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Abstract
In various capacities of statistical signal processing two-dimensional (2-D) chirpmodels have
been considered significantly, particularly in image processing—to model gray-scale and
texture images, magnetic resonance imaging, optical imaging etc. In this paper we address the
problem of estimation of the unknown parameters of a 2-D chirp model under the assumption
that the errors are independently and identically distributed (i.i.d.). The key attribute of the
proposed estimation procedure is that it is computationally more efficient than the least
squares estimation method. Moreover, the proposed estimators are observed to have the
same asymptotic properties as the least squares estimators, thus providing computational
effectiveness without any compromise on the efficiency of the estimators. We extend the
propounded estimation method to provide a sequential procedure to estimate the unknown
parameters of a 2-D chirp model with multiple components and under the assumption of
i.i.d. errors we study the large sample properties of these sequential estimators. Simulation
studies and two synthetic data analyses have been performed to show the effectiveness of the
proposed estimators.

Keywords Parameter estimation · Least squares estimation method · Asymptotic
properties · Sequential procedure · Simulations

1 Introduction

A two-dimensional (2-D) chirp model has the following mathematical expression:

y(m, n) =
p∑

k=1

{A0
k cos(α

0
km + β0

k m
2 + γ 0

k n + δ0k n
2)

+ B0
k sin(α

0
km + β0

k m
2 + γ 0

k n + δ0k n
2)} + X(m, n);

m = 1, . . . , M; n = 1, . . . , N .

(1)
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Fig. 1 Original texture

Here, y(m, n) is the observed signal data, and the parameters A0
ks, B

0
k s are the amplitudes,

α0
k s, γ 0

k s are the frequencies and β0
k s, δ0k s are the frequency rates. The random component

X(m, n) accounts for the noise component of the observed signal. In this paper, we assume
that X(m, n) is an independently and identically distributed (i.i.d.) random field.

It can be seen that the model admits a decomposition of two components—the deter-
ministic component and the random component. The deterministic component represents a
gray-scale texture and the random component makes the model more realistic for practical
realisation. For illustration, we simulate data with a fixed set of model parameters. Figure 1
represents the gray-scale texture corresponding to the simulated data without the noise com-
ponent and Fig. 2 represents the contaminated texture image corresponding to the simulated
data with the noise component. This clearly suggests that the 2-D chirp signal models can be
used effectively in modelling and analysing black and white texture images.

Apart from the applications in image analysis, these signals are commonly observed
in mobile telecommunications, surveillance systems, in radars and sonars etc. For more
details on the applications, one may see the works of Francos and Friedlander (1998, 1999),
Simeunović and Djurović (2016) and Zhang et al. (2008) and the references cited therein.

Parameter estimation of a 2-D chirp signal is an important statistical signal processing
problem. Recently Zhang et al. (2008), Lahiri et al. (2013) and Grover et al. (2018) proposed
some estimation methods of note. For instance, Zhang et al. (2008) proposed an algorithm
based on the product cubic phase function for the estimation of the frequency rates of the
2-D chirp signals under low signal to noise ratio and the assumption of stationary errors.
They conducted simulations to verify the performance of the proposed estimation algorithm,
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Fig. 2 Noisy texture

however there was no study of the theoretical properties of the proposed estimators. Lahiri
et al. (2015) suggested the least squares estimation method. They observed that the least
squares estimators (LSEs) of the unknown parameters of this model are strongly consistent
and asymptotically normally distributed under the assumption of stationary additive errors.
The rates of convergence of the amplitude estimates were observed to be M−1/2N−1/2, of
the frequencies estimates, they are M−3/2N−1/2 and M−1/2N−3/2 and of the frequency
rate estimates, they are M−5/2N−1/2 and M−1/2N−5/2. Grover et al. (2018) proposed the
approximate least squares estimators (ALSEs), obtained by maximising a periodogram-type
function and under the same stationary error assumptions, they observed that ALSEs are
strongly consistent and asymptotically equivalent to the LSEs.

A chirp signal is a particular case of the polynomial phase signal when the phase is a
quadratic polynomial. Although work on parameter estimation of the aforementioned 2-D
chirp model is rather limited, several authors have considered the more generalised version
of this model—the 2-D polynomial phase signal model. For references, see Djurović et al.
(2010), Djurović (2017), Francos and Friedlander (1998, 1999), Friedlander and Francos
(1996), Lahiri and Kundu (2017), Simeunović et al. (2014), Simeunović and Djurović (2016)
and Djurović and Simeunović (2018).

In this paper, we address the problem of parameter estimation of a one-component 2-D
chirpmodel aswell as themore generalmultiple-component 2-D chirpmodel.Weput forward
two methods for this purpose. The key characteristic of the proposed estimation method is
that it reduces the foregoing 2-D chirp model into two 1-D chirp models. Thus, instead of
fitting a 2-D chirp model, we are required to fit two 1-D chirp models to the given data matrix.
For the fitting of 1-D models, one may use any efficient algorithm to estimate the parameters
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of the obtained 1-D chirp models. Due to widespread applicability, a lot of work has been
done in literature on the parameter estimation of a 1-D chirp model. For references, one may
see the works of Abatzoglou (1986), Djuric and Kay (1990), Peleg and Porat (1991), Wood
and Barry (1994), Barbarossa (1995), Friedlander and Francos (1995), Xia (2000), Saha and
Kay (2002), Wang et al. (2010) and the references cited therein.

The proposed algorithm is numerically more efficient than the usual least squares estima-
tion method proposed by Lahiri (2013). For instance, for a one-component 2-D chirp model,
to estimate the parameters using these algorithms, we need to solve two 2-D optimisation
problems as opposed to a 4-D optimisation problem in the case of finding the LSEs. This
also leads to curtailment of the number of grid points required to find the initial values of the
non-linear parameters as the 4-D grid search required in case of the computation of the usual
LSEs or ALSEs, reduces to two 2-D grid searches. Therefore, instead of searching along a
grid mesh consisting of M3N 3 points, we need to search among only M3+N 3 points, which
is much more feasible to execute computationally. In essence, the contributions of this paper
are three-fold:

1. We put forward a computationally efficient algorithm for the estimation of the unknown
parameters of 2-D chirp signal models as a practical alternative to the usual least squares
estimation method.

2. We examine the asymptotic properties of the proposed estimators under the assumption of
i.i.d. errors and observe that the proposed estimators are strongly consistent and asymp-
totically normally distributed. In fact, they are observed to be asymptotically equivalent
to the corresponding LSEs. When the errors are assumed to be Gaussian, the asymp-
totic variance-covariance matrix of the proposed estimators coincides with asymptotic
Cramér-Rao lower bound.

3. We conduct simulation experiments and analyse a synthetic texture (see Fig. 2) to assess
the effectiveness of the proposed estimators.

