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Abstract
This paper generalises results of Willems–Trentelman, and van der Schaft, on achievable
behaviours, to the case of linear distributed systemsdefinedbypartial differential or difference
equations. It shows that the ‘minimal’ controller which achieves a particular subsystem is
the canonical controller of van der Schaft, thereby answering the ‘open problem’ of van der
Schaft (Syst Control Lett 49:141–149, 2003) in the setting of infinite dimensional and n− D
systems. This result is used to describe the collection of all linear subsystems of the electro-
magnetic field, containing the vacuum solutions, that can be achieved by suitable choices of
electric charge and current density.

Keywords Achievable behaviours · Partial differential and difference equations · Maxwell
equations

Mathematics Subject Classification 93B10 · 93C20 · 93B25

1 Introduction

This paper generalises the results inWillems and Trentelman (2002) on achievable subsets of
behaviours described by ordinary differential equations, to the setting of distributed systems
described by partial differential or difference equations. Furthermore, it shows that there
is a unique minimal controller which accomplishes a given restriction, whose structure is
identical to that of the canonical controller of van der Schaft (2003).

Recollect that by definition, a behaviour is the collection of all the evolutions, or trajecto-
ries, of a dynamical system. Potentially, any possible evolution could perhaps occur, but the
laws that the system must obey, restrict the actual occurance to a subset. These laws, if they
are local, are described by differential or difference equations. For example, the components
of the electric and magnetic fields in space and time, could a priori have been arbitrary func-
tions in C∞(R4), but in fact must satisfy the Maxwell equations. In this interpretation, a law
serves to restrict the possible evolutions of a system, and the collection of all the laws that it
satisfies, defines the system. If a system’s trajectories must be further restricted, according to
some criteria (such as stability, or rapid decay at infinity), then one must impose further laws,
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in the form of a controller. This world view, initiated by Willems (2007), does not require
notions of inputs or outputs in its formulation, and is a vast generalization of the classical
state space theory.

The problem addressed by Willems and Trentelman (2002) is to characterize all the
‘achievable behaviours’ of a dynamical system. In this problem, the variables which describe
the attributes of a system are of two kinds, those which need to be controlled, denoted w,
and the variables by means of which control is accomplished, denoted c. In the input-output
paradigm of state space theory, or in the transfer function approach, c would be the inputs
to the system, and w its outputs. The trajectories of w and c that can possibly occur, and
the relationships between them, are described by the laws of the system. The problem now
is to characterize those subsets of trajectories to which it is possible to restrict the evolution
of the w variables, by imposing restrictions on the control variables. These are the achiev-
able behaviours of the system. A complete characterization of these behaviours is obtained
in Willems and Trentelman (2002) for linear time invariant systems described by ordinary
differential equations. The work in van der Schaft (2003) provides a partial generalization
in a very general context. Furthermore, in it, van der Schaft establishes the existence of a
‘canonical’ controller that accomplishes the task of restriction, and in the process uncovers
an instance of the Internal Model Principle in its description.

This paper generalises all these results to distributed systems.Thedescription of achievable
subsystems is a faithful generalisation of the results inWillems and Trentelman (2002). There
are several conrollers which restrict a distributed system to a given subsystem, and amongst
them, there is a minimal controller, which turns out to be the faithful generalisation of the
canonical controller of van der Schaft (2003). This paper is thus an answer to the ‘open
problem’ in van der Schaft (2003), in the setting of infinite dimensional and n − D systems.

The paper concludes with an application of these results to the control of the electro-
magnetic field in space and time. For instance, if the electric and magnetic fields are the
variables that must be controlled by suitable choices of electric current and charge density,
then the results here provide a complete characterisation of the possible subsystems of the
electro-magnetic field that can be so achieved.

