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Abstract
The paper is devoted to the development of the octonion Fourier transform (OFT) theory
initiated in 2011 in articles by Hahn and Snopek. It is also a continuation and generalization
of earlier work by Błaszczyk and Snopek, where they proved few essential properties of the
OFT of real-valued functions, e.g. symmetry properties. The results of this article focus on
proving that theOFT iswell-defined for octonion-valued functions and almost all well-known
properties of classical (complex) Fourier transform (e.g. argument scaling, modulation and
shift theorems) have their direct equivalents in octonion setup. Those theorems, illustrated
with some examples, lead to the generalization of another result presented in earlier work, i.e.
Parseval and Plancherel Theorems, important from the signal and system processing point
of view. Moreover, results presented in this paper associate the OFT with 3-D LTI systems
of linear PDEs with constant coefficients. Properties of the OFT in context of signal-domain
operations such as derivation and convolution of R-valued functions will be stated. There
are known results for the QFT, but they use the notion of other hypercomplex algebra, i.e.
double-complex numbers. Considerations presented here require defining other higher-order
hypercomplex structure, i.e. quadruple-complex numbers. This hypercomplex generalization
of the Fourier transformation provides an excellent tool for the analysis of 3-D LTI systems.
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1 Introduction

Fourier analysis is one of the fundamental tools in signal and image processing. Fourier
series and Fourier transform enable us to look at the concept of signal in a dual manner—
by studying its properties in the time domain (or in the space domain in case of images),
where it is represented by amplitudes of the samples (or pixels), or by investigating it in
the frequency domain, where the signal can be represented by the infinite sums of complex
harmonic functions, each with different frequency and amplitude (Allen and Mills 2003).

The classical signal theory deals with real- or complex-valued time series (or images).
However, in some practical applications, signals are represented by more abstract structures,
e.g. hypercomplex algebras (Ell et al. 2014; Grigoryan and Agaian 2018; Hahn and Snopek
2016; Snopek 2015). A classic example is the use of them in the processing of color images
(where there are at least three color components) (Ell et al. 2014;Grigoryan andAgaian 2018),
but also in the analysis of multispectral data (e.g. in satellite images where not only visible
light is recorded, but also other frequency ranges) (Lazendić et al. 2018,b). Quaternions and
octonions deserve special attention in this considerations. They are examples of Cayley–
Dickson (C–D) algebras (Dickson 1919). C–D algebras are defined by a recursive procedure,
so-called Cayley–Dickson construction. They are algebras of the order 2N (N ∈ N) over the
field of real numbers R. Each C–D algebra is created from the previous one and contains all
previous algebras as proper sub-algebras.

Recently, hypercomplex algebras drew scientists’ attention due to their numerous applica-
tions, among others in the study of neural networks (Popa 2016, 2018;Wu et al. 2019), in the
analysis of color and multispectral images (Ell et al. 2014; Gao and Lam 2014; Gomes et al.
2017; Grigoryan and Agaian 2018; Lazendić et al. 2018,b; Sheng et al. 2018), in biomedical
signal processing (Delsuc 1988; Klco et al. 2017), in fluid mechanics (Demir Tanişli 2016)
or in general signal processing (Hahn and Snopek 2016; Snopek 2015; Wang et al. 2017).
Quaternions may be used in few different ways—to describe a vector-valued signal (with
three or four coordinates) of one variable, i.e.

u(t) = u0(t) + u1(t) · i + u2(t) · j + u3(t) · k, u0, u1, u2, u3 : R → R,

or to analyse a scalar or vector-valued signal of two variables, i.e. u : R2 → R or u : R2 → H.
The basic tool in the second approach is the quaternion Fourier transform (QFT) (Bülow and
Sommer 2001):

UQFT( f1, f2) =
∫
R

∫
R

u(t1, t2)e
−2π i f1t1e−2π j f2t2 dt1dt2. (1)

It allows us (in contrast to the classical two-dimmensional Fourier transform) to analyse two
dimensions of the sampling grid independently. Each time-like dimension can be associated
with a different dimension of the four-dimensional quaternion space, while the complex
transformmixes those two dimensions. It also allows us to study some symmetries present in
certain signals (images), what was impossible before Ell et al. (2014). Similarly, octonions
are used to describe scalar or vector-valued signals of one or three variables.