The rest of the paper is organised as follows. In the next section, we provide some pre-
liminary results required to study the asymptotic properties of the proposed estimators. In
Sect. 2, we consider a one-component 2-D chirp model and state the model assumptions,
some notations and present the proposed algorithms along with the asymptotic properties of
the proposed estimators. In Sect. 3, we extend the algorithm and develop a sequential pro-
cedure to estimate the parameters of a multiple-component 2-D chirp model. We also study
the asymptotic properties of the proposed sequential estimators in this section. We perform
numerical experiments for different model parameters in Sect. 4 and analyse synthetic data
for illustration in Sect. 5. Finally, we conclude the paper in Sect. 6 and we provide the proofs
of all the theoretical results in the appendices.

2 One-component 2-D chirpmodel

In this section, we provide the methodology to obtain the proposed estimators for the param-
eters of a one-component 2-D chirp model, mathematically expressed as follows:

y(m, n) = A0 cos(α0m + β0m2 + γ 0n + δ0n2)

+ B0 sin(α0m + β0m2 + γ 0n + δ0n2) + X(m, n);
m = 1, . . . , M; n = 1, . . . , N .

(2)
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Here y(m, n) is the observed data and the parameters A0, B0 are the amplitudes, α0, γ 0 are
the frequencies and β0, δ0 are the frequency rates of the signal model. As mentioned in the
introduction, X(m, n) accounts for the noise present in the signal.

We will use the following notations: θ = (A, B, α, β, γ, δ) is the parameter vector, θ0 =
(A0, B0, α0, β0, γ 0, δ0) is the true parameter vector and�1 = [−K , K ]×[−K , K ]×[0, π]×
[0, π] × [0, π] × [0, π] is the parameter space.

2.1 Preliminary results

In this section, we provide the asymptotic results obtained for the usual LSEs of the unknown
parameters of a 1-D chirp model by Lahiri et al. (2015). These results are later exploited to
prove the asymptotic normality of the proposed estimators.

One-component 1-D chirp model

Consider a 1-D chirp model with the following mathematical expression:

y(n) = A0 cos(α0n + β0n2) + B0 sin(α0n + β0n2) + X(n). (3)

Here y(n) is the observed data at time points n = 1, . . . , N , A0, B0 are the amplitudes and
α0 is the frequency and β0 is the frequency rate parameter. {X(n)}Nn=1 is the sequence of
error random variables.

The LSEs of α0 and β0 can be obtained by minimising the following reduced error sum
of squares:

RN (α, β) = QN ( Â, B̂, α, β) = Y�
N×1(I − PZN (α, β))YN×1

where,

QN (A, B, α, β) = (YN×1 − ZN (α, β)φ)�(YN×1 − ZN (α, β)φ),

is the error sum of squares, PZN (α, β) = ZN (α, β)(ZN (α, β)�ZN (α, β))−1ZN (α, β)� is
the projection matrix on the column space of the matrix ZN (α, β),

ZN (α, β) =
⎡

⎢⎣
cos(α + β) sin(α + β)

...
...

cos(Nα + N 2β) sin(Nα + N 2β)

⎤

⎥⎦ , (4)

YN×1 = [
y(1), . . . , y(N )

]�
is the observed data vector and φ = [

A, B
]�

is the the vector
of linear parameters.

Following are the assumptions, we make on the error component and the parameters of
model (3):

Assumption P1 X(n) is a sequence of i.i.d. random variables with mean zero, variance σ 2

and finite fourth order moment.

Assumption P2 (A0, B0, α0, β0) is an interior point of the parameter space� = [−K , K ]×
[−K , K ] × [0, π] × [0, π ], where K is a positive real number and A02 + B02 > 0.

Theorem P1 Let us denote R′
N (α, β) as the gradient vector and R′′

N (α, β) as the Hessian
matrix of the function RN (α, β). Then, under the assumptions P1 and P2, we have:

−R′
N (α0, β0)�

d−→ N 2(0, 2σ 2�−1) as N → ∞, (5)
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�R′′
N (α0, β0)�

a.s.−−→ �−1 as N → ∞. (6)

Here, � = diag( 1
N

√
N

, 1
N2

√
N

),

� = 2

A02 + B02

[
96 −90

−90 90

]
and (7)

�−1 =
[

A02+B02

12
A02+B02

12
A02+B02

12
4(A02+B02)

45

]
. (8)

The notation N 2(μ,V) means bivariate normally distributed random variable with mean
vector μ2×1 and variance-covariance matrix V2×2.

Proof This proof follows from Theorem 2 of Lahiri et al. (2015). ��
As mentioned in the introduction, any efficient algorithm can be used to estimate the

parameters of a 1-D chirp model, once we reduce the dimension of the underlying model.
Although the main aim of the paper is not the estimation of parameters of 1-D chirp model,
but the efficient estimation of a 2-D chirp model by reducing it into 1-D models to save time.
We choose to estimate the parameters of the reduced models using the LSEs as they have
optimal convergence rates. For details, one may refer to Lahiri et al. (2015).

2.2 Proposedmethodology

Let us consider the above-stated 2-D chirp signal model (2) with one-component. Suppose
we fix n = n0, then (2) can be rewritten as follows:

y(m, n0) = A0 cos(α0m + β0m2 + γ 0n0 + δ0n20)

+ B0 sin(α0m + β0m2 + γ 0n0 + δ0n20) + X(m, n0)

= A0(n0) cos(α
0m + β0m2) + B0(n0) sin(α

0m + β0m2)

+ X(m, n0); m = 1, · · · , M,

(9)

which represents a 1-D chirp model with A0(n0), B0(n0) as the amplitudes, α0 as the fre-
quency parameter and β0 as the frequency rate parameter. Here,

A0(n0) = A0 cos(γ 0n0 + δ0n20) + B0 sin(γ 0n0 + δ0n20), and

B0(n0) = −A0 sin(γ 0n0 + δ0n20) + B0 cos(γ 0n0 + δ0n20).

Thus for each fixed n0 ∈ {1, . . . , N }, we have a 1-D chirp model with the same frequency
and frequency rate parameters, though different amplitudes. This 1-D model corresponds to
a column of the 2-D data matrix.

Our aim is to estimate the non-linear parameters α0 and β0 from the columns of the data
matrix and one of the most reasonable estimators for this purpose are the least squares esti-
mators. Therefore, the estimators of α0 and β0 can be obtained by minimising the following
function:

RM (α, β, n0) = Y�
n0(I − PZM (α, β))Yn0

for each n0. Here, Yn0 = [
y[1, n0], . . . , y[M, n0]

]�
is the n0th column of the original data

matrix, PZM (α, β) = ZM (α, β)(ZM (α, β)�ZM (α, β))−1ZM (α, β)� is the projection matrix
on the column space of the matrix ZM (α, β) and the matrix ZM (α, β) can be obtained by
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replacing N by M in (4). This process involves minimising N 2-D functions corresponding
to the N columns of the matrix. Thus, for computational efficiency, we propose to minimise
the following function instead:

R(1)
MN (α, β) =

N∑

n0=1

RM (α, β, n0) =
N∑

n0=1

Y�
n0(I − PZM (α, β))Yn0 (10)

with respect to α and β simultaneously and obtain α̂ and β̂ which reduces the estimation
process to solving only one 2-D optimisation problem. Note that since the errors are assumed
to be i.i.d. replacing these N functions by their sum is justifiable.

