
Multidimensional Systems and Signal Processing (2021) 32:239–262
https://doi.org/10.1007/s11045-020-00736-x

CLMIP: cross-layer manifold invariance based pruning
method of deep convolutional neural network for real-time
road type recognition

Qinghe Zheng1 · Xinyu Tian2 ·Mingqiang Yang1 · Huake Su3

Received: 22 June 2019 / Revised: 12 June 2020 / Accepted: 30 June 2020 / Published online: 17 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Recently, deep learning based models have demonstrated the superiority in a variety of visual
tasks like object detection and instance segmentation. In practical applications, deploying
advanced networks into real-time applications such as autonomous driving is still challenging
due to expensive computational cost andmemory footprint. In this paper, to reduce the size of
deep convolutional neural network (CNN) and accelerate its reasoning, we propose a cross-
layer manifold invariance based pruning method named CLMIP for network compression
to help it complete real-time road type recognition in low-cost vision system. Manifolds are
higher-dimensional analogues of curves and surfaces, which can be self-organized to reflect
the data distribution and characterize the relationship between data. Therefore, we hope to
guarantee the generalization ability of deep CNN by maintaining the consistency of the data
manifolds of each layer in the network, and then remove the parameters with less influence
on the manifold structure. Therefore, CLMIP can be regarded as a tool to further investigate
the dependence of model structure on network optimization and generalization. To the best
of our knowledge, this is the first time to prune deep CNN based on the invariance of data
manifolds. During experimental process, we use the python based keyword crawler program
to collect 102 first-view videos of car cameras, including 137 200 images (320×240) of
four road scenes (urban road, off-road, trunk road and motorway). Finally, the classification
results have demonstrated that CLMIP can achieve state-of-the-art performance with a speed
of 26 FPS on NVIDIA Jetson Nano.
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1 Introduction

Recently, a series of computer vision based intelligent vehicle systems have been developed
to provide driver assistance and autonomous navigation, including the techniques of path
planning (Jeong et al. 2018), traffic sign classification (Guan et al. 2018), road type recognition
(Zhang et al. 2017), obstacle detection (Nguyen et al. 2017), and lane detection (Ozgunalp
et al. 2017). In all cases, the system is primarily designed for enhancing the drivers’ overall
situational awareness, reducing driver workload and automating whole or partial driving
process. As one of the most important cornerstone functions, road type recognition based on
computer vision is defined as the process of determining road types according to the video
content of the scene. This task is an important step in understanding road environment and
is necessary for overall situational awareness and fully or semi-automatic driving system
(Menouar et al. 2017). In such applications, it is essential to mine domain information and
implicit expert knowledge. However, extracting specialized features from the perception of
various road scenes is a challenge, which requires high quality image or video processing
methods.

Over the past few decades, a lot of research and studies have beenmade to the field of com-
puter visual based autopilot (Trittler et al. 2016), including the improvement of optimization
methods for nonconvex models (Miguel et al. 2015), the development of regularization algo-
rithms for improving generalization capabilities (Neyshabur et al. 2017; Rajeswaran et al.
2017) and the introduction of data augmentation methods for expanding training sets (Ding
et al. 2016; Lemley et al. 2017), etc. These techniques help to move machine learning model
toward real applications. As for road type classification problem, many high-level represen-
tations (Tang and Breckon 2011; Mioulet et al. 2013; Mohammad et al. 2015) that combine
low-level features of color, texture, and shape have been designed and fed into classifiers to
determine the types of road environments in images, such as off-road and motorway. The
traditional low-level features do not have the adaptability to variable factors such as weather,
illumination, angle of view, lens jitter and so on, which may bring challenges for the model.
Nonetheless, building a robust and efficient road type recognition system remains an open
problem.

Recently, deep learning has flourished and achieved significant progress in various com-
puter vision related tasks, such as object detection and classification (Chen et al. 2015) and
instance segmentation (Li et al. 2016). The over-parametrized deep neural networks that were
trained on huge datasets have strong fitting capability, which can effectively resist noise and
accurately learn the representations of samples. If the pruned deep neural network is applied
to real-time vision-based road type recognition system, significant improvements may be
achieved. However, the application of deep learning in real-time road type recognition needs
to face the following problems: (1) Lack of large-scale datasets like ImageNet (Russakovsky
et al. 2015) for model optimization; (2) The large size of deep neural network leads to large
memory usage and slow reasoning speed, which make it difficult to apply in embedded
devices. In order to apply deep neural networks to practical applications, a series of pruning
methods have been developed to reduce their memory footprint and accelerate the reasoning
of models. Pruning means to remove redundant network parameters that contribute little to
the final output based on specific criteria, such as magnitude, gradient and activation value.
Pruning low-contributing neurons or connections leads to certain accuracy loss, so pruned
neural networks usually need to be retrained to ensure classification performance.

In this paper, we propose a cross-layer manifold invariance based pruning method called
CLMIP for deep CNN compression and acceleration to help complete real-time road type
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Fig. 1 Data manifold invariance based CLMIP method in a deep CNN. Manifold structures of different layers
are captured and used to ensure the generalization ability of pruned networks

recognition in a low-cost vision system based on monocular camera. In the forward propaga-
tion process of neural networks, the output of convolutional and fully connected layers can be
regarded as the indirect representation of data in various dimensions, containing the implicit
knowledge of samples and represented in the form of features. They can be visually expressed
by observing the shape of manifolds. Manifolds are higher-dimensional analogues of curves
and surfaces, which can be self-organized to reflect the data distribution and characterize the
relationship between data. Therefore, we hope to guarantee the generalization ability of deep
CNN by maintaining the consistency of the data manifolds of each layer in the network, and
then remove the parameters that have less influence on the manifold structure. Specifically,
we try to reduce the reconstruction error of the data manifolds before and after pruning to
ensure the network’s ability to capture data distribution and utilize this as a standard to mea-
sure the contribution of parameters in the network, as shown in Fig. 1. Finally, redundant
parameters with less contribution are removed and the pruned model is used for road type
classification. To the best of our knowledge, this is the first time to prune deep CNN based
on the invariance of data manifolds. The main contributions of this paper are summarized as
follows.