In the last few years some generalizations of the Fourier transform (defined as in (1)) to
the octonion and higher-order algebras appeared in the literature (Hahn and Snopek 2011;
Snopek 2009, 2011, 2012, 2015). They are defined on the basis of the Cayley–Dickson
algebras and called the Cayley–Dickson Fourier transforms. The main goal of this paper is
further development of such generalization based on the Cayley–Dickson algebra of order 8
(octonions). Analysis of the current state of knowledge on applications of octonions in the
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signal processing shows some areas previously unexplored or requiring thorough theoreti-
cal and experimental studies, although some gaps have recently been filled (Błaszczyk and
Snopek 2017; Błaszczyk 2018, 2019; Lian 2019).

Properties of the quaternion Fourier transform (defined by (1)) are well studied in the
literature and it is fairly easy to notice some analogies to the properties of classical (complex)
Fourier transform of functions of two variables (Ell 1992). They enable us to use the Fourier
transform in the analysis of some two-dimensional linear time-invariant systems described
by systems of partial differential equations with constant coefficients (Ell 1993). In our
previous investigations (Błaszczyk and Snopek 2017) we were able to show that the OFT is
well defined for scalar (real-valued) functions of three variables (i.e. we proved the inverse
transform theorem). In our research we also derived some properties of the OFT, analogous
to the properties of the classical (complex) and quaternion Fourier transform, e.g. symmetry
properties (analogue to the Hermitian symmetry properties), shift theorem, Plancherel and
Parseval theorems, andWiener-Khintchine theorem. Proofs of the those theorems were based
on the previous research of Hahn and Snopek, who used the fact that real–valued functions
can be expressed as a sum of components of different parity (Hahn and Snopek 2011).
Despite these works, the state of modern knowledge about octonion Fourier transform is
negligible and requires a thorough extension. This seems important especially in the context
of new applications that have appeared in recent years (and which we described earlier in this
section)— there is a tendency to describe the results of practical experiments, but without
adequate theoretical justification.

Some of the results presented in this paper have been signaled in earlier works (Błaszczyk
2018, 2019), here we present a broader view of these issues and give details of the proofs.
We also provide some new results, mainly regarding the use of classical transformation
techniques for calculating the OFT, as well as regarding the differentiation of the octonion
transform.

The paper is organized as follows. In Sect. 2 we recall the octonion algebra, some of its
basic properties and the definition of the octonion Fourier transform, as well as the proof of its
well-posedness.We also introduce the notion of the quadruple-complex algebra. In Sect. 3 we
focus on deriving some important properties of the OFT, e.g. argument scaling, modulation
and shift theorems, relationship between the OFT of a function and the OFT of its partial
derivative, differentiation of the OFT and the convolution theorem. Those considerations lead
to some remarks on applying the OFT to the analysis of 3-D linear time-invariant systems
in Sect. 4, which also show the advantages of using OFT over classical transformation. The
paper is conculed in Sect. 5 with a short discussion of obtained results.

2 Basic definitions

In this section, we introduce the definitions and the theorems necessary to present the main
results of this work regarding the further properties of the octonion Fourier transform.

2.1 Algebra of octonions

An octonion o ∈ O is defined, according to the Cayley–Dickson construction, as the ordered
pair of quaternions (Dickson 1919):

o = (q0, q1), where q0 = r0 + r1 e1 + r2 e2 + r3 e3, q1 = r4 + r5 e1 + r6 e2 + r7 e3 ∈ H
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Table 1 Multiplication rules in
octonion algebra

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

(we denote the quaternion imaginary units as e1, e2 and e3 instead of traditional i, j and k).
Rules of octonion multiplication are given by the general Cayley–Dickson formula

(q0, q1) · (p0, p1) = (q0 · p0 − p∗
1 · q1, p1 · q0 + q1 · p∗

0), q0, q1, p0, p1 ∈ H, (2)

where multiplication of quaternions is defined as in Rodman (2014) (it can be defined also
by the formula (2) if we treat a quaternion as an ordered pair of complex numbers) and ∗ is
quaternion conjugate. Applying those rules of multiplication (which can be presented in the
form of Table 1) we get four new imaginary units and octonions can be writen as

o = r0 + r1e1 + r2e2 + r3e3︸ ︷︷ ︸
=q0

+(r4 + r5e1 + r6e2 + r7e3︸ ︷︷ ︸
=q1

) · e4

= r0 + r1e1 + r2e2 + r3e3 + r4e4 + r5e5 + r6e6 + r7e7.

