged under different non-uniform scale and the
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Fig. 3 Set of translated 3D “Four” image

ratio of RSD (%) is very low whatever the values of the parameter fractional (λx , λy, λz),
which proves the invariability of the proposed 3DFMGLMIsmoments concerning by scaling.

In the third experiment, we verify the efficiency of the rotation invariant descriptors
FMGLMIs. The original “ Cup “ image shown in Fig. 2c in rotation with a set of the images
is rotated about each axis (x-axis, y-axis and z-axis) by an angle of rotation varying. The
figure (Fig. 5) shows a set of in rotation “ Cup “ images. The Table 3 shows the numerical
values of FMGLMIs, it can be seen from this Table that the moment invariants FMGLMIs
remain unchanged under different non-uniform scale and the ratio of RSD (%) is very low
whatever the values of the parameter fractional (λx , λy, λz), which proves the invariability
of the proposed 3D FMGLMIs moments concerning by rotation.

In the last experiment, wewill compare the invariability of the FMGLMIs by twomethods:
the classical method and the proposed method of fractional parameters λx � λy � λz � 0.8
and λx � λy � λz � 1.8. The 3D “IRM” medical image shown in Fig. 2d is transformed
by a set of mixed transformations of translation vectors, scale factors and rotation angles.
A set of transformed 3D “IRM” medical images are shown in Fig. 6. The Table 4 shows
the values of moment invariants obtained by the two methods. It is clear that our proposed
method works better than the classical method that gives the largest deviation. Therefore, we
can confirm again the robustness of the descriptors proposed for the translation, the scaling
and the rotation of the 3D images.
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Fig. 4 Set of scaled 3D “ Octopus “ image

5.2 Invariability property

After having tested the invariance of the FMGLMIs moments for each RST geometric
transformation, we will investigate the invariability property of the proposed FMGLMIs
against different geometric transformations. Therefore, we are conducted to use the 3D
image«birds» , of size 300×300×300 voxels, selected from the database PSB (http://www.
cim.mcgill.ca/~shape/benchMark/) and shown in the figure (Fig. 7). The test image is firstly
translated by vector varying from (−15,−15,−15) to (15, 15, 15) with step (1, 1, 1). Then,
scaled by factors starting from 0.4 to 1.4 with an interval of 0.05 and finally they are images
is rotated about each axis (x-axis, y-axis and z-axis) by an angle of rotation varying between
0 and 360 with a step equal to 10. In addition, it is worth noting that we have used Eq. (48)
with α � 0 and β � 1 for the computation of FMGLMIs, and also we have considered
six testing fractional parameters values of FLM I (α,β,λ)

pqr : (A) λx � λy � λz � 0.8, (B)
λx � λy � λz � 1, (C) λx � 0.8 , λy � 0.8 , λz � 1, (D) λx � 1.8 , λy � 1 , λz � 0.8,
(E) λx � 1 , λy � 1.8 , λz � 1.8 and (F) λx � λy � λz � 1.8. Subsequently, the relative
error between the FMGLMIs coefficients, up to the order (n, m and p � 3), of the original
and the transformed images is calculated as follow:

RE
(
f , f d

)
�
∥∥FLM I ( f ) − FLM I ( f d )

∥∥
‖FLM I ( f )‖ (51)
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Fig. 5 Set of “ Cup “ 3D images in rotation

where ‖ ‖, f and f d respectively designate the Euclidean norm, the original images and the
deformed images. It should be emphasized that a very small relative error leads to a good
invariance.

Examining the results presented in Fig. 8a–c, it can be seen that the proposed FMGLMIs
exhibit very low relative errors (10−15), under geometric transformations, which shows the
invariance of the FMGLMIs in relation to the geometric transformations for any order frac-
tional.

In this experiment we studied the effect of different kinds of noise on the numerical
accuracy of the proposed invariants FMGLMIs, the test image has been corrupted by different
types of noise. First, affected by Salt and-Pepper noise with a varying density from 0 to 5%
with step 0.25%. Second, distorted by Gaussian noise with zero mean and standard deviation
varying from 0 to 0.5 with step 0.05, the noisy images are shown in the figure (Fig. 9).

Figure 10a, b show the relative errors between the original and the distorted images, he
relative error rate is very low (10−13) for all the fractional orders, the values of the relative
errors are clearly seen to increase with the increase of the noise densities. Finally, these
important results, depict respectively the robustness of FMGLMIs against Salt-and-Pepper
and Gaussian noise.