Similarly, we can obtain the estimates, γ̂ and δ̂, of γ 0 and δ0, by minimising the following
criterion function:

R(2)
MN (γ, δ) =

M∑

m0=1

RN (γ, δ,m0) =
M∑

m0=1

Y�
m0

(I − PZN (γ, δ))Ym0 (11)

with respect to γ and δ simultaneously. The data vector Ym0 = [
y[m0, 1], . . . , y[m0, N ]]�,

is them0th row of the data matrix,m0 = 1, . . . , M , PZN (γ, δ) is the projection matrix on the
column space of the matrix ZN (γ, δ) and the matrix ZN (γ, δ) can be obtained by replacing
α and β by γ and δ respectively in the matrix ZN (α, β), defined in (4).

Oncewe have the estimates of the non-linear parameters, we estimate the linear parameters
by the usual least squares regression technique as proposed by Lahiri et al. (2015):

[
Â
B̂

]
= [W(α̂, β̂, γ̂ , δ̂)�W(α̂, β̂, γ̂ , δ̂)]−1W(α̂, β̂, γ̂ , δ̂)�YMN×1.

Here, YMN×1 = [
y(1, 1), . . . , y(M, 1), . . . , y(1, N ), . . . , y(M, N )

]�
is the observed

data vector, and

W(α, β, γ, δ)MN×2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(α + β + γ + δ) sin(α + β + γ + δ)

cos(2α + 4β + γ + δ) sin(2α + 4β + γ + δ)

.

.

.
.
.
.

cos(Mα + M2β + γ + δ) sin(Mα + M2β + γ + δ)

.

.

.
.
.
.

cos(α + β + Nγ + N2δ) sin(α + β + Nγ + N2δ)

cos(2α + 4β + Nγ + N2δ) sin(2α + 4β + Nγ + N2δ)

.

.

.
.
.
.

cos(Mα + M2β + Nγ + N2δ) sin(Mα + M2β + Nγ + N2δ)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

We make the following assumptions on the error component and the model parameters
before we examine the asymptotic properties of the proposed estimators:

Assumption 1 X(m,n) is a double array sequence of i.i.d. random variables with mean zero,
variance σ 2 and finite fourth order moment.

Assumption 2 The true parameter vector θ0 is an interior point of the parametric space �1,

and A02 + B02 > 0.
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2.3 Consistency

The results obtained on the consistency of the proposed estimators are presented in the
following theorems:

Theorem 1 Under Assumptions 1 and 2, α̂ and β̂ are strongly consistent estimators of α0

and β0 respectively, that is,

α̂
a.s.−−→ α0 as M → ∞.

β̂
a.s.−−→ β0 as M → ∞.

Proof See “Appendix A”. ��
Theorem 2 Under Assumptions 1 and 2, γ̂ and δ̂ are strongly consistent estimators of γ 0

and δ0 respectively, that is,

γ̂
a.s.−−→ γ 0 as N → ∞.

δ̂
a.s.−−→ δ0 as N → ∞.

Proof This proof follows along the same lines as the proof of Theorem 1. ��

2.4 Asymptotic distribution

The following theorems provide the asymptotic distributions of the proposed estimators:

Theorem 3 If the Assumptions 1 and 2 are satisfied, then

[
(α̂ − α0), (β̂ − β0)

]
D−1
1

d−→ N 2(0, 2σ 2�) as M → ∞.

Here, D1 = diag(M
−3
2 N

−1
2 , M

−5
2 N

−1
2 ) and � is as defined in (7).

Proof See “Appendix A”. ��
Theorem 4 If the Assumptions 1 and 2 are satisfied, then

[
(γ̂ − γ 0), (δ̂ − δ0)

]
D−1
2

d−→ N 2(0, 2σ 2�) as N → ∞.

Here, D2 = diag(M
−1
2 N

−3
2 , M

−1
2 N

−5
2 ) and � is as defined in (7).

Proof This proof follows along the same lines as the proof of Theorem 3. ��
The asymptotic distributions of (α̂, β̂) and (γ̂ , δ̂) are observed to be the same as those of

the corresponding LSEs. Thus, we get the same efficiency as that of the LSEs without going
through the process of actually computing the LSEs.

3 Multiple-component 2-D chirpmodel

In this section, we consider the multipl-component 2-D chirp model with p number of com-
ponents, with the mathematical expression of the model as given in (1). Although estimation
of p is an important problem and will be under our future research, in this paper we deal
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with the estimation of the other important parameters characterising the observed signal, the
amplitudes, the frequencies and the frequency rates, assuming p to be known. We propose
a sequential procedure to estimate these parameters. The main idea supporting the proposed
sequential procedure is same as that behind the ones proposed by Prasad et al. (2008) for a
sinusoidal model and Lahiri et al. (2015) for a chirp model—the orthogonality of different
regressor vectors. Along with the computational efficiency, the sequential method provides
estimators with the same rates of convergence as the LSEs.

Weuse the following notation hereafter: For k = 1, . . . , p, θk = (Ak, , Bk, , αk, βk, γk,

δk) is the parameter vector, θ0k = (A0
k , , B0

k , , α0
k , β0

k , γ 0
k , δ0k ) is the true parameter vector.

3.1 Preliminary results

Multiple-component 1-D chirp model

Now we consider a 1-D chirp model with multiple components, mathematically expressed
as follows:

y(n) =
p∑

k=1

{A0
k cos(α

0
k n + β0

k n
2) + B0

k sin(α
0
k n + β0

k n
2)} + X(n); n = 1, . . . , N .

Here, A0
ks, B

0
k s are the amplitudes, α0

k s are the frequencies and β0
k are the frequency rates,

the parameters that characterise the observed signal y(n) and X(n) is the random noise
component.

Lahiri et al. (2015) suggested a sequential procedure to estimate the unknown parameters
of the above model. We discuss in brief, the proposed sequential procedure and then state
some of the asymptotic results they established, germane to our work.

Step 1 The first step of the sequential method is to obtain the estimates, α̂1 and β̂1, of
the non-linear parameters of the first component, α0

1 and β0
1 , by minimising the

following reduced error sum of squares:

R1,N (α1, β1) = Y�
N×1(I − PZN (α1, β1))YN×1

with respect to α and β simultaneously.
Step 2 Then the first component linear parameter estimates, Â1 and B̂1 are obtained using

the separable linear regression of Richards Richards (1961) as follows:
[
Â1

B̂1

]
= [ZN (α̂1, β̂1)

�ZN (α̂1, β̂1)]−1ZN (α̂1, β̂1)
�YN×1.