Number r0 ∈ R is called the real part of o (denoted as Re o) and the pure imaginary octonion
r1 e1 + r2 e2 + · · · + r7 e7 is called the imaginary part of o (and denoted as Im o). Octonions
form a non-associative and a non-commutative algebra, which means that in general, for
o1, o2, o3 ∈ O

(o1 · o2) · o3 �= o1 · (o2 · o3), o1 · o2 �= o2 · o1.
On the other hand, it is true that for any o1, o2 ∈ O we have

(o1 · o2)∗ = o∗
2 · o∗

1,

where ∗ is the octonion conjugate, i.e.

o∗ = r0 − r1e1 − r2e2 − r3e3 − r4e4 − r5e5 − r6e6 − r7e7.

As in case of complex numbers or quaternions, octonion conjugation is linear and we have
o∗∗ = o, which means that it is an involution. For any o1, o2 ∈ O we also have that

o1 · (o1 · o2) = (o1 · o1) · o2, (o1 · o2) · o2 = o1 · (o2 · o2) (3)

and

o1 · (o2 · o1) = (o1 · o2) · o1, (4)

which means that the algebra of octonions is alternative (Eq. (3)) and flexible (Eq. (4)).
In complex numbers we have the trigonometric form of a number and in octonion algebra

we can define a similar formula for any nonzero octonion o ∈ O:

o = |o| · (cos θ + µ · sin θ), (5)
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where |o| = √
o · o∗ is octonion norm, µ = Im o

|Im o| is pure imaginary octonion and θ ∈ R is
the solution of the system of equations

cos θ = Re o

|o| , sin θ = |Im o|
|o| .

To formulate the exponential form of an octonion, we have to define octonion exponential
function first. Similarly as for the complex numbers and quaternions (Rodman 2014), we use
the infinite series. For any o ∈ O,

eo = exp(o) :=
∞∑
k=0

ok

k! .

It can be shown that if we denote o = Im o, then

eo = eRe o
(
cos |o| + o

|o| sin |o|
)

.

One should keep in mind that the fundamental multiplicative identity is in general not valid
for octonions. For any o1, o2 ∈ O we have

eo1+o2 = eo1 · eo2 if and only if o1 · o2 = o2 · o1,
which follows from the fact that the octonion multiplication is non-commutative.

From the above considerations it immediately follows that the exponential form of an
octonion o ∈ O, o �= 0, can be defined as

o = |o| · eθµ,

where θ andµ are defined as in (5). We can also generalize well-known formulas for trigono-
metric functions, i.e. for any α ∈ R we have that

cosα = 1

2

(
eµα + e−µα

)
, sin α = 1

2µ

(
eµα − e−µα

)
, (6)

where µ is any octonion such that |µ| = 1 and Reµ = 0 (i.e. µ is pure unitary octonion). It
should be noted that every non-zero octonion is invertible and for pure unitary octonions µ
we have µ−1 = −µ.

2.2 Algebra of quadruple-complex numbers

Many formulas presented in Sect. 3, concerning the Fourier transforms, are quite complicated
due to the fact that octionionmultiplication is non-associative and non-commutative. Inspired
by Ell (1993), we introduce the algebra of quadruple-complex numbers, which will allow
us to reformulate all presented properties and show them in a simpler form, very similar to
those well-known for classic Fourier transform.

Like octonions, we will define the algebra of order 8 over the field of real numbers and
each element of this algebra will be identified with the 8-tuple of real numbers, i.e.

p = p0 + p1e1 + p2e2 + p3e3 + p4e4 + p5e5 + p6e6 + p7e7 ∈ F, p0, . . . , p7 ∈ R.

Addition in F is defined in a classical way—element-wise. Before we define the multiplica-
tion, recall that in Cayley–Dickson construction, every octonion can be writen as an ordered
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Table 2 Multiplication rules in F � 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 e7 −e6
e2 e2 e3 −1 −e1 e6 e7 −e4 −e5
e3 e3 −e2 −e1 1 e7 −e6 −e5 e4
e4 e4 e5 e6 e7 −1 −e1 −e2 −e3
e5 e5 −e4 e7 −e6 −e1 1 −e3 e2
e6 e6 e7 −e4 −e5 −e2 −e3 1 e1
e7 e7 −e6 −e5 e4 −e3 e2 e1 −1

pair of quaternions.We are going now one step further and rewrite an octonion as a quadruple
of complex numbers:

p = (p0 + p1e1) + (p2 + p3e1)e2 + (p4 + p5e1)e4 + (p6 + p7e1)e2e4
= s0 + s1e2 + s2e4 + s3e2e4, (7)

where s0, . . . , s3 ∈ C and multiplication is done from left to right.
We will identify each element of F with a quadruple of complex numbers (s0, s1, s2, s3).