2 Achievable subsystems of a distributed systems

Let A be either the ring C[∂] = C[∂1, . . . , ∂n] of partial differential operators on R
n , or

the ring C[σ ] = C[σ1, . . . , σn] of partial difference operators on the subset Nn ⊂ Z
n of

lattice points with positive integral coordinates. The attributes of the systems that we study
take values in the space D′ of distributions on R

n , in the first case, and in the space CN
n
, of

all complex valued functions on N
n , in the second. An element of C[∂] acts on an element

in D′ by differentiation, and gives D′ the structure of a C[∂]-module. Similarly, the action
of σi on an f ∈ C

N
n
by shift in the i-th coordinate, namely σi ( f )(x1, . . . , xi , . . . , xn) =

f (x1, . . . , xi + 1, . . . xn), makes CN
n
a C[σ ]-module. More generally, the attributes of the

system lie in an A-submodule of D′ or CN
n
, as the case may be, for instance the space

C∞ of smooth functions in D′, or the submodule of bounded functions in C
N
n
. We call this

A-submodule ‘the space of signals’, and denote it by F .
Let P be an A-submodule of Ak , k ≥ 1, the free A-module of rank k. It is finitely generated,

say by p1, . . . , p�, where pi = (pi1, . . . , pik), 1 ≤ i ≤ �. This choice of generators defines
the matrix operator
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P(·) : Fk −→ F�

f = ( f1, . . . , fk) 	→ (p1 f , . . . , p� f ),

where P(·) is either the partial differential operator P(∂), or the partial difference operator
P(σ ), depending upon the choice of A, and where pi f = ∑k

j=1 pi j f j , for all i . The
distributed system defined by P(·), in the signal space F , is the kernel KerF (P(·)) of the
above operator. In Willems’ interpretation, the rows of P(·) are the laws that determine the
system, and to say P(·) f = 0 is to say that f satisfies these laws.

This kernel, however, depends not on the choice of generators for P which make up the
rows of P(·), but only on the submodule P . Indeed, by Malgrange (1963), the above kernel
is isomorphic to the A-module HomA(Ak/P, F) of all A-linear maps from the quotient
module Ak/P to the signal space F . This isomorphism is given by the map

KerF (P(·)) −→ HomA(Ak/P, F)

f = ( f1, . . . , fk) 	→ φ f ,
(1)

where φ f ([ei ]) = fi , 1 ≤ i ≤ k, and where [e1], . . . , [ek] denote the images of the standard
basis e1, . . . , ek of Ak in Ak/P . The inverse of this map is

HomA(Ak/P, F) −→ KerF (P(·))
φ 	→ (φ([e1]), . . . , φ([ek])) .

Hence, we denote this kernel by KerF (P), and call it ‘the system defined by the kernel of
P in F’. An element f ∈ KerF (P) is a trajectory of the system.

Clearly, P ⊂ P ′ implies that KerF (P ′) ⊂ KerF (P).
As explained earlier, the attributes f of the system KerF (P) ⊂ Fk , are of two types,

the control variables fc ∈ Fkc , and the variables fw ∈ Fkw that are to be controlled, where
kw +kc = k. We then write an f ∈ Fk as ( fw, fc) ∈ Fkw+kc . Correspondingly, we denote an
element p ∈ Ak by (pw, pc) ∈ Akw+kc . There are several injections and surjections defined
by this separation of variables, and we denote them as in the following split exact sequences:

0 → Akw

ιw−→
πw←− Akw+kc

πc−→
ιc←− Akc → 0 ,

0 ← Fkw

πw←−
ιw−→Fkw+kc

ιc←−
πc−→Fkc ← 0 ,

where the second sequence is obtained from the first by applying the functor HomA(−, F)

to it.
An A-submodule P of Akw+kc then defines the A-submodules πw(P) and ι−1

w (P) of Akw ,
and the submodules πc(P) and ι−1

c (P) of Akc . Similarly, the system KerF (P) ⊂ Fkw+kc

defined by P , defines the A-submodules πw(KerF (P)) and ι−1
w (KerF (P)) of Fkw , and

πc(KerF (P)) and ι−1
c (KerF (P)) of Fkc .

Remark 2.1 This notation is slightly different from the notation in van der Schaft (2003), for
instance the A-module ι−1

w (KerF (P)) above, is denoted by P0 there. The notation here is
meant to emphasise the interchangeable roles of w and c. This symmetry is again observed
below, in the comment after Lemma 2.2.

In this terminology, we can state the control problem of this paper:
(i) Consider the set of trajectories in πw(KerF (P)). Suppose that we wish to restrict it

to a subset consisting of only those trajectories which satisfy some criterion defined by the
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problem, and that this is to be achieved by restricting the control trajectories in πc(KerF (P))

to a subset.
What are the subsets of πw(KerF (P)) that can be achieved by this process?
In the behavioural paradigm of Willems explained above, a restriction of the control

trajectories is achieved by imposing additional laws that the control variables must satisfy.
These additional laws constitute the controller. We can then ask:

(ii) What is the structure of the controller that accomplishes the control task of (i)?
The rest of this section is dedicated to answering these questions.
We first establish relationships between the various A-submodules ofFkw andFkc derived

from KerF (P) above.