It is clear from figure (Figs. 8 and 10) that the relative error FMGLMIs rate is very low
(10−15), which indicate that the proposed moment invariants exhibit good performance and
express high numerical stability under different geometric trans formations, as well as, in the
presence of noisy effects. Moreover, these experiment, can help us to choose the appropriate
parameters values for image classification applications, where the special case (F) with the
higher parameters values λx � λy � λz � 1.8 gives the best numerical accuracy. As a result,
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Fig. 6 Set of 3D “IRM” medical images transformed by a set of mixed transformations of translation vectors,
scale factors and rotation angle

Fig. 7 3D image«birds»of size
300×300×300 voxels

this new set of invariants is very stable and show sufficient numerical accuracy to describe
shape features independently of rotation, scale and translation transforms Therefore, new
Invariants moment type FMGLMIs based on FC-FMGLMI-ICR algorithm will be desirable
in the field of image classification and object recognition.
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(a) (b)

(c)

Fig. 8 Relative error of the proposed FMGLMIs using 3D image«birds»by: a translation transformation,
b scaling transformation, c rotation transformation

Fig. 9 Noisy 3D image of«birds»by “Salt & Peppers (1% until 5%)” and “Gaussian” (mean � 0 and variance
� 0.1% until variance � 0.5%)
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(a) (b)

Fig. 10 Relative error of the proposed FMGLMI using 3D image«birds»by: a Salt-and-Pepper noise and
b Gaussian noise

5.2.1 3D object recognition using FMGLMIs

In this subsection,we study the performance of theFC-FMGLMI-ICR for the invariant pattern
recognition of 3D objects and the classification ability of the invariant moments studied in
this paper, on a 3D images database in both noise-free and noisy conditions. The vector
FLM I (α,β,λ)

pqr (Eq. 48) is used as feature vector in this test up to the order (p, q and r � 4).
For that, we use the base of Princeton Shape Benchmark (PSB) (http://www.cim.mcgill.ca/
~shape/benchMark/), we have selected 25 images of (PSB) database have size 128×128×
128 voxels, which are shown in Fig. 11, each selected image will be affected by different
transformations (10 translations + 10 scale + 10 rotations + 10 mixed transformations), in
order to generate 1000 objects per base (PSB).Moreover, to depict the noise robustness of the
proposed invariant descriptors, we are conducted to add Salt-and-Pepper noise with densities
{1%, 2%, 3%, 4%, 5%} to the base of 3D database to construct noisy testing sets. In fact,
the features vector FLM I (α,β,λ)

pqr is constructed by moment invariants up to the fourth order.
To perform the classification of the objects to their appropriate classes, Euclidean distance
d1 (Eq. 52) and Correlation distance d2 (Eq. 53) are used as simple classifiers (Mukundan
and Ramakrishnan 1998). they are defined by:

d1(xs, y
(k)
t ) �

√∑n

j�1
(xs j − yt j )2 (52)

d2(xs, y
(k)
t ) � 1 −

∑n
j�1 xs j yt j√∑n

j�1 (xs j )
2
√∑n

j�1 (yt j )
2

(53)

If the two vectors xs and yt are equal, then the distances d1, and d2, tend to 0.
We define the recognition accuracy as:

ξ � Number of correctly classified 3D objects

The total of 3D objects used in the test
× 100% (54)

Tables 5 and 6 present respectively a comparison in terms of object recognition accuracy
on the Princeton Shape Benchmark (PSB) database, between the proposed FC-FMGLMI-
ICR and the traditional Geometric Moment Invariants (GMI) (Teague 1980), Chebychev
Moment Invariants (CMI) (Yang et al. 2018), Jacobi Moment Invariants (JMI) (Ping et al.
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Fig. 11 Collection of 25 objects extracted from the PSB database used as learning set

2007), Gegenbauer Moment Invariants (GegMI) (Hosny 2014), Gauss–Hermite Moment
Invariants (GHMI) (Yang et al. 2015). Finally, it is worth noting that we have used Eq. (48)
with α � 0 and β � 1 for the computation of FMGLMIs, and also it is important to note that
we have used six parameterization settings for FLM I (α,β,λ)

pqr : (A) λx � λy � λz � 0.8, (B)
λx � λy � λz � 1, (C) λx � 0.8 , λy � 0.8 , λz � 1, (D) λx � 1.8 , λy � 1 , λz � 0.8,
(E) λx � 1 , λy � 1.8 , λz � 1.8 and (F) λx � λy � λz � 1.8.