Step 3 Once we have the estimates of the first component parameters, we take out its effect
from the original signal and obtain a new data vector as follows:

Y1 = YN×1 − ZN (α̂1, β̂1)

[
Â1

B̂1

]
.

Step 4 Then the estimates of the second component parameters are obtained by using the
new data vector and following the same procedure and the process is repeated p
times.

Under the Assumption P1 on the error random variables and the following assumption on
the parameters:
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Assumption P3 (A0
k , B

0
k , α

0
k , β

0
k ) is an interior point of �, for all k = 1, . . . , p and the

frequencies and the frequency rates are such that (α0
i , β

0
i ) 
= (α0

j , β
0
j ) ∀ i 
= j i, j =

1, . . . , p.

Assumption P4 A0
ks and B0

k s satisfy the following relationship:

K 2 > A0
1
2 + B0

1
2

> A0
2
2 + B0

2
2

> · · · > A0
p
2 + B0

p
2

> 0,

we have the following results.

Theorem P2 Let us denote R′
k,N (α, β) as the gradient vector and R′′

k,N (α, β) as the Hessian
matrix of the function Rk,N (α, β), k = 1, . . . , p. Then, under the Assumptions P1, P3 and
P4:

− 1√
N
R′
k,N (α0, β0)�

a.s.−−→ 0 as N → ∞, (13)

−R′
k,N (α0, β0)�

d−→ N 2(0, 2σ 2�−1
k ) as N → ∞, (14)

�R′′
k,N (α0, β0)�

a.s.−−→ �−1
k as N → ∞. (15)

Here, � is as defined in Theorem P1,

�k = 2

A0
k
2 + B0

k
2

[
96 −90

−90 90

]
and (16)

�−1
k =

⎡

⎣
A0
k
2+B0

k
2

12
A0
k
2+B0

k
2

12
A0
k
2+B0

k
2

12
4(A0

k
2+B0

k
2
)

45

⎤

⎦ . (17)

Proof The proof of (13) follows along the same lines as proof of Lemma 4 of Lahiri et al.
(2015) and that of (14) and (15) follows from Theorem 2 of Lahiri et al. (2015). Note that
Lahiri et al. (2015) showed that the sequential LSEs have the same asymptotic distribution
as the usual LSEs based on a number theory conjecture. ��

3.2 Proposed sequential algorithm

The following algorithm is a simple extension of themethod proposed to obtain the estimators
for a one-component 2-D model in Sect. 2.2:

Step 1 Compute α̂1 and β̂1 by minimising the following function:

R(1)
1,MN (α1, β1) =

N∑

n0=1

Y�
n0(I − PZM (α1, β1))Yn0

with respect to α1 and β1 simultaneously.
Step 2 Compute γ̂1 and δ̂1 by minimising the function:

R(2)
1,MN (γ1, δ1) =

M∑

m0=1

Y�
m0

(I − PZN (γ1, δ1))Ym0

with respect to γ1 and δ1 simultaneously.
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Step 3 Once the nonlinear parameters of the first component of the model are estimated,
estimate the linear parameters A0

1 and B0
1 by the usual least squares estimation

technique:

[
Â1

B̂1

]
= [W(α̂1, β̂1, γ̂1, δ̂1)

�W(α̂1, β̂1, γ̂1, δ̂1)]−1W(α̂1, β̂1, γ̂1, δ̂1)
�YMN×1.

Here, YMN×1 = [
y(1, 1), . . . , y(M, 1), . . . , y(1, N ), . . . , y(M, N )

]�
is the

observed data vector, and the matrixW(α̂1, β̂1, γ̂1, δ̂1) can be obtained by replacing
α, β, γ and δ by α̂1, β̂1, γ̂1 and δ̂1 respectively in (12).

Step 4 Eliminate the effect of the first component from the original data and construct new
data as follows:

y1(m, n) = y(m, n) − Â1 cos(α̂1m + β̂1m
2 + γ̂1n + δ̂1n

2)

− B̂1 sin(α̂1m + β̂1m
2 + γ̂1n + δ̂1n

2);
m = 1, . . . , M; n = 1, . . . , N .

(18)

Step 5: Using the new data, estimate the parameters of the second component by following
the same procedure.

Step 6: Continue this process until the parameters of all the p components are estimated.

In the following sections, we examine the asymptotic properties of the proposed estimators
under the Assumptions 1, P4 and the following assumption on the parameters:

Assumption 3 θ0k is an interior point of�1, for all k = 1, . . . , p and the frequencies α0
k s, γ

0
k s

and the frequency rates β0
k s, δ

0
k s are such that (α0

i , β
0
i ) 
= (α0

j , β
0
j ) and (γ 0

i , δ0i ) 
= (γ 0
j , δ

0
j )∀ i 
= j, i, j = 1, . . . , p.

3.3 Consistency

Through the following theorems, we proclaim the consistency of the proposed estimators
when the number of components, p is unknown.

Theorem 5 If Assumptions 1, 3 and P4 are satisfied, then the following results hold true for
1 � k � p:

α̂k
a.s.−−→ α0

k as M → ∞,

β̂k
a.s.−−→ β0

k as M → ∞.

Proof See “Appendix B”. ��

Theorem 6 If Assumptions 1, 3 and P4 are satisfied, then the following results hold true for
1 � k � p:

γ̂k
a.s.−−→ γ 0

k as N → ∞,

δ̂k
a.s.−−→ δ0k as N → ∞.

Proof This proof can be obtained along the same lines as proof of Theorem 5. ��
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Theorem 7 If the Assumptions 1, 3 and P4 are satisfied, and if Âk , B̂k , α̂k , β̂k , γ̂k and δ̂k are
the estimators obtained at the k-th step, then for 1 � k � p,

Âk
a.s−→ A0

k as min{M, N } → ∞
B̂k

a.s−→ B0
k as min{M, N } → ∞,

and for k > p,

Âk
a.s−→ 0 as min{M, N } → ∞

B̂k
a.s−→ 0 as min{M, N } → ∞.

Proof See “Appendix B”. ��
From the above theorem, it is clear that if the number of components of the fitted model

is less than or same as the true number of components, p, then the amplitude estimators
converge to their true values almost surely, else if it is more than p, then the amplitude
estimators upto the p-th step converge to the true values and past that, they converge to zero
almost surely. Thus, this result can be used as a criterion to estimate the number p. However,
this might not work in low signal-to-noise ratio scenarios.

3.4 Asymptotic distribution

Theorem 8 If Assumptions 1, 3 and P4 are satisfied, then for 1 � k � p :
[
(α̂k − α0

k ), (β̂k − β0
k )

]
D−1
1

d−→ N 2(0, 2σ 2�k) as M → ∞.

Here D1 is as defined in Theorem 3 and �k is as defined in (16).

Proof See “Appendix B”. ��
Theorem 9 If the Assumptions 1, 3 and P4 are satisfied, then

[
(γ̂k − γ 0

k ), (δ̂k − δ0k )
]
D−1
2

d−→ N 2(0, 2σ 2�k) as N → ∞.