Every element of F will correspond to exactly one octonion defined by (7). Multiplication �
is given by the formula

(s0, s1, s2, s3) � (t0, t1, t2, t3) = (s0t0 − s1t1 − s2t2 + s3t3, s0t1 + s1t0 − s2t3 − s3t2,

s0t2 + s2t0 − s1t3 − s3t1, s0t3 + s3t0 + s1t2 + s2t1)

for every (s0, s1, s2, s3), (t0, t1, t2, t3) ∈ F. After straightforward computation we get the
multiplication rules table, like we have in case of octonions (Table. 2). We can see that
imaginary units in F don’t follow the same rules that applied to octonions, i.e.

e1 � e1 = e2 � e2 = −e3 � e3 = e4 � e4 = −e5 � e5 = −e6 � e6 = e7 � e7 = −1.

There is a similarity to double-complex numbers (Kurman 1958), which have been used in the
analysis of 2-D systems (Ell 1993) and (though not so named) in hypercomplex representation
of 2D nuclear magnetic resonance spectra (Delsuc 1988).

The multiplication in F is commutative and associative. One can also show that there are
no zero divisors in F (i.e. if s � t = 0, then s = 0 or t = 0), however not every non-zero
element of F has its �-inverse. If inverse of (s0, s1, s2, s3) exists then it is the only one and
is equal to

(s0, s1, s2, s3)
−1 = 1

δ

(
s0(s

2
0 + s21 + s22 − s23 ) + 2s1s2s3, −s1(s

2
0 + s21 − s22 + s23 ) − 2s0s2s3,

− s2(s
2
0 − s21 + s22 + s23 ) − 2s0s1s3, s3(−s20 + s21 + s22 + s23 ) + 2s0s1s2

)
, (8)

where

δ = (
(s0 − s3)

2 + (s1 + s2)
2)((s0 + s3)

2 + (s1 − s2)
2).

Elements of F for which δ = 0 (e.g. (1, 0, 0,±1) = 1 ± e6 ∈ F) have no �-inverse. One
can easily notice that the Eq. (8) is similar to formula (3.4) in Ell (1993) for double-complex
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numbers, but every numer in (3.4) was a real number. In (8) we have (in the general case)
complex numbers.

2.3 Octonion Fourier transform

Definition of the octonion Fourier transform (OFT) of the real-valued function of three
variables was introduced in Snopek (2009) and used in later publications concerning theory
of hypercomplex analytic functions (Hahn and Snopek 2011; Snopek 2009, 2011, 2012,
2015). In (Błaszczyk and Snopek 2017) we proved that the OFT of real-valued function
is well-defined and has some interesting properties (such as the analogue of the Hermitian
symetry). In (Błaszczyk 2018) we stated that the inverse transform formula is correct for the
octonion-valued functions and we presented the sketch of the proof. In the further part of this
section we will present previously omitted details.

Consider the octonion-valued function of three variables u : R3 → O, i.e.

u(x) = u0(x) + u1(x)e1 + · · · + u7(x)e7, ui : R3 → R, i = 0, . . . , 7, x = (x1, x2, x3).

The octonion Fourier Transform of the integrable (in Lebesgue sense) function u is given by
the formula

UOFT(f) =
∫
R3

u(x)e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx. (9)

Recall that the octonion algebra is non-associative, so it is necessary to note that the multipli-
cation in the above integrals is done from left to right. As we already explained in (Błaszczyk
and Snopek 2017), choice and order of imaginary units in the exponents is not accidental. In
order for the integral (9) to exist, it is be necessary for the function to be at least integrable. In
general, conditions of existence of theOFT are the same as for the classical (complex) Fourier
transform. It is worth noting here the advantage of using octonion transformation over the
use of classical transformation. Unlike the classical Fourier transformation, the OFT kernel
is no longer a one-dimensional function, but it changes independently in three orthogonal
directions. This is an analogous observation to that which was made in case of the quater-
nion Fourier transform (Bülow 1999; Bülow and Sommer 2001). In addition, it should be
noted that in case of the octonion Fourier transformmulti-channel signals (or, mathematically
speaking, vector-valued functions) are treated and processed as an algebraic whole, without
losing information about the relationship between individual channels (i.e. individual vector
coordinates). Using a classic approach, we are forced to analyze each channel separately,
which leads to a loss of information about dependencies in the spectrum. The same obser-
vation was made for 4-dimensional signals to which quaternion transformation is applied
(Alfsmann et al. 2007).

In this section, we will focus on the invertibility of the OFT. For the special case of the
real-valued functions we proved the following theorem in (Błaszczyk and Snopek 2017).
Here we prove the general version of the theorem, where the tested function has octonion
values.