• The proposed CLMIP method reduces the size (or memory footprint) of deep neural
network for real-time road type recognition, so it can be deployed on the embedded device.

• CLMIP speeds up the inference of deep neural network and enables it to be used in the
real-time automatic driving system, helping drivers understand the road environments and
make corresponding driving decisions.

• It is generic and independent of network structures, so it can be easily extended to other
complex models, such as GoogLeNet (Szegedy 2015) containing inception blocks and
ResNet (He et al. 2016) with residual modules.

• Experiments on a video set containing four road types demonstrate the effectiveness of
the pruned neural network, which achieves state-of-the-art classification results with a
prediction speed of 26 frames per second.
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The remainder of this paper is organized as follows. Section 2 gives a brief review to
the related work of road type recognition and pruning methods for network compression
and acceleration. Section 3 introduces the proposed cross-layer manifold invariance based
pruning method. Extensive experiments and analysis are presented in Sect. 4. Finally, we
conclude our work and propose future directions in Sect. 5.

2 Related work

In this section, we first present the difficulties, challenges and related methods for road type
recognition in Sect. 2.1, and then introduce the pruning methods to accelerate the reasoning
of deep CNNs and accomplish the real-time road type recognition in Sect. 2.2.

2.1 Road type recognitionmethods

Road type recognition faces the challenge of achieving high performance while ensuring
computational efficiency. Thus, the simple and efficient representations of road environment
is crucial. Previous work in the road type recognition field has studied the extraction of low-
level features such as color distribution (Jansen et al. 2005) as the metric to classify different
off-road terrain into approximate categories, whereas the other work in this field focuses on
the estimation of geometry of road lane boundaries (Bosch et al. 2008).Alternative algorithms
carried out the texture analysis of local pixel neighborhood (Rasiwasia andVasconcelos 2008)
to facilitate the derivation of two road scene clusters (‘on-road’ and ‘off-road’), and complete
the classification through neural network. Ess et al. (Ess et al. 2009) also investigated the
field of feature-based road environment understanding, which focuses on the representation
of road markings, on-road and road-side objects, and road type recognition according to the
occurrence of junctions, roundabouts and turnings. Tang and Breckon (2011) further utilized
the feature set of color and texture distribution extracted from multiple regions of interest,
and combines them with trained classifiers (k-nearest neighbor and artificial neural network)
to solve the four road type classification problem (‘off-road’, ‘urban road’, ‘trunk road’ and
‘motorway’). Mioulet et al. (2013) improved the real-time texture classification by using a
hardware-specificGabor filter, which can successfully extract the Gabor feature of above four
types of road environment for classification based on the random forest (Paul et al. 2018).
Due to the selection of robust and representative features, the method in Mioulet et al. (2013)
achieved better performance than the method in Tang and Breckon (2011). Mohammad et al.
(2015) established a two-stage classification strategy to improve the road type classification
accuracy. The first stage is to construct a statistical model for each road type offline, and
the second stage is the online classification of new video frames. It can be seen that most
methods still implement real-time road type classification based on the underlying visual
features and manually designed classifier, such as random forest (RF) (Paul et al. 2018) and
support vector machine (SVM) (Pan et al. 2018), rather than end-to-end solutions.

Recently, deep learning models (Gong et al. 2018; Yang et al. 2018; Wu and Prasad 2018;
Zheng et al. 2018, 2020a, b) trained on big data can mine the implicit knowledge of samples
and thus can deal with image classification problems well. However, the huge structures of
such over-parameterized models make them hard to apply to embedded devices or mobile
terminals. Therefore, reducing the network size of deep learning methods and accelerating
their reasoning speed is the current research hotspot.
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2.2 Network pruning for accelerating inference

Mathematical investigations (Tung and Mori 2020; Ko et al. 2018; Smith et al. 2018) have
illustrated that weight removal of deep neural networks is highly efficient due to the redun-
dancy across channels and kernels. At present, there are a large number of related publications
(Wang et al. 2018; Yang et al. 2018; Yu et al. 2018; Li et al. 2019) on the removal of redun-
dant parameters to reduce memory footprint and help model to accelerate reasoning. Existing
pruning techniques either train baseline network from scratch with sparse regularization on
parameters (or connections), or minimize the reconstruction error between feature maps
before and after pruning. Both techniques suffer from some limitations: the former needs a
large amount of computation and is difficult to converge, while the latter ignores the discrim-
inative ability of filters.