Here D2 is as defined in Theorem 4 and �k is as defined in (16).

Proof This proof follows along the same lines as the proof of Theorem 8. ��

4 Numerical experiments

We perform simulations to examine the performance of the proposed estimators.We consider
the following two cases:

Case I When the data are generated from a one-component model (2), with the following
set of parameters:
A0 = 2, B0 = 3, α0 = 1.5, β0 = 0.5, γ 0 = 2.5 and δ0 = 0.75.

Case II When the data are generated from a two components model (1), with the following
set of parameters:
A0
1 = 5, B0

1 = 4, α0
1 = 2.1, β0

1 = 0.1, γ 0
1 = 1.25 and δ01 = 0.25, A0

2 = 3, B0
2 = 2,

α0
2 = 1.5, β0

2 = 0.5, γ 0
2 = 1.75 and δ02 = 0.75.
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Fig. 3 MSEs of the proposed estimates (solid lines) along with the MSEs of the LS estimates (dashed lines)
and the corresponding CRLBs (dashed-dotted lines) of the estimators of the parameters of the one-component
simulated model versus sample size

The noise used in the simulations is generated from Gaussian distribution with mean 0 and
variance σ 2. Also, different values of the error variance, σ 2 and sample sizes, M and N are
considered. We estimate the parameters using the proposed estimation technique as well as
the least squares estimation technique for Case I and for Case II, the proposed sequential
technique and the sequential least squares technique proposed by Lahiri et al. (2015) are
employed for comparison. For each case, the procedure is replicated 1000 times and the
average values of the estimates, the average biases and the mean square errors (MSEs) are
reported. The collation of the MSEs and the theoretical asymptotic variances exhibits the
efficacy of the proposed estimation method.

4.1 One-component simulation results

4.1.1 Estimation performance versus sample size

In this section, we show how the proposed estimators perform in comparison with the usual
LSEs (in this particular case, the usual LSEs are the MLEs as the noise is Gaussian) as well
as the asymptotic CRLBs, as the sample size varies. We vary M and N from 50 to 100 each.
In Fig. 3, we plot the MSEs of both the estimators along with the asymptotic CRLBs. As can
be seen from this figure, the MSEs of the propounded estimates as well as the least squares
estimates are well-matched with the corresponding theoretical asymptotic variances. This
verifies consistency of the proposed estimators.

4.1.2 Estimation performance versus signal-to-noise ratio (SNR)

Here we study the performance of the proposed estimates, again in comparison with the usual
LSEs and the corresponding CRLBs, but as the SNR varies. The SNR Stoica et al. (1997) is
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Fig. 4 MSEs of the proposed estimates (solid lines) along with the MSEs of the LS estimates (dashed lines)
and the corresponding CRLBs (dashed-dotted lines) of the estimators of the parameters of the one-component
simulated model versus SNR

defined as follows:

SNR = 10 log10

(
A02 + B02

σ 2

)

Figure 4 displays this comparison. It can be seen from the figure that for each of the cases,
the MSEs of the proposed estimates almost coincides with the corresponding asymptotic
CRLBs, particularly for increasing values of SNR and the dimensions of the data matrix.

4.1.3 Comparison of computational complexity

The efficient method in this paper is proposed to reduce the computational burden involved in
finding the usual LSEs of the parameters of model (1). In the above sections, we see that the
proposed estimators perform nearly as accurately as the usual LSEs. Here we demonstrate
how the computational complexity is reduced significantly through the following example.

We consider the following model:

y(m, n) = 2 cos(1.5m + 0.5m2 + 2.5n + 0.75n2)

+ 3 sin(1.5m + 0.5m2 + 2.5n + 0.75n2) + X(m, n);
m = 1, . . . , 10, n = 1, . . . , 10.

As explained in the introduction, finding the initial values to compute the proposed estimators
involves two 2-D searches which means precisely 2 × 9 × 99 = 1782 evaluations of the
objective function to be minimised. The time taken for the computation of these initial values
is 0.81 seconds. On the other hand, to compute the initial guesses for the usual LSEs of the
non-linear parameters of the above model, we perform a 4D fine grid search in the parameter
space. This requires 9 × 99 × 9 × 99 = 793881 computations of the least squares objective
function and the time taken for this search is 196.61 s. This gives us a clear idea of the

123



Multidimensional Systems and Signal Processing (2021) 32:49–75 63

Fig. 5 MSEs of the proposed estimates(solid lines) alongwith theMSEs of the LS estimates (dashed lines) and
the corresponding CRLBs (dashed-dotted lines) of the estimators of the parameters of the second component
of the two-component simulated model versus sample size

significant time savings if we use the proposedmethod rather than the least squares estimation
method. Moreover, using the usual least squares method increases the computational load
exponentially as the dimensions of the data matrix increase. This experiment is performed
using Intel� CoreT M i7-2600 @ 3.4 GHz, 4 GB RAM machines, the program codes are
written in R software (3.3.0).

4.2 Two component simulation results

In this section, we present the simulation results for Case II. In the interest of brevity, we
present the results only for the second component of the model. The estimates of the first
component behave in the same manner and as they are obtained by minimising the same
functions as for the one component model, we omit these results.

4.2.1 Estimation performance versus sample size

We first study the performance of the proposed estimators and compare it with the corre-
sponding sequential LSEs and the asymptotic CRLBS versus the dimensions of the simulated
data matrix.

Figure 5 show the results obtained for the parameters of the second component of the
underlying two-component model. These results verify consistency of the proposed sequen-
tial estimators. It is also observed that the MSEs of the obtained parameter estimates have
exactly the same order as the corresponding asymptotic variances.
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Fig. 6 MSEs of the proposed estimates (solid lines) alongwith theMSEs of the LS estimates (dashed lines) and
the corresponding CRLBs (dashed-dotted lines) of the estimators of the parameters of the second component
of the two-component simulated model versus SNR

4.2.2 Estimation performance versus SNR

Next we study the performance of the proposed estimators as the SNR varies. For themultiple
component model, SNR is defined as follows:

SNRk = 10 log10

(
A0
k
2 + B0

k
2

σ 2

)

The MSEs of the proposed estimators are plotted along with those of the sequential LSEs
and the respective asymptotic CRLBs in Fig. 6.The results show that the MSEs of both types
the estimates practically coincide with the corresponding CRLBs.

It can be concluded that the simulations validate the accuracy of the proposed estimators.
Also, as discussed in Sect. 4.1.3, the proposed estimators are much faster to compute than the
sequential LSEs. Therefore the proposed estimators achieve computational simplicity along
with an excellent estimation accuracy.