Theorem 1 Let u : R3 → O be continuous and let both u and its OFT be integrable (in
Lebesgue sense). Then for all x ∈ R

3 we have

u(x) =
∫
R3

UOFT(f)ee42π f3x3ee22π f2x2ee12π f1x1 df

(where multiplication is performed from left to right).
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The assumptions given above are quite strong and in many cases can be mitigated.
A number of other conditions are known in the literature for the classic Fourier transform
to be invertible and the equivalent of the above formula occurs (Allen and Mills 2003;
Duoandikoetxea 2001). Then we usually deal with equality almost everywhere, or the inte-
gral is understood in the sense of the principal value. In the case of an octonion transformation,
these conditions are identical and detailed considerations are left to the reader. The above-
mentioned result follows from Fourier Integral Theorem (Duoandikoetxea 2001), which we
state under the same assumptions as in Theorem 1.

Theorem 2 Let u : Rn → R be continuous and let both u and its OFT be integrable (in
Lebesgue sense). Then

u(x) =
∫
Rn

∫
Rn

u(y)e2π i f ·(x−y) dy df,

where i = e1 is complex imaginary unit, x = (x1, . . . , xn), y = (y1, . . . , yn), f =
( f1, . . . , fn) and · is classic scalar product.
Proof of Theorem 1 We need to prove the following equation

u(x) =
∫
R3

∫
R3

u(y) · e−e12π f1 y1 · e−e22π f2 y2 · e−e42π f3y3

· ee42π f3x3 · ee22π f2x2 · ee12π f1x1 dydf,

where octonion multiplication is done from left to right. The first step is to rewrite the
function u as a sum u = u0 + u1e1 + · · · + u7e7 and use the distributive law on the algebra
of octonions. It follows that the claim of the theorem is equivalent to the system of equations

u0(x) =
∫
R3

∫
R3

u0(y) · e−e12π f1y1 · e−e22π f2 y2 · e−e42π f3 y3

· ee42π f3x3 · ee22π f2x2 · ee12π f1x1 dy df, (10)

ui (x)ei =
∫
R3

∫
R3

ui (y)ei · e−e12π f1y1 · e−e22π f2 y2 · e−e42π f3 y3

· ee42π f3x3 · ee22π f2x2 · ee12π f1x1 dy df, i = 1, . . . , 7. (11)

Proof of (10) can be found in (Błaszczyk andSnopek 2017) andwe only need to prove (11).
We follow the same steps as in the original proof and use the fact (derived by straightforward
calculations) that for any imaginary unit ei , i = 1, . . . , 7, we have((

(ei · e−e12π f1y1) · e−e22π f2 y2
) · e−e42π f3 y3

)
· ee42π f3x3

= (
(ei · e−e12π f1y1) · e−e22π f2 y2

) · (
e−e42π f3y3 · ee42π f3x3

)
, (12)(

(ei · e−e12π f1y1) · e−e22π f2 y2
) · ee22π f2x2 = (ei · e−e12π f1y1) · (e−e22π f2 y2 · ee22π f2x2)

(13)

(ei · e−e12π f1y1) · ee12π f1x1 = ei · (e−e12π f1y1 · ee12π f1x1). (14)

Then, using (12)–(14), Fubini’s Theorem and Theorem 2 we have for i = 1, . . . , 7∫
R3

∫
R3

((((
(ui (y)ei · e−e12π f1 y1) · e−e22π f2 y2

) · e−e42π f3y3
)

· ee42π f3x3

)
· ee22π f2x2

)
· ee12π f1x1 dydf
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(12)=
∫
R2

∫
R2

(((
(ei · e−e12π f1 y1) · e−e22π f2 y2

)

·
(∫

R

∫
R

ui (y) · e−e42π f3 y3 · ee42π f3x3 dy3d f3

) )
· ee22π f2x2

)

· ee12π f1x1 dy1dy2d f1d f2

Th. 2=
∫
R2

∫
R2

(((
(ei · e−e12π f1 y1) · e−e22π f2 y2

) · ui (y1, y2, x3)
)

· ee22π f2x2

)
· ee12π f1x1 dy1dy2d f1d f2

=
∫
R2

∫
R2

ui (y1, y2, x3) ·
((

(ei · e−e12π f1 y1) · e−e22π f2 y2
) · ee22π f2x2

)

· ee12π f1x1 dy1dy2d f1d f2

(13)=
∫
R

∫
R

(
(ei · e−e12π f1y1) ·

(∫
R

∫
R

ui (y1, y2, x3) · e−e22π f2 y2 · ee22π f2x2 dy2d f2

))

· ee12π f1x1 dy1d f1

Th. 2=
∫
R

∫
R

(
(ei · e−e12π f1 y1) · ui (y1, x2, x3)

) · ee12π f1x1 dy1d f1

=
∫
R

∫
R

ui (y1, x2, x3) · (ei · e−e12π f1 y1) · ee12π f1x1 dy1d f1

(14)= ei ·
∫
R

∫
R

ui (y1, x2, x3) · e−e12π f1y1 · ee12π f1x1 dy1d f1

Th. 2= ei · ui (x1, x2, x3).
It concludes the proof. 	