In practice, it is usually difficult to determine which metric can be used to determine the
importance of network parameters or connections. To overcome this challenge, Wang et al.
(2018) proposed using the generative adversarial network (GAN) as a teacher to guide the
construction of lightweight student neural network. Yang et al. (2018) proposed improving
the information flow in deep neural networks to make more efficient usage of parameters,
which help to alleviate the optimization difficulty of pruned network. Experiments on four
public image classification benchmarks have shown that their method achieves the state-
of-the-art performance with fewer parameters. Yu et al. (2018) designed ε-ResNet to allow
the structure to automatically discard redundant layers with negligible loss of accuracy. Li
et al. (2019) introduced a dynamic selection mechanism in CNN and designed a building
block called Selective Kernel unit, which allowed neurons to adjust their receptive field
adaptively based on multiple scales of input information. Experiments showed that SKNet
is superior to the existing state-of-the-art architectures with lower model complexity. Lin
(2019) jointly pruned filters and other structures in an end-to-end manner by introducing a
new objective function that contained sparse regularization terms. Fast iterative shrinkage-
thresholding algorithm is used to remove the corresponding structures quickly and reliably.
Discrimination-aware channel pruning (DCP) method (Zhuang 2018) introduced additional
recognition perception loss into the network to improve the recognition ability of the middle
layer, and then chose the most recognizable channel for each layer by considering additional
loss and reconstruction error. Experiments showed that the pruned ResNet-50 with 30%
reduction of channels improved the accuracy by 0.39% on ILSVRC-2012. Liu et al. (2018)
proposed a frequency-domain dynamic pruning scheme to explore spatial correlations and
remove unimportant parameters. Specifically, the frequency-domain coefficients are removed
dynamically in each iteration and various frequency bands are pruned differently due to their
different influence on accuracy. It achieved a compression ratio of 8.4×and a theoretical
inference speedup of 9.2× for ResNet-110, while the accuracy is even better than baseline
model. Auto-balanced filter pruning method (Ding et al. 2018) transferred the representation
ability of some convolutional layers to a part of filters to remove redundant parameters, and
then retrains the remaining kernels to restore the accuracy. In this way, a smaller version of
the original network can be learned and the floating-point operations (FLOPs) are reduced.
Soft filter pruning method (He et al. 2018) developed a large architecture learning capacity
and had less dependence on the pre-training model. Zhong et al. (2018) used long short term
memory (LSTM) to learn the hierarchical characteristics of the network and generated a
pruning decision for each layer, which is the main difference from previous work. Park et al.
(2018) designed a new value-aware quantization method which applies aggressively reduced
precision to the majority of samples while separately handling a small amount of large data
in high precision, and results show that deep networks such as Inception-v3, ResNet-101
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and DenseNet-121 can be quantized for inference with 4-bit weights and activations (with
1% 16-bit data) within 1% top-1 accuracy drop. The above methods still lack the guarantee
in weight reduction rate and convergence time. Zhang (2018) presented a systematic weight
pruning framework using the alternating directionmethod ofmultipliers, and achievedweight
reduction of 21×without accuracy loss ImageNet dataset.

In summary, the existing network pruning methods need to go through a long iteratively
pruning and retraining process, which is instructive but lacks assurance of weight reduction
rate and convergence time. Most of them rely on hierarchical multi-stage optimization for
iteratively pruning and retraining, which may not be optimal and require a large amount of
computation. In addition, these methods are usually designed to prune specific structures,
such as filters or blocks in ResNet, without considering structural adaptability and jointly
pruning heterogeneous structures.

3 CLMIPmethod

Pruning method requires minimizing the network size while keeping the performance of
the model as much as possible. Slight pruning cannot meet the requirements, and excessive
pruning may lead to the collapse of network structure and the inability to converge. In this
section, we introduce proposed CLMIP method for CNN compression and acceleration in an
iterative manner, which controls pruning rate in each iteration to prevent the above problems.
The whole process consists of the following steps:

(1) Pre-train the original deep CNN model to converge on the training set;
(2) Remove redundant parameters in the network according to the reconstruction errors of

data manifolds;
(3) Fine-tune the structure of pruned network as much as possible;
(4) Judge whether the pruned network meets the target trade-off between classification

performance and pruning objective;
(5) Save sparse deep CNN and deploy it in embedded systems for road type recognition.

The alternate pruning and fine-tuning process of deep CNN using the CLMIP method is
shown in Fig. 2.

3.1 Problem formulation

Given a L layer deep CNN model M0 : f (x; θ0) optimized on training set S :
{
(xi , yi )

}N
i�1

where (x, y) and θ0 :
{
Wl

0, bl
0

}L
l�1 represent the inputs (i.e. the perceptual images of road

environments and corresponding ground truth labels) and initialized network parameters,
respectively. Parameters are organized in four dimensional tensors and two dimensional
matrices in the convolutional and fully connected layers, respectively.

In the forward propagation process, sample images x are fed into the first layer and the
corresponding output h1 can be calculated by

h1 � σ (W1
0x + b1

0) (1)

where σ (·) represents the element wise non-linear activation function, such as exponential
linear unit (Yang et al. 2018), which is defined as

σ (x) �
{

x i f x > 0
τex − τ i f x ≤ 0

(2)
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Prepare baseline network

Input training samples

Pre-train the model

Prune the connections

Fine-tune the structure

Reach the 
target trade-
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Save the pruned network

No. Too large 
model size

No. Too bad 
performance

Yes

Continue circulationRoll back and 
reduce pruning rate

Fig. 2 The alternate pruning and fine-tuning procedure of deep CNN using the CLMIP method

where τ is an adjustable parameter that controls the saturation of activation function. Since
the output of one layer is the input of the next, the output of l-th layer for l � 2, …, L − 1 is
given by

hl � σ (Wl
0hl−1 + bl

0). (3)

Then the final output (prediction result of road type) of deep CNN is

f (x) � softmax(WL
0 hL−1 + bL

0 ). (4)

At last, the total loss of deep CNN model can be calculated as

L(xi , yi ) � − 1

C

C∑

j�1

[
y j
i log f (xi ) j + (1 − y j

i ) log(1 − f (xi ) j )
]
+ λ

L∑

k�1

||Wk ||F (5)

where C� 4 denotes the categories of road type, including ‘urban road’, ‘off-road’, ‘trunk
road’ and ‘motorway’. The first term is the loglikelihood loss and the second term is L2
regularization of all the weights. λ is a hyperparameter controlling regularization intensity
and || · ||F means the Frobenius norm.