By examining the results presented in Tables 5 and 6, we can observe that the best perfor-
mance of the proposed FC-FMGLMI-ICR, is approximately 93.87% for noise-free images.
Moreover, the obtained recognition results by the FMGLMIs are significantly higher than
those obtained by the other methods, especially for high noise densities. Also, it should be
emphasized that the average correct recognition improvement of the FC-FMGLMI-ICR in
comparison with other methods. Finally, the best recognition accuracies for the 3D database,
was achieved by the FC-FMGLMI-ICR for (F) with ( λx � λy � λz � 1.8 ). As a conclusion
of the provided results, it is evident that the FC-FMGLMI-ICR proposed invariants could be
a highly useful tool in the field of pattern recognition, especially when the shape of the object
undergoes several deformations and 3D image classification.
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Table 5 Comparative analysis of object recognition accuracy (%) on PSB database, by using FLMI, CMI, JMI,
GegMI, GHMI and GMI based on Euclidean distance d1

Moments invariants Noise-free Salt and pepper noise

1% 2% 3% 4% 5% Average

FLMI (A) 92.24 74.46 58.25 47.28 38.29 29.61 56.69

FLMI (B) 91.52 74.24 58.81 46.39 38.23 28.54 56.29

FLMI (C) 92.32 75.54 58.54 47.53 39.73 29.21 57.15

FLMI (D) 92.61 76.72 58.72 49.68 39.18 29.44 57.73

FLMI (E) 93.05 77.22 59.26 48.03 40.43 30.79 58.13

FLMI (F) 93.87 77.43 60.75 49.34 40.87 30.98 58.87

CMI 89.38 60.62 48.16 35.93 26.14 20.93 46.86

JMI 88.94 59.32 47.95 32.28 25.32 20.87 45.78

GegMI 88.89 59.79 47.92 33.50 25.96 20.78 46.14

GHMI 87.55 58.56 46.29 32.40 24.44 19.27 44.75

GMI 75.65 53.23 36.37 29.88 20.67 13.95 38.29

Table 6 Comparative analysis of object recognition accuracy (%) on PSB database, by using FLMI, CMI, JMI,
GegMI, GHMI and GMI based on correlation distance d2

Moments invariants Noise-free Salt and pepper noise

1% 2% 3% 4% 5% Average

FLMI (A) 91.31 73.21 56.64 45.53 36.61 28.68 55.33

FLMI (B) 91.02 72.91 55.45 44.58 35.59 28.34 54.65

FLMI (C) 91.46 74.37 56.39 46.41 37.38 30.28 56.05

FLMI (D) 92.79 75.47 57.61 46.39 37.50 29.97 56.62

FLMI (E) 92.97 76.36 59.87 47.73 38.29 30.09 57.55

FLMI (F) 93.76 77.30 59.49 47.48 38.69 31.53 58.04

CMI 88.82 59.96 46.43 33.49 27.32 22.76 46.46

JMI 88.37 58.75 47.69 33.84 26.87 22.54 46.34

GegMI 87.94 59.04 46.11 32.01 26.42 21.67 45.53

GHMI 86.83 57.27 44.39 31.52 25.73 20.15 44.32

GMI 76.36 50.23 35.64 28.23 22.18 15.73 38.06

5.3 Computational time

Computation time is very crucial issue. For explicit computation time, a number of numerical
experiments are performed. We will compare the computational time of FMGLMIs by two
methods: the method FMGLMIs computed from the 3D geometric invariants moments based
on Eq. (34) and the proposed method FC-FMGLMI-ICR computed from the 3D geometric
invariantsmoments based on algorithm ICRusage Eq. (42). The execution-time improvement
ratio (ETIR) is used as a criterion to compare the different computation methods and defined
as (Hosny 2012):

ET I R(%) �
(
1 − T ime 1

T ime 2

)
× 100 (55)
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Table 7 Average times in seconds
and reduction percentage using
the proposed FC-FMGLMI-ICR
method and the FMGLMIs one,
for selected moment orders: 3D
images “Four”, “Octopus “ and
“Cup”

Moments order Average time computation for Fractional-order
parameter α � 0 , β � 1 and
λx � λy � λz � 1

FC-FMGLMI-ICR FMGLMIs ETIR(%)

Max � 6 0.348 32.400 98.925

Max � 9 1.118 97.600 98.854

Max � 12 2.197 259.744 99.154

Max � 15 4.290 520.231 99.175

Max � 18 7.044 1296.832 99.457

Max � 21 11.947 2097.468 99.430

Max � 24 17.494 3046.190 99.426

Max � 27 29.003 4775.733 99.393

Max � 30 33.879 7552.378 99.551

Table 8 Average times in seconds
and reduction percentage using
the proposed FC-FMGLMI-ICR
method and the FMGLMIs one,
for selected moment orders:
magnetic resonance image (MRI)
medical 3D

Moments order Average time computation for fractional-order
parameter α � 0 , β � 1 and
λx � λy � λz � 1