It is worth noting that the above theorem was independently proved also in a recent article
(Lian 2019), in which the author used other methods.

Before we proceed to discuss the properties of octonion Fourier transforms, we should
start with the basic result formulated below. From now on, we will assume that all the
functions under consideration have well-defined octonion Fourier transforms. We will use
the convention that the OFT of function u is denoted byUOFT orFOFT {u}. Analogously, the
classic (complex) Fourier transform of u will be denoted by FCFT {u}.
Theorem 3 Octonion Fourier transform is R-linear operation, i.e.

FOFT {a · u + b · v} = a · FOFT {u} + b · FOFT {v} , a, b ∈ R. (15)

It should be noted here that, unlike the classical (complex) Fourier transform (and also
quaternion Fourier transform), OFT is not linear in general (to be more precise—it is not
O-linear), i.e. property (15) is not true for any a, b ∈ O. This is due to the fact that the
octonion multiplication is not associative.

For many real- or complex-valued functions the form of the classic Fourier transform is
well known. To calculate the octonion Fourier transform of such function, we can use the
relationship between these transformations instead of using formula (9). In particular, the
following theorem holds, which is the generalization of the result of Snopek (2012), where it
was proved for real-valued functions. This result was originally stated in (Błaszczyk 2018),
here we complete the details of the proof.

123



1236 Multidimensional Systems and Signal Processing (2020) 31:1227–1257

Theorem 4 Let u : R3 → C, U = FCFT {u} and UOFT = FOFT {u}. Then

UOFT( f1, f2, f3) = 1

4

(
U ( f1, f2, f3) · (1 − e3) +U ( f1,− f2, f3) · (1 + e3)

) · (1 − e5)

+ 1

4

(
U ( f1, f2,− f3) · (1 − e3) +U ( f1,− f2,− f3) · (1 + e3)

) · (1 + e5)

(16)

where octonion multiplication is done from left to right.

Remark 1 Equation 39 proved in (Snopek 2012) may look slightly different from (16), but
after straightforward computation and application of the Hermitian symmetry of the Fourier
transform of the real-valued functions we get the abovementioned formula.

Proof of Theorem 4 We carefully follow and modify steps presented in (Snopek 2012). From
the definition of the classical Fourier transform we get

U ( f1, f2, f3) =
∫
R3

u(x)e−e1α1e−e1α2e−e1α3 dx,

where α j = 2π f j x j , j = 1, 2, 3. From the equivalent definition of sine and cosine functions
we get

1

2

(
U ( f1, f2, f3) +U ( f1,− f2, f3)

) =
∫
R3

u(x)e−e1α1(cosα2)e
−e1α3 dx, (17)

1

2

(
U ( f1, f2, f3) −U ( f1,− f2, f3)

) =
∫
R3

u(x)e−e1α1(−e1 sin α2)e
−e1α3 dx. (18)

By changing the sign of f3 in (18) and multiplying (from the left) by e3 we get

1

2

(
U ( f1, f2,− f3) −U ( f1,− f2,− f3)

)
e3 =

∫
R3

u(x)e−e1α1(e2 sin α2)e
−e1α3 dx, (19)

which follows from the fact that((
(u · e−e1α1) · e1

) · ee1α3
)

· e3 = (
(u · e−e1α1) · (e1 · e3)

) · e−e1α3

(from the fact that octonion multiplication is alternative). Subtracting (19) from (17) we then
obtain

1

2

(
U ( f1, f2, f3) +U ( f1,− f2, f3)

) + 1

2

(
U ( f1,− f2,− f3) −U ( f1, f2,− f3)

)
e3

=
∫
R3

u(x)e−e1α1e−e2α2e−e1α3 dx.

We introduce the following notation:

V ( f1, f2, f3)

= 1

2

(
U ( f1, f2, f3) +U ( f1,− f2, f3)

) + 1

2

(
U ( f1,− f2,− f3) −U ( f1, f2,− f3)

)
e3.