5 Simulated data analyses

In this section, we assess the performance of the proposed algorithm by analysing two sym-
metric gray-scale textures, one generated using a one-component 2-D chirp model and the
other using a multiple-component 2-D chirp model.
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Fig. 7 Original texture corresponding to model (19)

5.1 When the data set is generated from a one-component 2-D chirpmodel

First, we consider a one-component 2-D chirp model defined as follows:

y(m, n) = cos(0.45m + 0.0015m2 + 0.82n + 0.0025n2)

+ sin(0.45m + 0.0015m2 + 0.82n + 0.0025n2)

+ X(m, n);m = 1, . . . , M, n = 1, . . . , N .

(19)

We begin by generating data from the above defined model structure. Here, X(m, n) are i.i.d.
Gaussian errors with mean 0 and variance 1. Figures 7 and 8 represent the true and the noisy
image corresponding to the generated data.

We estimate the parameters of the underlying model using the proposed algorithm for
the one-component model parameter estimation in Sect. 2.2. Figure 9 shows the estimated
gray-scale image. It is evident that the the proposed method provides an accurate estimation
of the original texture.

5.2 When the data set is generated from amultiple-component 2-D chirpmodel

We also analyse a synthetic texture data using model (1) to demonstrate how the proposed
parameter estimation method works for a 2-D chirp signal with multiple chirp components.
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Fig. 8 Noisy texture corresponding to model (19)
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Fig. 9 Estimated texture corresponding to model (19)
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Table 1 True parameters values
of the synthetic data A01 6 B0

1 6 α01 2.75 β0
1 0.05 γ 0

1 2.5 δ01 0.075

A02 2 B0
2 2 α02 1.75 β0

2 0.01 γ 0
2 1.5 δ02 0.025

A03 1 B0
3 1 α03 1.5 β0

3 0.15 γ 0
3 2 δ03 0. 25

A04 0.5 B0
4 0.5 α04 1.75 β0

4 0.75 γ 0
4 2.75 δ04 0.275

A05 0.1 B0
5 0.1 α05 1.95 β0

5 0.95 γ 0
5 2.95 δ05 0.295

Fig. 10 Estimated texture for the synthetic data

The signal data are generated using the following model structure and parameters:

y(m, n) =
5∑

k=1

{
A0
k cos(α

0
km+β0

k m
2+γ 0

k n + δ0k n
2) + B0

k sin(α
0
km+β0

k m
2 + γ 0

k n+δ0k n
2)

}

+ X(m, n)

(20)

The true parameter values are provided in Table 1. The errors X(m, n)s are i.i.d.Gaussian
random variables with mean 0 and variance 100. Figure 1 represents the original texture
without any contamination and Fig. 2 represents the noisy texture. Our purpose is to extract
the original gray-scale texture from the one which is contaminated.

We estimate the parameters of model (20) using the proposed sequential procedure and
the estimated texture is plotted in Fig. 10. It is clear that the estimated texture and the original
texture look extremely well-matched.
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6 Concluding remarks

In this paper, we have considered the estimation of unknown parameters of a 2-D chirp
model under the assumption of i.i.d. additive errors. The main idea is to reduce the computa-
tional complexity involved in finding the LSEs of these parameters. The proposed estimators
minimise the computations to a great extent and are observed to be strongly consistent and
asymptotically equivalent to the LSEs. For a 2-D chirp model with p number of components,
we have proposed a sequential procedure which reduces the problem of estimation of the
parameters to solving p number of 2-D optimisation problems. Moreover, the propounded
sequential estimators are observed to be strongly consistent and asymptotically equivalent to
the usual LSEs.

The numerical experiments—the simulations and the data analysis, show that the proposed
estimation technique provides as accurate results as the least squares estimation method with
the additional advantage of being computationally more efficient. Thus to summarise, the
proposed estimators seem to be the method of choice as their performance is satisfactory and
as efficient as the LSEs, both numerically and analytically.

Acknowledgements The authors would like to thank the the Editor and the two unknown reviewers for their
positive assessment of the manuscript and their constructive comments.

Appendix A

Henceforth, we will denote θ(n0) = (A(n0), B(n0), α, β) as the parameter vector and
θ0(n0) = (A0(n0), B0(n0), α0, β0) as the true parameter vector of the 1-D chirp model
(9).

To prove Theorem 1, we need the following lemma:

Lemma 1 Consider the set Sc = {(α, β) : |α − α0| � c or |β − β0| � c}. If for any c > 0,

lim inf inf
(α,β)∈Sc

1

MN

[
R(1)
MN (α, β) − R(1)

MN (α0, β0)

]
> 0 a.s. (21)

then, α̂ → α0 and β̂ → β0 almost surely as M → ∞. Note that lim inf stands for limit
infimum and inf stands for the infimum.

Proof This proof follows along the same lines as that of Lemma 1 of Wu (1981). ��

Proof of Theorem 1: Let us consider the following:

lim inf inf
(α,β)∈Sc

1

MN

[
R(1)
MN (α, β) − R(1)

MN (α0, β0)

]

= lim inf inf
(α,β)∈Sc

1

MN

[ N∑

n0=1

RM (α, β, n0) −
N∑

n0=1

RM (α0, β0, n0)

]

= lim inf inf
(α,β)∈Sc

1

MN

[ N∑

n0=1

QM ( Â(n0), B̂(n0), α, β) −
N∑

n0=1

QM ( Â(n0), B̂(n0), α
0, β0)

]

� lim inf inf
(α,β)∈Sc

1

MN

[ N∑

n0=1

QM ( Â(n0), B̂(n0), α, β) −
N∑

n0=1

QM (A0(n0), B
0(n0), α

0, β0)

]
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� lim inf inf
θ(n0)∈Mn0

c

1

MN

[ N∑

n0=1

QM (A(n0), B(n0), α, β) −
N∑

n0=1

QM (A0(n0), B
0(n0), α

0, β0)

]

� 1

N

N∑

n0=1

lim inf inf
θ(n0)∈Mn0

c

1

M

[
QM (θ(n0)) − QM (θ0(n0))

]
> 0.

This follows from the proof of Theorem 1 of Kundu and Nandi (2008). Here, QM (A(n0),
B(n0), α, β) = Y�

n0(I − ZM (α, β)(ZM (α, β)�ZM (α, β))−1ZM (α, β)�)Yn0 . Also note that
the set Mn0

c = {θ(n0) : |A(n0) − A0(n0)| � c or |B(n0) − B0(n0)| � c or |α − α0| �
c or |β − β0| � c} which implies Sc ⊂ Mn0

c , for all n0 ∈ {1, . . . , N }. Thus, using Lemma 1,

α̂
a.s.−−→ α0 and β̂

a.s.−−→ β0. ��
Proof of Theorem 3: Let us denote ξ = (α, β) and ξ̂ = (α̂, β̂), the estimator of ξ0 = (α0, β0)

obtained by minimising the function R(1)
MN (ξ) = R(1)

MN (α, β) defined in (10).