Proposition 2.1 Let F be any signal space, and P be an A-submodule of Akw+kc . Then the
submodules of Fkw described above satisfy

ι−1
w (KerF (P)) = KerF (πw(P)) ⊂ πw(KerF (P)) ⊂ KerF (ι−1

w (P)) ,

and similarly for the corresponding submodules of the control signal space Fkc .

Proof Set k = kw + kc. Applying the left exact functor HomA(−, F) to the exact

sequence Ak/P
πw−→ Akw/πw(P) → 0, implies that 0 → HomA(Akw/πw(P), F)

ιw−→
HomA(Ak/P, F) is exact. The isomorphism of (1) proves the equality in the statement of
the proposition.

Similarly, the short exact sequence

0 → Akw/ι−1
w (P)

ιw−→ Ak/P
πc−→ Akc/πc(P) → 0

yields the exact sequence

0 → KerF (πc(P))
ιc−→ KerF (P)

πw−→ KerF (ι−1
w (P)) ,

and hence the second inclusion of the statement.
Finally, if fw is in ι−1

w (KerF (P)), then ( fw, 0) is in KerF (P), and hence fw is also in
πw(KerF (P)). ��

As we work in the category of systems that arise as kernels of differential or difference
operators, the first problem we encounter is that the projection of a system need not always
be a system.

Example 2.1 Let A = C[ d
dt ], and let F = D, the space of compactly supported smooth

functions on R. Let P ⊂ A2 be the cyclic submodule generated by (−1, d
dt ), and let

πw : A2 → A be the projection to the first factor.
Then, KerD(P) = {( d

dt f , f ) | f ∈ D}, and πw(KerD(P)) = { d
dt f | f ∈ D}. If this image

were the kernel of a differential operator, say the kernel of p( d
dt ) : D → D, then it would

follow that the composition p( d
dt ) ◦ d

dt = 0. As A is a domain, this implies that p( d
dt ) = 0,

and hence that d
dt : D → D is surjective. This is a contradiction, as the image of d

dt consists
of only those elements in D that integrate to 0 on R.

We overcome this problem by restricting the choice of the signal spaceF to an injective A-
module. Recollect that to say F is injective, is to say that HomA(−, F) is an exact functor.
The celebrated Fundamental Principle of Palamadov and Malgrange asserts that D′, C∞,
and the space S ′ of temperate distributions, are injective C[∂]-modules. Moreover, it is an
elementary fact that the space CN

n
is an injective C[σ ]-module.
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Also recollect that an injective A-module M is a cogenerator if HomA(P, M) is nonzero
whenever P is nonzero. The C[∂]-modules D′ and C∞ are cogenerators, whereas S ′ is not
a cogenerator, for instance Shankar (2019). Again it is elementary that CN

n
is a cogenerator

as a C[σ ]-module.
It follows that if F is injective, and a cogenerator, then there is an inclusion reversing

bijection between A-submodules P of Ak and systems KerF (P) in Fk (Shankar 2019).

Proposition 2.2 Let the signal space F be an injective A-module. Then the projection of a
system is also a system. Furthermore,

πw(KerF (P)) = KerF (ι−1
w (P)),

i.e. the second inclusion of Proposition 2.1 is an equality.
Similarly, πc(KerF (P)) = KerF (ι−1

c (P)).

Proof It suffices to observe that the short exact sequence in the proof of Proposition 2.1, now
yields a short exact sequence upon applying the exact functor HomA(−, F), and hence that
πw : KerF (P) → KerF (ι−1

w (P)) is surjective. ��
Remark 2.2 When the signal space F is not an injective A-module, for example the space
D of Example 2.1, then the obstruction to the above projection being a kernel lies in
Ext1A(Akc/πc(P), F) [see for instance Shankar (2003)].