The optimization of the deep CNN is to minimize the loss by updating parameters θ

(i.e., weights W and biases b). In the back propagation process, the network parameters in
l-th layer at the t-th training iteration can be updated through mini-batch stochastic gradient
descent (SGD) method (Zheng et al. 2019):

θ lt � θ lt−1 − α · 1

M

M∑

i�1

∂L(xi , yi )

∂θ lt−1

(6)

where α and M represent the learning rate and batch size, respectively. Through successive
iterations, a convergent deep CNNM∗ : f (x; θ∗) can be finally obtained.
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The pruning objective is to remove the redundant weights of deep CNN, and therefore
we try to minimize the loss subject to constraints on the cardinality of nonzero weights in
the network. In other words, the mini-batch SGD training process is updated to solve the
following problem.

minimize
θ

L(x, y), subject to
prune(W)

total(W)
≥ ξ (7)

where prune (W) and total (W) return the number of pruned and total weights in deep CNN,
respectively. ξ is the manually set total pruning rate that reflects our requirements for model
size.

3.2 Parameter importance ranking criterion

Since we hope to ensure the generalization ability of CNN by maintaining the invariance
of the data manifolds before and after pruning, the accurate representations of the cross-
dimensional manifolds are crucial. Differential forms play a key role in manifold theory.
They are, the first and foremost, intrinsic objects associated to any manifolds, and therefore
can be used to construct diffeomorphism invariants of the manifold (Kwong 2016; Bône et al.
2018). Relative to vector fields, which are also intrinsic to the manifold, differential forms
have a more abundant algebraic structures.

For the l-th convolutional layer, the cross-dimensional manifold descriptor of samples in
a mini-batch set can be defined as

ϕ l
conv � (||h1

l − h2
l ||2F , ||h1

l − h3
l ||2F , . . . , ||hi

l − h j
l ||2F )M(M−1)/ 2

1≤i< j≤M . (8)

It characterizes the relationship between feature maps of the same dimension generated
from mini-batch samples. In the process of dimensionality reduction layer by layer (i.e.
semantics becoming abstract), the redundant information is gradually eliminated and critical
implicit knowledge is retained and reorganized. Real projective space can be interpreted as a
quotient of a sphere with antipodal points identified, or as the set of lines through the origin
in a vector space (Tu 2011). The Frobenius norm of the difference of feature maps at the
same layer can capture this distance and can be used to construct data manifolds in vector
space.

The output dimension of fully connected layer is different from that of convolutional layer,
which changes from the three-dimensional tensor to the two-dimensional vector. Therefore,
ϕ for fully connected layer should be updated to

ϕ l
f ull � (|h1l − h2l |, |h1l − h3l |, . . . , |hil − h j

l |)M(M−1)/ 2
1≤i< j≤M . (9)

Then the cosine similarity is used to measure the difference between manifolds spanning
various dimensions, as given by

φ � 1

2

L∑

p�1

L∑

q�1,
q ��p

cos
〈
ϕ p,ϕq 〉 (10)
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where

cos
〈
ϕ p,ϕq 〉 �

M(M−1)/ 2∑

i�1
ϕ
p
i × ϕ

q
i

√
M(M−1)/ 2∑

i�1
(ϕ p

i )
2 ×

√
M(M−1)/ 2∑

i�1
(ϕq

i )
2

. (11)

Cosine similarity is insensitive to the order of sequences and the absolute magnitude of
a specific value, which can fairly describe the changes in the data manifold. Furthermore, it
is worth noting that the cosine similarity is equivalent to the Pearson correlation for mean-
centered normalized vectors. The frequently used Euclidean distance between two samples
in high-dimensional feature space can no longer reflect the actual relationship between them,
because the influence of noise often makes them sparse.

After the manifold descriptors of all types of layers in the network are obtained, we
can calculate the average reconstruction error of manifolds on all samples before and after
network pruning according to

ψ � M

N

N / M∑

i�1

|φi − φ̃i | (12)

where φ̃ represents the manifold similarity of pruned network. Finally, the importance of
network weights can be estimated according to the min–max normalized reconstruction
errors of manifolds, which can be formulated by

ψ � ψ − ψmin
ψmax − ψmin

. (13)

Based on this ranking criterion, the weights in all convolutional and fully connected layers
of deep CNN are ordered and smaller ones can be removed. The ranking process of weight
importance is summarized in Algorithm 1. Since the output size of feature maps is not limited
in the estimation of data manifolds, the pruning criterion is suitable for neural networks with
any special structures, such as the Inception block (Szegedy 2015) containing convolutional
kernels of different sizes and the residual modules (He et al. 2016).

The key issue of pruning is to evaluate the importance of parameters. Once the importance
ranking criterion is established, the model can then be pruned and fine-tuned based on this
to compress the model size and speedup the inference.
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3.3 Network pruning and fine-tuning

In this section, we introduce the process of deepCNNbeing pruned. To prevent the collapse of
the model structure, we adopt iterative pruning and fine-tuning to gradually reduce the model
size while ensuring the classification performance. In some cases, even if the classification
accuracy of the model cannot reach the expected performance after a certain fine-tuning,
the model can be rolled back to the previous version. Besides, fine-tuning is essential to
compensate the accuracy loss from the previous pruning to suppress the accumulative error.

3.3.1 Pruning process

During the pruning process, a deep CNN model needs to be pruned at least 100ξ /ζ times
if ζ % of parameters is removed at each pruning iteration, in which ξ and ζ represent
pruning rate and pruning step size, respectively. Suppose that the removed parameter set
is θ̃ : {W1, W2, . . . W100ζ }, then we can define a suppression mask M with the same
dimension as weight matrix to specify the reserved or removed parameters. Before the next
fine-tuning of the pruned network, the weight matrix is first updated by dot multiplying with
the suppression mask:

θ̂ � θ ◦ M (14)

where θ is the parameter set of the neural network at the beginning of the current pruning
round and ◦ represents the element-wise operation for computing the Hadamard product. By
doing this, the redundant weights are removed by multiplying with 0, while the remaining
weights can be preserved by multiplying with 1. In other words, the parameters of pruned
network has been updated to θ̂ : {W ∈ θ&W /∈ θ̃}.