Using multivariate Taylor series, we expand the 1 × 2 gradient vector R(1)′
MN (ξ̂) of the

function R(1)
MN (ξ), around the point ξ0 as follows:

R(1)′
MN (ξ̂) − R(1)′

MN (ξ0) = (ξ̂ − ξ0)R(1)′′
MN (ξ̄),

where ξ̄ is a point between ξ̂ and ξ0 and R(1)′′
MN (ξ̄) is the 2× 2 Hessian matrix of the function

R(1)
MN (ξ) at the point ξ̄ . Since ξ̂ minimises the function R(1)

MN (ξ), R(1)′
MN (ξ̂) = 0. Thus, we

have

(ξ̂ − ξ0) = −R(1)′
MN (ξ0)[R(1)′′

MN (ξ̄)]−1.

Multiplying both sides by the diagonal matrix D−1
1 = diag(M

−3
2 N

−1
2 , M

−5
2 N

−1
2 ), we get:

(ξ̂ − ξ0)D−1
1 = −R(1)′

MN (ξ0)D1[D1R
(1)′′
MN (ξ̄)D1]−1. (22)

Consider the vector,

R(1)′
MN (ξ0)D1 =

[
1

M3/2N1/2
∂R(1)

MN (ξ0)

∂α
, 1

M5/2N1/2
∂R(1)

MN (ξ0)

∂β

]
.

On computing the elements of this vector and using preliminary result (5) (see Sect. 2.1) and
the definition of the function:

R(1)
MN (α, β) =

N∑

n0=1

RM (α, β, n0)

we obtain the following result:

− R(1)′
MN (ξ0)D1

d−→ N 2(0, 2σ 2�) as M → ∞. (23)

Since ξ̂
a.s.−−→ ξ0, and as each element of the matrix R(1)′′

MN (ξ) is a continuous function of ξ ,
we have

lim
M→∞D1R

(1)′′
MN (ξ̄)D1 = lim

M→∞D1R
(1)′′
MN (ξ0)D1.

Now using preliminary result (6) (see Sect. 2.1), it can be seen that:

lim
M→∞D1R

(1)′′
MN (ξ0)D1 → �−1. (24)

On combining (22), (23) and (24), we have the desired result. ��
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Appendix B

To prove Theorem 5, we need the following lemmas:

Lemma 2 Consider the set S1c = {(α, β) : |α − α0
1 | � c or |β − β0

1 | � c}.If for any c > 0,

lim inf inf
(α,β)∈S1c

1

MN
[R(1)

1,MN (α, β) − R(1)
1,MN (α0

1, β
0
1 )] > 0 a.s. (25)

then, α̂1 → α0
1 and β̂1 → β0

1 almost surely as M → ∞.

Proof This proof follows along the same lines as proof of Lemma 1. ��
Lemma 3 If Assumptions 1, 3 and P4 are satisfied then:

M(α̂1 − α0
1)

a.s.−−→ 0,

M2(β̂1 − β0
1 )

a.s.−−→ 0.

Proof Let us denoteR(1)′
1,MN (ξ) as the 1×2 gradient vector andR(1)′′

1,MN (ξ) as the 2×2 Hessian

matrix of the function R(1)
1,MN (ξ). Using multivariate Taylor series expansion, we expand the

function R(1)′
1,MN (ξ̂1) around the point ξ

0
1 as follows:

R(1)′
1,MN (ξ̂1) − R(1)′

1,MN (ξ01) = (ξ̂1 − ξ01)R
(1)′′
1,MN (ξ̄1)

where ξ̄1 is a point between ξ̂1 and ξ01. Note that R
(1)′
1,MN (ξ̂1) = 0. Thus, we have:

(ξ̂1 − ξ01) = −R(1)′
1,MN (ξ01)[R(1)′′

1,MN (ξ̄1)]−1. (26)

Multiplying both sides by 1√
MN

D−1
1 , we get:

(ξ̂1 − ξ01)(
√
MND1)

−1 = − 1√
MN

R(1)′
1,MN (ξ01)D1[D1R

(1)′′
1,MN (ξ̄1)D1]−1. (27)

Since each of the elements of the matrix R(1)′′
1,MN (ξ) is a continuous function of ξ ,

lim
M→∞D1R

(1)′′
1,MN (ξ̄1)D1 = lim

M→∞D1R
(1)′′
1,MN (ξ01)D1.

By definition,

R(1)
1,MN (ξ) =

N∑

n0=1

R1,M (ξ , n0). (28)

Using this and the preliminary result (13) and (15) (see Sect. 3.1), it can be seen that:

− 1√
MN

R(1)′
1,MN (ξ01)D1

a.s.−−→ 0 as M → ∞. (29)

D1R
(1)′′
1,MN (ξ01)D1

a.s.−−→ �−1
1 as M → ∞. (30)

On combining (27), (29) and (30), we have the desired result. ��
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Proof of Theorem 5: Consider the left hand side of (25), that is,

lim inf inf
(α,β)∈S1c

1

MN

[
R(1)
1,MN (α, β) − R(1)

1,MN (α0
1 , β

0
1 )

]

= lim inf inf
(α,β)∈S1c

1

MN

⎡

⎣
N∑

n0=1

Q1,M ( Â1(n0), B̂1(n0), α, β) −
N∑

n0=1

Q1,M ( Â1(n0), B̂1(n0), α
0
1 , β

0
1 )

⎤

⎦

� lim inf inf
(α,β)∈S1c

1

MN

⎡

⎣
N∑

n0=1

Q1,M ( Â1(n0), B̂1(n0), α, β) −
N∑

n0=1

Q1,M (A0
1(n0), B

0
1 (n0), α

0
1 , β

0
1 )

⎤

⎦

� lim inf inf
θ1(n0)∈M1,n0

c

1

MN

⎡

⎣
N∑

n0=1

Q1,M (A1(n0), B1(n0), α, β) −
N∑

n0=1

Q1,M (A0
1(n0), B

0
1 (n0), α

0
1 , β

0
1 )

⎤

⎦

� 1

N

N∑

n0=1

lim inf inf
θ1(n0)∈M1,n0

c

1

M

[
Q1,M (θ1(n0)) − Q1,M (θ01(n0))

]
> 0.

Here,Q1,M (A(n0), B(n0), α, β) = Y�
n0(I−ZM (α, β)(ZM (α, β)�ZM (α, β))−1ZM (α, β)�)Yn0

and M1,n0
c can be obtained by replacing α0 and β0 by α0

1 and β0
1 respectively, in the set Mn0

c

defined in Lemma 1. The last step follows from the proof of Theorem 2.4.1 of Lahiri et al.

(2015). Thus, using Lemma 2, α̂1
a.s.−−→ α0

1 and β̂1
a.s.−−→ β0

1 as M → ∞.
Following similar arguments, one can obtain the consistency of γ̂1 and δ̂1 as N → ∞.

Also,

N (γ̂1 − γ 0
1 )

a.s.−−→ 0,

N 2(δ̂1 − δ01)
a.s.−−→ 0.

The proof of the above equations follows along the same lines as the proof of Lemma 3.
From Theorem 7, it follows that as min{M, N } → ∞:

( Â1 − A0
1)

a.s.−−→ 0,

(B̂1 − B0
1 )

a.s.−−→ 0.