Hence,we assume for the rest of the paper that the space of signalsF is an injective A-module.
We now state again the control problem that we study for such signal spaces:
(i) Given a distributed system B = KerF (P) ⊂ Fkw+kc , it defines two other systems by

projection, Bw = πw(B) = KerF (ι−1
w (P)) ⊂ Fkw , the system that is to be controlled, and

Bc = πc(B) = KerF (ι−1
c (P)) ⊂ Fkc , the controller. The problem is to restrict Bw to a

desired subsystem by restricting the behaviour of the controller Bc. This is to be achieved by
augmenting the laws the controller must satisfy.

Characterize the subsystems of Bw that can be thus achieved.
The controller system Bc, and its subsystems obtained by restriction, mediate through the

system B (governed by the laws in the submodule P ⊂ Ak) to effect changes in the system
Bw . This imposes a priori constraints on the possible subsystems of Bw that can be attained
by the above process.

Lemma 2.1 The subsystem ι−1
w (B) of πw(B) is unchanged by additions to the controller

laws.

Proof Imposing additional laws to restrict the behaviour Bc of the controller, translates to
specifying an A-submodule of Akc strictly containing the submodule ι−1

c (P). These laws
correspond to laws of the form (0, q) ∈ Akw+kc that are not in P . The addition of such laws
to P in turn results in restricting the system B to a subsystem. However, the submodule P ′,
generated by P and these new laws, satisfies πw(P ′) = πw(P). As KerF (πw(P)) = ι−1

w (B),
this subsystem of Bw remains unchanged when P is enlarged to P ′. ��
Corollary 2.1 The possible subsystems ofFkw that can be achieved by restricting πc(B) with
additional controller laws, all contain ι−1

w (B), and are contained in πw(B).

Proof Together with the above lemma, it suffices to observe that additional controller laws
results in a larger set of laws that the system B must satisfy. Let it be given by a submodule
P ′ containing P . It follows that ι−1

w (P) ⊂ ι−1
w (P ′), and hence that the controlled behaviour

KerF (ι−1
w (P ′)) must be contained in Bw . ��
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Thus, ι−1
w (B) is a residual subsystem of Bw , in the sense that every subsystem of Bw that can

be achieved by augmenting the controller Bc, contains it.
Dual to the above corollary is the following lemma which characterises the subsystems

of Fkc that can possibly restrict the behaviour of the system Bw.

Lemma 2.2 Every subsystem of Fkc that can restrict πw(B) is contained in πc(B), and can
be assumed to contain ι−1

c (B).

Proof The first containment follows exactly as in the proof of the above corollary.
Next, let M be a submodule of Akc , and let q ∈ M \πc(P). Then there is no p ∈ Akw such

that (p, q) ∈ P , and thus ι−1
w (P + (0, q)) = ι−1

w (P). This implies that the addition of the
law q to ι−1

c (P) leaves Bw unchanged. Thus we may assume that M ⊂ πc(P) by replacing
M with M ∩ πc(P), and hence that ι−1

c (B) ⊂ KerF (M). ��
Corollary 2.1 and Lemma 2.2 above, show that the variables w that are to be controlled,

and the control variables c, satisfy identical restrictions. In other words, Bw can be restricted
to a subsystem containing ι−1

w (B), by a controller that is contained in Bc, and which contains
ι−1
c (B). The above control problem is thus symmetric in the w and c variables.
In light of these results, we make the following definition.

Definition An A-submodule of Akw containing ι−1
w (P), and which is contained in πw(P), is

said to be admissible with respect to P (similarly for submodules of Akc containing ι−1
c (P)

and contained in πc(P)).

Proposition 2.3 Let � assign an A-submodule N of Akw to the submodule �(N ) =
ι−1
c (ιw(N ) + P) of Akc . Then � is a bijection between the admissible submodules of Akw

and the admissible submodules of Akc , with respect to P.

Proof If N = ι−1
w (P), then (ιw(N ) + P) = P , and so �(ι−1

w (P)) = ι−1
c (P).

Now let N = πw(P). For every (p, q) ∈ P , (p, 0) is in ιw(N ), hence (0, q) is in
ιw(N ) + P . Thus every q in πc(P) is in ι−1

c (ιw(N ) + P), and hence �(πw(P)) = πc(P).
As the assignment � is inclusion preserving, it follows that it maps an admissible sub-

module of Akw to an admissible submodule of Akc , with respect to P .
Similarly, for an A-submodule M of Akc , define 	(M) = ι−1

w (ιc(M) + P). It assigns
admissible submodules of Akc with respect to P to admissible submodules of Akw . It is
easily verified that � and 	 are inverses of one another, and hence it follows that they are
both bijections. ��
We can now characterize the achievable subsystems of Bw . For this purpose, we assume
further that F is a cogenerator. Thus F could be either D′ or C∞ in the case of partial
differential operators, or CN

n
in the case of difference operators.