(20)

By following similar steps as before we get

1

2

(
V ( f1, f2, f3) + V ( f1, f2,− f3)

) =
∫
R3

u(x)e−e1α1e−e2α2(cosα3) dx, (21)
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1

2

(
V ( f1, f2, f3) − V ( f1, f2,− f3)

) =
∫
R3

u(x)e−e1α1e−e2α2(−e1 sin α3) dx. (22)

As earlier we change the sign of f2 in (22) and multiply (from the left) by e5 and obtain

1

2

(
V ( f1,− f2, f3) − V ( f1,− f2,− f3)

)
e5 =

∫
R3

u(x)e−e1α1e−e2α2(e4 sin α3) dx (23)

(again from the fact that octonion multiplication is alternative). By subtracting Eq. (23)
from (21) we get

1

2

(
V ( f1, f2, f3) + V ( f1, f2,− f3)

) + 1

2

(
V ( f1,− f2,− f3) − V ( f1,− f2, f3)

)
e5

=
∫
R3

u(x)e−e1α1e−e2α2e−e4α3 dx. (24)

We conclude the proof by substituting Eq. (20) in (24) and regrouping all terms. 	

In the general case of an octonion-valued function, well-known formulas for the classic

Fourier transform can also be used. If we factor out the complex components of the octonion-
valued function, we get

u = u0 + u1e1 + u2e2 + u3e3 + u4e4 + u5e5 + u6e6 + u7e7
= (u0 + u1e1) + (u2 + u3e1)e2 + (u4 + u5e1)e4 + (u6 + u7e1)e2e4
=: v0 + v1e2 + v2e4 + v3e2e4

and v0, . . . , v3 are complex-valued functions. Using Theorem 4 we can easily calculate
the OFTs of those functions, denote them by V0, . . . , V3, respectively. By straightforward
calculations we obtain the following properties of octonions:

(
((o · e2) · e−e1α1) · e−e2α2

) · e−e4α3 = (
((o · ee1α1) · e−e2α2) · ee4α3) · e2, (25)(

((o · e4) · e−e1α1) · e−e2α2
) · e−e4α3 = (

((o · ee1α1) · ee2α2) · e−e4α3
) · e4, (26)(

((o · e2 · e4) · e−e1α1) · e−e2α2
) · e−e4α3 = (

((o · e−e1α1) · ee2α2) · ee4α3) · e2 · e4, (27)

for any o ∈ O and α1, α2, α3 ∈ R. From those calculations, the corollary below immediately
follows.

Corollary 1 Let v0, . . . , v3 : R3 → C, Vi = FOFT {vi } and u = v0 + v1e2 + v2e4 + v3e2e4,
UOFT = FOFT {u}. Then

UOFT( f1, f2, f3) = V0( f1, f2, f3) + V1(− f1, f2,− f3) · e2
+ V2(− f1,− f2, f3) · e4 + V3( f1,− f2,− f3) · e2 · e4. (28)

The OFT definition suggests that from a computational (and therefore from a practical)
point of view, the level of complexity of multidimensional signal analysis will increase
significantly compared to analysis using classical Fourier transform. However, Theorem 4
together with Corollary 1 show that the level of complexity of both methods will be similar—
known algorithms for calculating classical transformation can be used to calculate the OFT—
just calculate the classic Fourier transform of four complex signals (constituting one vector-
valued signal represented by the octonion signal).

Inverse octonion Fourier transformation can also be done using classic tools. However,
the situation is more complicated from the beginning. In general, the OFT of any function is
a function with octonion values. However, we will start, as in the case of forward transform,
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from the case when a function has OFT with complex values, but in the specific subfield of
the octonion algebra, i.e.

Ce4 = {x0 + x4e4 ∈ O : x0, x4 ∈ R}.
It is enough to note that in every subfield of this type we can define the classic Fourier
transform. In the above case, we have formulas for forward and inverse transforms:

U ( f1, f2, f3) =
∫
R3

u(x1, x2, x3)e
−e4α1e−e4α2e−e4α3 dx,

u(x1, x2, x3) =
∫
R3

U ( f1, f2, f3)e
e4α1ee4α2ee4α3 df (29)

where u : R3 → Ce4 , α j = 2π f j x j , j = 1, 2, 3. We have then, of course U : R3 → Ce4 .