Thus, we have the following relationship between the first component of model (1) and its
estimate:

Â1 cos(α̂1m + β̂1m
2 + γ̂1n + δ̂1n

2) + B̂1 sin(α̂1m + β̂1m
2 + γ̂1n + δ̂1n

2)

= A0
1 cos(α

0
1m + β0

1m
2 + γ 0

1 n + δ01n
2) + B0

1 sin(α
0
1m + β0

1m
2 + γ 0

1 n + δ01n
2) + o(1).

(31)

Here a function g is o(1), if g → 0 almost surely as min{M, N } → ∞.
Using (31) and following the same arguments as above for the consistency of α̂1, β̂1, γ̂1

and δ̂1, we can show that, α̂2, β̂2, γ̂2 and δ̂2 are strongly consistent estimators of α0
2 , β

0
2 , γ

0
2

and δ02 respectively. And the same can be extended for k � p. Hence, the result. ��

Proof of Theorem 7: We will consider the following two cases that will cover both the
scenarios—underestimation as well as overestimation of the number of components:

• Case 1When k = 1:
[
Â1

B̂1

]
= [W(α̂1, β̂1, γ̂1, δ̂1)

�W(α̂1, β̂1, γ̂1, δ̂1)]−1W(α̂1, β̂1, γ̂1, δ̂1)
�YMN×1 (32)
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Using Lemma 1 of Lahiri et al. (2015), it can be seen that:

1

MN
[W(α̂1, β̂1, γ̂1, δ̂1)

�W(α̂1, β̂1, γ̂1, δ̂1)] → 1

2
I2×2 as min{M, N } → ∞.

Substituting this result in (32), we get:
[
Â1

B̂1

]
= 2

MN
W(α̂1, β̂1, γ̂1, δ̂1)

�YMN×1 + o(1)

=

⎡

⎢⎢⎣

2
MN

N∑
n=1

M∑
m=1

y(m, n) cos(α̂1m + β̂1m2 + γ̂1n + δ̂1n2) + o(1)

2
MN

N∑
n=1

M∑
m=1

y(m, n) sin(α̂1m + β̂1m2 + γ̂1n + δ̂1n2) + o(1)

⎤

⎥⎥⎦ .

Now consider the estimate Â1. Using multivariate Taylor series, we expand the function
cos(α̂1m + β̂1m2 + γ̂1n + δ̂1n2) around the point (α0

1, β
0
1 , γ

0
1 , δ01) and we obtain:

Â1

= 2

MN

N∑

n=1

M∑

m=1

y(m, n)

{
cos(α0

1m + β0
1m

2 + γ 0
1 n + δ01n

2)

− m(α̂1 − α0
1) sin(α

0
1m + β0

1m
2 + γ 0

1 n

+ δ01n
2) − m2(β̂1 − β0

1 ) sin(α
0
1m + β0

1m
2 + γ 0

1 n + δ01n
2)

− n(γ̂1 − γ 0
1 ) sin(α0

1m + β0
1m

2 + γ 0
1 n

+ δ01n
2) − n2(δ̂1 − δ01) sin(α

0
1m + β0

1m
2 + γ 0

1 n + δ01n
2)

}

→ 2 × A0
1

2
= A0

1 almost surely as min{M, N } → ∞,

using (1) and Lemma 1 and Lemma 2 of Lahiri et al. (2015). Similarly, it can be shown
that B̂1 → B0

1 almost surely as min{M, N } → ∞.
For the second component linear parameter estimates, consider:

[
Â2

B̂2

]
=

⎡

⎢⎢⎣

2
MN

N∑
n=1

M∑
m=1

y1(m, n) cos(α̂2m + β̂2m2 + γ̂2n + δ̂2n2) + o(1)

2
MN

N∑
n=1

M∑
m=1

y1(m, n) sin(α̂2m + β̂2m2 + γ̂2n + δ̂2n2) + o(1)

⎤

⎥⎥⎦ .

Here, y1(m, n) is the data obtained at the second stage after eliminating the effect of the
first component from the original data as defined in (18). Using the relationship (31) and
following the same procedure as for the consistency of Â1, it can be seen that:

Â2
a.s.−−→ A0

2 and B̂2
a.s.−−→ B0

2 as min{M, N } → ∞. (33)

It is evident that the result can be easily extended for any 2 � k � p.
• Case 2 When k = p + 1:

[
Â p+1
B̂p+1

]
=

⎡

⎢⎢⎢⎣

2
MN

N∑
n=1

M∑
m=1

yp(m, n) cos(α̂p+1m + β̂p+1m
2 + γ̂p+1n + δ̂p+1n

2) + o(1)

2
MN

N∑
n=1

M∑
m=1

yp(m, n) sin(α̂p+1m + β̂p+1m
2 + γ̂p+1n + δ̂p+1n

2) + o(1)

⎤

⎥⎥⎥⎦ , (34)
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where

yp(m, n)

= y(m, n) −
p∑

j=1

{
Â j cos(α̂ jm + β̂ jm

2 + γ̂ j n + δ̂ j n
2)

+ B̂ j sin(α̂ jm + β̂ jm
2 + γ̂ j n + δ̂ j n

2)

}

= X(m, n) + o(1), using (31) and case 1 results.

From here, it is not difficult to see that (34) implies the following result:

Â p+1
a.s.−−→ 0 and B̂p+1

a.s.−−→ 0 as min{M, N } → ∞.

This is obtained using Lemma 2 of Lahiri et al. (2015). It is apparent that the result holds
true for any k > p.

��
Proof of Theorem 8: Consider (26) and multiply both sides of the equation with the diagonal
matrix, D−1

1 :

(ξ̂1 − ξ01)D
−1
1 = −R(1)′

1,MN (ξ01)D1[D1R
(1)′′
1,MN (ξ̄1)D1]−1. (35)

Computing the elements of the vector −R(1)′
1,MN (ξ01)D1 and using definition (28) and the

preliminary result (14) (Sect. 3.1), we obtain the following result:

− R(1)′
1,MN (ξ01)D1

d−→ N 2(0, 2σ 2�−1
1 ) as M → ∞. (36)

On combining (35), (36) and (30), we have:

(ξ̂1 − ξ01)D
−1
1

d−→ N 2(0, 2σ 2�1)

This result can be extended for k = 2 using the relation (31) and following the same argument
as above. Similarly, we can continue to extend the result for any k � p. ��

References

Abatzoglou, T. J. (1986). Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE
Transactions on Aerospace and Electronic Systems, 6, 708–715.

Barbarossa, S. (1995). Analysis of multicomponent LFM signals by a combined Wigner-Hough transform.
IEEE Transactions on Signal Processing, 43(6), 1511–1515.

Djuric, P. M., & Kay, S. M. (1990). Parameter estimation of chirp signals. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 38(12), 2118–2126.
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