Theorem 2.1 Let B = KerF (P) be the system in Fkw+kc defined by the submodule P ⊂
Akw+kc . Let the signal space F be an injective A-module, which is also a cogenerator.
Then every subsystem of πw(B) containing ι−1

w (B) can be achieved by a unique controller
contained in πc(B) and containing ι−1

c (B).

Proof Let B ′ be a subsystem of πw(B) containing ι−1
w (B). As F is an injective cogenerator,

B ′ equals KerF (N ), for a unique submodule N of Akw . This submodule N is admissible with
respect to P , i.e., it satisfies ι−1

w (P) ⊂ N ⊂ πw(P). By the above proposition �(N ) equals
an admissible submodule of Akc , say M .
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Suppose that the laws ι−1
c (P) of the system πc(B) are augmented to this submodule M by

the design of a controller. Then the laws of B, namely the submodule P ⊂ Ak , are augmented
to the submodule ιc(M)+ P . The projection of the resultant system, πw(KerF (ιc(M)+ P)),
to Fkw is a system whose laws are given uniquely by ı−1

w (ιc(M) + P), namely 	(M) of the
above proposition. As 	 is inverse to �, 	(M) = N .

Thus B ′ is achieved by the unique subsystem of πc(B) defined by the submodule M . ��
Corollary 2.2 Amongst all the controllers that restrict πw(B) to a subsystem B ′, there is a
unique minimal one whose laws are derived from the laws P of B.

Proof AsF is an injective cogenerator, the subsystem B ′ is defined uniquely by a submodule
N ⊂ Akw , admissible with respect to P . Consider the submodule�(N ) ⊂ πc(P) determined
by the correspondence of Proposition 2.3. By Theorem 2.1, the controller determined by
�(N ) restricts B to B ′. The expression for � shows that the laws of this controller are
derived from the laws P .

Now suppose that M is a set of laws that defines a controller which restricts Bw to B ′. By
Lemma 2.2, it follows that M ′ = M ∩πc(P) also restricts B to B ′. Again asF is an injective
cogenerator, it follows that M ′ must equal �(N ).

Thus, the laws that determine any controller which restricts Bw to B ′, must contain�(N ),
and therefore �(N ) is the unique minimal controller. ��
Remark 2.3 The description of the above minimal controller is an instance of the Internal
Model Principle, in the sense that it has sufficient information about the system B built into
it (Francis and Wonham 1976).

Recollect the notion of the canonical controller from van der Schaft (2003). Given an achiev-
able subsystem B ′ of πw(B), its canonical controller is the subsystem of πc(B) defined by
Ccan = { fc ∈ Fkc | ∃ fw ∈ B ′ wi th ( fw, fc) ∈ B}.
Corollary 2.3 The uniqueminimal controller of the above corollary is the canonical controller
of B ′.

Proof Let B ′ = KerF (N ), for a unique submodule N of Akw , admissible with respect to P .
Then, by definition, the controller KerF (�(N )) of the above corollary is obtained from B
by restricting Bw to B ′. This is precisely the canonical controller of van der Schaft. ��
These results also answer Problem (ii) above on the structure of controllers.

Remark 2.4 If we set k = 1, then we are in the realm of systems defined by ordinary differ-
ential operators, and all the above results specialise to the results of van der Schaft (2003)
and Willems and Trentelman (2002).

There are several other issues related to the construction of the canonical controller,
especially the notion of regular implementation [for instance (Rocha 2005; Napp et al 2015)],
which are, however, not pursued here.

3 Control of the electro-magnetic field

We study Maxwell’s equations in the context of the results of the previous section. Let A be
the ring C[∂x , ∂y, ∂z, ∂t ] of differential operators on space and time. The Maxwell equations
(in Gaussian units) are

∇ · E − 4πρ = 0, ∇ · B = 0,
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∇ × E + 1

c
∂t B = 0,∇ × B − 1

c
(4π J + ∂t E) = 0 ,

where E, B are the electric and magnetic fields, ρ, J , the electric charge and electric current
densities, and c, the speed of light.