In the local preparation phase of the network, the computational complexity of pruning
process is O (Lζ + ξ logζ ) where Lζ and ξ logζ reflect the computing resources occupied by
the layers of neural network and all pruning steps during the iterative process, respectively.
Compared with the retraining process, the additional calculation can be ignored. When the
pruned deepCNN is deployed on the embedded system for road type recognition, thememory
footprint of suppression mask (about 15% under 50% pruning rate) is much smaller than that
of the real-valued weights removed, which greatly reduces the storage and computation
requirements.

3.3.2 Fine-tuning process

Starting from a pruned deep CNN, CLMIP updates the model M at the fine-tuning process.
After each pruning is completed, an updated network M

′ whose parameters are transferred
from the previous model is fine-tuned by using mini-batch SGD, as shown in Eq. (6). The
learning policy of fine-tuning is consistent with the initial settings. The discriminative power
of layers can be significantly improved after fine-tuning and another round of pruning can
be performed. We only need a single fine-tuning step to retain the performance of the model
and the convergence can be much faster than directly training the baseline deep CNN from
scratch, since the starting position of the fine-tuning process is already close to the position
which can obtain the original performance. On the other hand, many studies (Lemley et al.
2017; Chen et al. 2015; Li et al. 2016) have shown that fine-tuning the pruned network
performs better than training sparse model from scratch. Although the learning capacity of
sparse network is sufficient enough to fit plenty of training samples, it is more likely to fall
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into a local minimum, while the denser network can help to find better initial positions in the
parameter space. Once a good initialization is provided by previous version of the model, the
pruned network is able to obtain its original classification ability by fine-tuning.

The end point of the entire process depends on whether the trade-off we set is satisfied.
When the proportion of parameters removed from the model is larger than the pruning rate
and the loss of validation set is less than the threshold, it ends otherwise entering the next
loop, that is,

{
continue the iteration i f prune(W)

total(W) < ξ or validation loss > γ

end loop i f prune(W)
total(W) ≥ ξ and validation loss ≤ γ

(15)

where γ is a hyperparameter to determine the availability of deep CNN. In other words, γ
is a threshold used to determine whether the validation loss reaches our expectation. There
are different requirements for model performance in different scenarios. For example, urban
roads with high traffic flow require more sensitive algorithms than off-roads with less traffic.
Finally, the network sequence {M1, M2, . . . , MT } with sparse connections specified by
suppression masks {M1, M2,…, MT} are saved. Among these candidates, the best config-
uration which minimizes the structural complexity while meeting accuracy requirements is
selected and deployed on the mobile side.

The process of alternate pruning and fine-tuning is summarized in Algorithm 2. So far,
we have introduced all the details of proposed CLMIP method.
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Table 1 Hyperparameters setting in ImageNet pre-training process

Hyperparameters Learning rate Batch size Weight decay Category Number of
samples

Convergent
training loss

Value 0.01 64 0.0005 20 105 0.1

4 Experimental results and analyses

4.1 Experimental setup

4.1.1 Baseline deep CNN architecture

In this part, we introduce the specially designed baseline CNN for road type classification,
as shown in Fig. 3. Considering the number of samples and image size of the target dataset.
The model is consisted of 12 convolutional layers, 4 max pooling layers, 1 global pooling
layer, 2 fully connected layers and a softmax layer to output classification results. Batch
normalization layer (Li et al. 2016) and the exponential linear activation function (Yang et al.
2018) are added behind each convolutional and the fully connected layer, and the continuous
Dropout (Shen et al. 2018) is used in fully connected layers to prevent the over-fitting problem
and improve the generalization ability of the model. As for weight initialization, the model
is initialized by MSRA (He et al. 2015) and then pre-trained on ImageNet (Russakovsky
et al. 2015). The pre-training details are summarized in Table 1. Taking into account the
depth of network and the number of convolution kernels, we set the pre-training task to be 20
categories, of which 5000 images per category, which is similar to the total number of training
samples in the target dataset. Then the training loss is optimized as much as possible without
considering the performance of validation set. This can ensure the optimization capacity of
the deep learning model and transfer it from the source domain to the target domain.

Finally, the pre-trained network is retrained on the target dataset and is used for subsequent
pruning and fine-tuning. The total number of parameters in the baseline CNN is about 0.19
million, as calculated by

3 × 3 × 128 × 2 + 3 × 3 × 256 × 4 + 3 × 3 × 512

× 5 + 7 × 7 × 512 + 512 × 256 + 256 × 4 � 191744. (16)

The memory consumed by image transmission during network prediction is

(320 × 240 × 3 + 320 × 240 × 128 × 2 + 160 × 120 × 128 + 160 × 120 × 256 × 2

+ 80 × 60 × 256 × 3 + 40 × 30 × 256 + 40 × 30 × 512 × 3 + 20 × 15

× 512 × 3 + 3 × 2 × 512 + 512 + 256 + 4 + 4)/106 × 4 ≈ 153.9 MB. (17)