FC-FMGLMI-ICR FMGLMIs ETIR (%)

Max � 6 0.635 41.164 98.456

Max � 9 1.546 133.232 98.839

Max � 12 2.956 444.656 99.335

Max � 15 5.450 857.669 99.365

Max � 18 9.160 1594.260 99.425

Max � 21 11.724 2691.422 99.564

Max � 24 18.663 4302.939 99.566

Max � 27 31.897 6256.967 99.490

Max � 30 35.541 8624.771 99.588

whereTime1 andTime2 are the execution-times of the first and the secondmethods, ET I R �
0 if both execution times are identical. This ratio is defined as are the average time of the
proposed FC-FMGLMI-ICR method and the FMGLMIs one, respectively. Three 3D images
“Four”, “Octopus “ and “Cup” of sizes 300 300 300 voxels extracted fromMcGill 3D Shape
Benchmark database (Koekoek et al. 2010) (Fig. 2a–c), and Magnetic Resonance Image
medical (MRI) with size of 512 512 512 voxels (Fig. 2d), are used as test images. The
process of calculating the invariant moments is performed 10 times for orders ranging from
6 to 30 for of the three images 3D and medical image 3D.

In this experiment, we will evaluate the computational performance of the proposed
FMGLMIs by ICR algorithm. The Tables 7 and 8 represent the average calculation time
and ET I R(%) of the FMGLMIs as well Fig. 12a shows the elapsed CPU times in seconds
for the average invariant moments computation of the 3D images “Four”, “Octopus “ and
“Cup” and Fig. 12b 3Dmedical image (MRI) invariantmoments and shown in Fig. 2, by using
the method FMGLMIs and the fast method FC-FMGLMI-ICR, for an increasing maximum
moments order from 6 to 30. It can be clearly seen from these tables and from the figure that
the computation of the FMGLMIs invariant moments based on FC-FMGLMI-ICR algorithm
is much faster than that obtained by method invariant moments FMGLMIs.
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(a) (b)

Fig. 12 Comparative results of the elapsed CPU time in (second) for an increasing order from 6 to 30 between
the computation methods, FMGLMI and FC-FMGLMI-ICR: a 3D images moments “Four”, “Octopus “ and
“Cup”. b 3D medical image moments (Magnetic Resonance Image (MRI))

Fig. 13 Comparative results of the elapsed CPU time in (second) for an increasing order from 6 to 30 between
the computation of image moment invariants FC-FMGLMI-ICR, FCMI, FJMI, FGegMI and GHMI

In a similar way, the 3D images “Four”, “Octopus “ and “Cup” as test images of size
300×300×300 voxels, shown in Fig. 2 is used for the computation of moment invariants
FC-FMGLMI-ICR, FCMI, FJMI, FGegMI and GHMI, where the computation process has
been repeated 10 times and the average of the elapsed CPU times are calculated for each
method with an increasing moment invariants order starting from 6 to 30, the corresponding
results are presented in Fig. 13.

It can be seen from Fig. 13, that the computation of the FC-FMGLMI-ICR invariant
moments is much faster than that obtained by invariant moments FCMI, FJMI, FGegMI
and GHMI. However, the FC-FMGLMI-ICR can greatly reduce the computation time in
comparison with FCMI, FJMI, FGegMI and GHMI. These results show that our method con-
siderably reduces the calculation time of the invariant moments, because of the computation
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of FMGLMIs by the proposed method depend only on the number of cuboids instead of the
3D image’s size. Therefore, new Invariants moment type FMGLMI based on FC-FMGLMI-
ICR algorithm is not only fast, but also provide accurate computation, as demonstrated in
the previous experiments.

6 Conclusion

A new set of adaptive characteristics by adjusting the fractional parameters of continuous
orthogonal moments invariants based on the invariant moments of FMGLMIs has been pro-
posed in this paper. And I have added to the field of research, a new algorithm based on
the improved calculation of the moment 3D invariants by the proposed method. These algo-
rithms, whichminimize the execution time, improve the calculation and facilitate the analysis
method of the different 3D images. Then, a creation of new mathematical tools for image
processing and analysis, and new definitions and properties of invariant moments. Therefore,
the experimental results conclusively prove that the efficiency of the invariant moments of
FMGLMIs as descriptors of analysis elements, compared to classical generalized Laguerre
moments and geometric moments, a detailed comparative analysis with the invariants of
moments, concerning the recognition of shapes and the classification of 3D images. The
result shows that FMGLMIs moments are effective in improving the invariability of geomet-
ric transformations and their recognition of noisy and noiseless objects.
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