The partial differential operator defined by these equations is

P(∂) : F10 → F8 ,

where

P(∂) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂x ∂y ∂z 0 0 0 −4π 0 0 0
0 0 0 ∂x ∂y ∂z 0 0 0 0
0 −∂z ∂y

1
c∂t 0 0 0 0 0 0

∂z 0 −∂x 0 1
c∂t 0 0 0 0 0

−∂y ∂x 0 0 0 1
c∂t 0 0 0 0

1
c∂t 0 0 0 ∂z −∂y 0 4π

c 0 0
0 1

c∂t 0 −∂z 0 ∂x 0 0 4π
c 0

0 0 1
c∂t ∂y −∂x 0 0 0 0 4π

c

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and where F is either D′(R4) or C∞(R4). The eight rows of this matrix correspond to the
two equations involving divergence, and the six equations involving curl. It operates on
(E1, E2, E3, B1, B2, B3, ρ, J1, J2, J3) ∈ F10, the components of which are the components
of E, B, ρ and J . The electro-magnetic system is the kernel KerF (P(∂)) of this operator.

The problem is to control the electric and magnetic fields by suitable choices of
the control variables ρ and J . In the notation of the previous section, we have w =
(E1, E2, E3, B1, B2, B3), and c = (ρ, J1, J2, J3).

Let P ⊂ A10, be the submodule generated by the rows of P(∂). It determines the submod-
ules πw(P) and ι−1

w (P) of A6, and the submodules πc(P), ι−1
c (P) of A4. An elementary

calculation shows that ι−1
c (P) is the submodule of A4 generated by the continuity equation

∂tρ + ∇ · J = 0, whereas πc(P) = A4.
Similarly, the submodule ι−1

w (P) ⊂ A6 is generated by the laws ∇ · B = 0 and ∇ × E +
1
c∂t B = 0; these are the ‘homogeneous’ Maxwell equations given by the submatrix defined
by rows 2 to 5, and columns 1 to 6 of P(∂). Finally, the submodule πw(P) is generated by
the rows of the 8× 6 submatrix of P(∂) defined by its first 6 columns. They are the Maxwell
equations in vacuum, namely the homogeneous equations above, together with ∇ · E = 0
and ∇ × B − 1

c∂t E = 0.
By Lemma 2.2, the laws governing the control variables ρ and J can be any A-submodule

M of A4 containing the continuity equation. Then, ρ and J would be restricted to lie in
KerF (M). In other words, the control variables can be restricted by any system of differential
equations containing the continuity equation. Thus, charge and current could be considered
to play the classical role of inputs.

By Corollary 2.1, the restriction of ρ and J by the laws inM , results in a unique subsystem
of the system KerF (ι−1

w (P)) of homogeneous solutions, and containing the vacuum solutions
KerF (πw(P)). This is the system determined by the admissible submodule 	(M) ⊂ A6 (in
the notation of Proposition 2.3)

In other words, every achievable subsystem of the electro-magnetic field lies between
two systems, one, the solutions of the homogeneous Maxwell equations, and the other, the
solutions of the vacuum equations. They are obtained by imposing additional differential
constraints on the current and charge densities, and these constraints translate to laws that
the electric and magnetic fields must satisfy, in addition to the homogeneous equations. The
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canonical controller is determined by the single criterion that the solutions of the controller
equations contain the solutions of the continuity equations. As every controller must satisfy
the continuity equation, it folows that there is only one controller that accomplishes a given
restriction, and hence that this controller is the canonical one.

As an example, suppose that the electric charge density ρ is set to 0, by the imposition
of the law defined by the cyclic submodule of A4 generated by (1, 0, 0, 0). Let M be the
submodule of A4 generated by this law together with the continuity equation. Thus, suppose
that ρ = 0, and hence that ∇ · J = 0. Then �(M) ⊂ A6 is the submodule generated by
the homogeneous equations together with ∇ · E = 0, and the system Bw is restricted to
KerF (�(M)) by this control action.

Conversely, by Theorem 2.1, every electro-magnetic system contained between these two
extremes is achievable by suitably restricting electric charge and electric current, in addition
to satisfying the continuity equation.

This is precisely the physics of the electro-magnetic field.
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