4.1.2 Benchmark dataset

During the sample preparation phase, we use the python based keyword crawler program
to obtain a total of 102 first-view videos (about 10 h) of car cameras on various websites,
including 137 200 images of four road scenes (‘urban road’, ‘off-road’, ‘trunk road’ and
‘motorway’). Some sample images are shown in Fig. 4. Then 62 videos (81 496 images)
are divided into the training set, 20 videos (26 292 images) for the validation set, and 20
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Layer type Output dimension
input 320×240×3

convolution 1, 3×3, stride 1, padding 1 320×240×128
convolution 2, 3×3, stride 1, padding 1 320×240×128

max pooling 1, 2×2 160×120×128
convolution 3, 3×3, stride 1, padding 1 160×120×256
convolution 4, 3×3, stride 1, padding 1 160×120×256

max pooling 2, 2×2 80×60×256
convolution 5, 3×3, stride 1, padding 1 80×60×256
convolution 6, 3×3, stride 1, padding 1 80×60×256

max pooling 3, 2×2 40×30×256
convolution 7, 3×3, stride 1, padding 1 40×30×512
convolution 8, 3×3, stride 1, padding 1 40×30×512
convolution 9, 3×3, stride 1, padding 1 40×30×512

max pooling 4, 2×2 20×15×512
convolution 10, 3×3, stride 1, padding 1 20×15×512
convolution 11, 3×3, stride 1, padding 1 20×15×512
convolution 12, 7×7, stride 5, padding 1 3×2×512

global average pooling 1×1×512
full connection 1 1×1×256
full connection 2 1×1×4

softmax 1×1×4

Fig. 3 Baseline network architecture for 4 class road type classification

videos (29 412 images) for the test set. During the training phase, all images are first resized
to 320×240 and then training samples are augmented by horizontal flipping and random
cropping. The video based sample partitioning approach is more challenging, which can
avoid information leakage and evaluate the model more fairly.

4.1.3 Pruning and fine-tuning details

Manyhyperparameters havebeen introducedduring thepruning andfine-tuningof deepCNN.
The choice of hyperparameters is determined according to the classification performance of
the model on validation set. Finally, the hyperparameters used for model pruning, including
pruning rate ξ , pruning step size ζ and threshold γ , are set to 0.4, 2 and 0.25, respectively;
and the hyperparameters used in the model fine-tuning process, including learning rate α,
batch size M and weight decay λ, are set to 0.01, 64 and 0.0005, respectively. The learning
rate is reduced by a factor of 10 when the training loss is no longer reduced, and the training
loss can be calculated by Eq. (5).
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Fig. 4 Example images of four types of road environment. a Urban road, bOff-road, c Trunk road, d Motorway

40 pin GPIO AXI

micro SD card slot

micro USB interface

Gigabit Ethernet port4 USB 3.0

DC 5V

DisplayPort connector

MIPI CSI connector

Fig. 5 The specific structure of developer kit NVIDIA Jetson Nano

4.1.4 Embedded device

The neural network model is implemented by PyTorch (Ketkar 2017) deep learning platform
based on Python. In the test phase, the pruned network is deployed in the embedded device
based on the developer kit NVIDIA Jetson Nano to test whether it can meet the requirements
of real-time and accuracy.

The developer kit NVIDIA Jetson Nano is 70×45mm in size and consists of a ARMCor-
tex A57 CPU with 4 cores, a Maxwell GPU with 128 cores, 16 GB storage, and 4 GB 64-bit
memory. The structure of the development board is shown in Fig. 5. It can realize the com-
puting power of 0.5 TFLOPs at 5 W power.

4.2 Performance of CLMIP

With the reduction of the parameter size of deep CNN, the optimization ability of the model
will decrease gradually and lead to the underfitting problem, which is not what we expected.
Multiple optimizations of pruned model in the fine-tuning process are shown in Fig. 6. It can
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Fig. 6 Multiple optimizations of pruned model in the alternate pruning and fine-tuning process

be seen that the training loss fluctuates but never exceeds 0.2. Finally, after the original CNN
model removed the redundant parameters by pruning, the number of the parameters is reduced
to 60% (115 046), the memory consumption is reduced to 104.2 MB, and the computational
requirements (i.e., FLOPs) are reduced by 46.72%. Tests on the platform Jetson Nano show
that the pruned model only needs 31 ms to judge the road type of a single image, which
means that the processing speed of the system can reach 26 frames per second and meet
the real-time requirements. In a real-time system, the maximum response time of the system
must be less than the required threshold. We have observed the maximum response time of
the pruned model through testing all samples in the dataset, and the maximum response time
of 0.039 s can meet the actual demand.

The performance of the original and pruned deep CNN on the test set are shown in Fig. 7.
The confusion matrix shows the classification accuracy of CNNs for the four road types. The
pruned deep CNN achieves the classification accuracy of 93%, 90%, 82% and 84% for ‘urban
road’, ‘off-road’, ‘trunk road’ and ‘motorway’, respectively. It is worth noting that the model
is more likely to confuse ‘trunk road’ and ‘motorway’. Compared with the original model,
the average classification accuracy i decreased approximately 3%, which can be acceptable
considering the reduction of model size. In fact, we can further reduce the model size of deep
CNN by limiting its classification performance.

4.3 Comparison with other pruningmethods

In this part, we compare various pruning methods to illustrate the effectiveness of proposed
CLMIP, including DCP (Zhuang 2018), Auto-balance (Liu et al. 2018), FDNP (Ding et al.
2018), etc.Allmethods are set up according to the description in original paper and implemen-
tation details are presented in Table 2. To demonstrate the acceleration ofmodel reasoning,we
report the classification accuracy and reduction of multiplication and parameters, which are
denoted as [Classification accuracy (%)], [FLOPs (↓%)] and [Parameters (↓%)] in Table 3,
respectively. FLOPs is one of the most commonly used metrics to compare the computa-
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(a) original network (b) pruned network
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Fig. 7 Visualization of confusion matrix of the recognition results. ‘A’, ‘B’, ‘C’ and ‘D’ represent ‘urban road’,
‘off-road’, ‘trunk road’ and ‘motorway’, respectively

Table 2 Implementation details of pruning methods for comparison

Methods Implementation details

DCP (Zhuang 2018) See https://github.com/SCUT-AILab/DCP

FDNP (Liu et al. 2018) Compression rate: 0.5, relevant hyperparameters: 1.0 and 0.8

Auto-balance (Ding et al. 2018) Compression rate: 0.5, accuracy drop threshold: 0.05

SFP (He et al. 2018) See https://github.com/he-y/soft-filter-pruning

Value-aware (Park et al. 2018) Compression rate: 0.5, accuracy drop threshold: 0.05

ADMM (Zhang 2018) See https://github.com/KaiqiZhang/admm-pruning

Table 3 The classification accuracy and reduction of multiplication and parameters of deep CNN under various
pruning methods

Pruning methods Classification accuracy (%) FLOPs (↓%) Parameters (↓%)

No pruning 90.64 0.00 0.00

DCP (Zhuang 2018) 81.79 44.51 51.08

FDNP (Liu et al. 2018) 84.02 35.22 37.90

Auto-balance (Ding et al. 2018) 84.13 32.30 36.68

SFP (He et al. 2018) 82.66 48.40 41.80

Value-aware (Park et al. 2018) 79.40 38.34 35.51

ADMM (Zhang 2018) 77.52 50.66 43.47

CLMIP 87.38 46.72 40.00

tional complexity of various CNN architectures, which can be independent of the underlying
hardware and software. The trade-off between classification accuracy and the reduction of
FLOPs and parameters have empirically demonstrated the effectiveness of CLMIP method.

According to the experimental results, although the maximum reduction of FLOPs is
achieved by ADMM (Zhang 2018), it leads to the sharp decline (from 90.64 to 77.52%) in
the classification performance of pruned model. We speculate that a part of the core structure
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Table 4 Thememory footprint and theFPSof various lightweight networks and the corresponding classification
performance

Lightweight CNNs Classification accuracy (%) Memory footprint (MB) Frames/s

CliqueNet (Yang et al. 2018) 88.46 377.0 5

SKNet (Li et al. 2019) 83.17 91.0 22

SENet + ResNet (Hu et al. 2018) 84.89 170.3 14

SqueezeNet (Iandola 2017) 74.42 4.8 47

Xception (Chollet 2107) 87.20 260.6 7

ShuffleNet (Zhang et al. 2018) 84.21 143.0 13

Our CNN + CLMIP 87.38 104.2 26

of deep CNN may be destroyed, and the feature extraction and organization ability of the
model from bottom layer to the upper level are affected. DCPmethod (Zhuang 2018) removes
almost half of the parameters of the original model, while the classification performance
decreases by only 8.85%, which shows stronger robustness to the change of model structure.
Our proposed CLMIP method achieves the highest average classification accuracy (87.38%)
on four road types, with 40% and 46.72% reduction in parameters and FLOPs, respectively.
Although the classification accuracy of pruned deep CNN decreases slightly (3.26%), the
resulting computation and memory savings are significant. CLMIP method can remove the
redundant parameters in the CNN architecture as much as possible while ensuring model
classification performance.

4.4 Comparison with other road type classificationmethods

To prove the necessity and value of pruning, we compare the performance of deep CNN
with alternate pruning and fine tuning model with lightweight CNNs trained from scratch.
The weight initialization and hyperparameter setting of these networks are set according
to the description in the original papers. The memory footprint of each network and the
corresponding classification performance are shown in Table 4. By pruning and fine-tuning
the deep CNNwe designed, it performs far better than the lightweight networks with smaller
sizes, including SKNet (Li et al. 2019) and SqueezeNet (Iandola 2017). Even the performance
of some larger lightweight networks such as SENet (Hu et al. 2018), Xception (Chollet 2107)
and ShuffleNet (Zhang et al. 2018), has also been surpassed. Compared with our pruned
model, the classification accuracy of above three lightweight networks is reduced by 4.21%,
0.18% and 3.17%, respectively. Only CliqueNet (Yang et al. 2018) performs better than
network with CLMIP, which is not surprising considering that its model size is 3.6 times
bigger than our pruned model.

We also report the comparison between the pruning network model and the traditional
classification methods, including Gabor features based method (Mioulet et al. 2013) and
Gaussian mixture models (GMMs) (Mohammad et al. 2015). The classification accuracy of
the four road types is presented in Fig. 8. Compared with the conventional feature design
strategy, our pruned deep CNN shows remarkable superiority and achieves the highest clas-
sification accuracy in all road types, i.e., 92.2% for ‘urban road’, 90.4% for ‘off-road’, 82.7%
for ‘trunk road’, and 84.2% for ‘motorway’. Deep learning can automatically mine implicit
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Fig. 8 Performance comparison of pruned CNN with other methods

knowledge froma large number of samples,which is helpful for the understanding of complex
road environments.

4.5 Distribution of removed parameters

In cases where the classification accuracy loss can be ignored, the removed parameters reflect
the redundancy of theCNNstructure. Therefore,we plan to determine the location of structure
redundancy and the reasons behind it by observing the distribution of removed parameters.
The number of parameters removed from each layer of the network is counted, as shown
in Fig. 9. It can be seen that more than half of the parameters come from the two fully
connected layers. In fact, 68.9% (132 096/191 744) of the parameters in the original network
come from the fully connected layers, which contain most of the structural redundancy. Too
many parameters in the fully connected layers destroy the spatial structure and high-level
semantic information of the image, resulting in themodel cannot be generalized on the unseen
test samples. On the other hand, the parameters of the bottom layer are more important in the
convolutional layers, which can be seen from the fact that the first four convolutional layers
have hardly been pruned. The underlying convolutional layer is dedicated to extracting basic
features such as edges, colors, etc., which are the basis and key to the formation of subsequent
high-level semantics.

In fact, we have tried to replace the final fully connected layer with a convolutional
layer containing 1×1 filters, hoping to give the baseline network a better starting location
in the structural space. In the experimental process, fully connected layer is replaced by
convolutional layer with different number of filters, including 512, 1024 and 2048. Then
the classification accuracy of the model in two cases (with or without pruning) is observed
in Table 5. However, whether it is the original or pruned network, the performance cannot
comparable to the original one. This reveals some of the properties of fully connected layer
that have not yet been understood. Although many advanced networks [Yolo v2 (Redmon
and Farhadi 2017) and SSD (Liu 2016)] gradually replace the fully connected layer as the
global average pooling layer, which maps latent variables to category labels in the form of
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Fig. 9 Distribution of parameters removed from each layer of pruned CNN

Table 5 The classification accuracy of updated deep CNN with or without pruning

CNN structures Classification accuracy (%) Memory footprint (MB)

CNN (2048 1×1 filters) 85.50 190.7

CNN (1024 1×1 filters) 86.19 174.4

CNN (512 1×1 filters) 85.66 167.6

Pruned CNN (2048 1×1 filters) 81.20 91.5

Pruned CNN (1024 1×1 filters) 79.90 93.3

Pruned CNN (512 1×1 filters) 77.53 85.0

Original CNN + CLMIP 87.38 104.2

1×1 convolutional coding, we believe that the large-scale parameters brought by the fully
connected layer may be beneficial in some cases. Maybe, the large structural space brought
about by themassive parameters in fully connected layer providemore possibilities and better
choices for the exploration of the model structure.

4.6 Manifold structure visualization

To observe the effect of manifold invariance limitation in the pruning process, we extract
the deep convolutional activation features (DeCAF) (Donahue 2014) of pruned network and
use t-SNE method (Pezzotti et al. 2017) to project them into a two-dimensional plane. The
activation value of the last hidden layer is extracted as DeCAF, and the manifold structures of
the features under different pruning methods are shown in Fig. 10. Consistent with the results
shown in confusion matrix, the clusters of ‘trunk road’ and ‘motorway’ are easy to interfere
with each other, especially in methods of DCP and ADMM. The other two road types are
more likely to form their own clusters due to their distinctive characteristics. Obviously, the
manifolds of data representation under CLMIP method is closer to the original model and
more distinguishable than the other methods. This proves that the capture and description of
data manifold by network can be related to its generalization ability. As the representation
of implicit knowledge hidden in the training samples, data manifold can reflect the process
of feature extraction and organization of model. On the other hand, we observe the presence
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Fig. 10 The t-SNE (Pezzotti et al. 2017) visualization results ofmanifold structures ofDeCAF features extracted
by pruned CNNs with different pruning methods. The ‘blue’, ‘yellow’, ‘pink’ and ‘green’ points represent the
‘urban road’, ‘off-road’, ‘trunk road’ and ‘motorway’, respectively

of blue points (urban road) in the yellow cluster (off-road). DeCAF feature reflects the
organizational structure of the samples, but there is still a decoding process between the
sample and its category label. In other words, dimensionality reduction visualization can
reflect the distribution characteristics of samples, but it cannot guarantee the accuracy. Even
after decoding, there are classification errors in the results.

5 Conclusion

In this paper, we proposed a cross-layer manifold invariance based pruning method named
CLMIP for network compression to help it complete real-time road type classification in low-
cost vision system. To the best of our knowledge, this is the first time to prune deep CNN
based on the invariance limitation of data manifolds. CLMIP is also generic and independent
of network structures and therefore it can be easily extended to other complex models.
Finally, experimental results on the image classification of four road types demonstrate the
effectiveness of CLMIP, which achieves state-of-the-art performance with a prediction speed
of 26 frames per second. Smaller memory and computational requirements of deep CNN are
helpful for real-time image processing, making the model easier to be deployed on mobile
systems or embedded devices. In addition, CLMIP can be regarded as a tool to furtherly
investigate the dependence of model structure on network optimization and generalization.

In fact, the proposed CLMIP method can be also used in multiple neural network-based
computer vision tasks in autonomous cars or mobile robots, such as pedestrian detection,
obstacle avoidance and path planning. In the future, we plan to improve the road type clas-
sification performance of the pruned CNN from the following three aspects.

(1) A more reasonable baseline CNN can be designed to provide a good initial position in
the structural space.

(2) A more accurate estimation of data manifold structures in different dimensions can be
accomplished by using higher-order representations.

(3) The mathematical properties of the method can be analyzed, such as the expected value
of the manifold consistency across dimensions.

This work will be further studied in the future.
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Appendix

For the convenience of readers following and understanding this paper, we have annotated
all variables in Table 6.

Table 6 Annotations of symbols Symbols Annotations

x Sample images

y Category labels of road types

W Weights in the deep CNN

b Bias in the deep CNN

hi Output of i-th layer

σ (·) Element wise activation function

τ Adjustable parameter

f (·) Final output of deep CNN
L Loss function

C Number of categories

λ Regularization intensity

α Learning rate

M Mini-batch size

ξ Total pruning rate

ζ Pruning step size

ϕ Cross-dimensional manifold descriptor
φ Cosine similarity

ψ Average reconstruction error

M Suppression mask

γ Validation loss threshold

L Number of layers in the deep CNN

prune (W) Number of pruned weights

total (W) Number of total weights

θ0/θ* Initialized/ultimate weights of deep CNN
M0/M∗ Initialized/convergent CNN model
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