Theorem 5 Let u : R3 → O be such that UOFT = FOFT {u} : R3 → Ce4 . Moreover, let
û = F−1

CFT {UOFT} (in the Ce4 complex subfield of O, i.e. (29)). Then

u(x1, x2, x3) = 1

4

(
û(x1, x2, x3) · (1 + e6) + û(x1,−x2, x3) · (1 − e6)

) · (1 + e5)

+ 1

4

(
û(−x1, x2, x3) · (1 + e6) + û(−x1,−x2, x3) · (1 − e6)

) · (1 − e5)

(30)

where octonion multiplication is done from left to right.

Proof From the modified definition of the classical Fourier transform (29) we get

û(x1, x2, x3) =
∫
R3

UOFT(f)ee4α3ee4α2ee4α1 df,

where α j = 2π f j x j , j = 1, 2, 3. From the equivalent definition of sine and cosine functions
we get

1

2

(
û(x1, x2, x3) + û(x1,−x2, x3)

) =
∫
R3

UOFT(f)ee4α3(cosα2)e
e4α1 df, (31)

1

2

(
û(x1, x2, x3) − û(x1,−x2, x3)

) =
∫
R3

UOFT(f)ee4α3(e4 sin α2)e
e4α1 df . (32)

By changing the sign of x1 in (32) and multiplying (from the left) by e6 we get

1

2

(
û(−x1, x2, x3) − û(−x1,−x2, x3)

)
e6 =

∫
R3

UOFT(f)ee4α3(e2 sin α2)e
e4α1 df, (33)

which follows from the fact that((
(UOFT · ee4α3) · e4

) · e−e4α1
)

· e6 = (
(UOFT · ee4α3) · (e2)

) · ee4α1

(from the fact that octonion multiplication is alternative). Subtracting (33) from (31) we then
obtain

1

2

(
û(x1, x2, x3) + û(x1,−x2, x3)

) + 1

2

(
û(−x1, x2, x3) − û(−x1,−x2, x3)

)
e6

=
∫
R3

UOFT(f)ee4α3ee2α2ee4α1 df .
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We introduce the following notation:

w(x1, x2, x3)

= 1

2

(
û(x1, x2, x3) + û(x1,−x2, x3)

) + 1

2

(
û(−x1, x2, x3) − û(−x1,−x2, x3)

)
e6. (34)

By following similar steps as before we get

1

2

(
w(x1, x2, x3) + w(−x1, x2, x3)

) =
∫
R3

UOFT(f)ee4α3ee2α2(cosα1) df, (35)

1

2

(
w(x1, x2, x3) − w(−x1, x2, x3)

) =
∫
R3

UOFT(f)ee4α3ee2α2(e4 sin α1) df . (36)

As earlier we change the sign of x2 in (36) and multiply (from the left) by e5 and obtain

1

2

(
w(x1,−x2, x3) − w(−x1,−x2, x3)

)
e5 =

∫
R3

UOFT(f)ee4α3ee2α2(e1 sin α1) df (37)

(again from the fact that octonion multiplication is alternative). By subtracting Eq. (37)
from (35) we get

1

2

(
w(x1, x2, x3) + w(−x1, x2, x3)

) + 1

2

(
w(x1,−x2, x3)) − w(−x1,−x2, x3)

)
e5

=
∫
R3

UOFT(f)ee4α3ee2α2ee1α1 df . (38)

We conclude the proof by substituting Eq. (34) in (38) and regrouping all terms. 	

We can now return to the general case. Similarly as before, we factor out the complex

(Ce4 ) components of the octonion-valued function:

UOFT = U0 +U1e1 +U2e2 +U3e3 +U4e4 +U5e5 +U6e6 +U7e7
= (U0 +U4e4) + (U1 −U5e4)e1 + (U2 −U6e4)e2 + (U3 +U7e4)e1e2
:= V0 + V1e1 + V2e2 + V3e1e2

and V0, . . . , V3 are functions with values in Ce4 . Using Theorem 5 we can calculate the
inverse OFTs of those functions, denote them by v0, . . . , v3, respectively. We also use the
fact that

(
((z · e1) · ee4α3) · ee2α2) · ee1α1 = (

((z · e−e4α3) · e−e2α2) · ee1α1) · e1,(
((z · e2) · ee4α3) · ee2α2) · ee1α1 = (

((z · e−e4α3) · ee2α2) · e−e1α1
) · e2,(

((z · e1 · e2) · ee4α3) · ee2α2) · ee1α1 = (
((z · ee4α3) · e−e2α2) · e−e1α1

) · e1 · e2,
for every z ∈ Ce4 . From those calculation we get the corollary below.

Corollary 2 Let V0, . . . , V3 : R
3 → Ce4 , vi = F−1

OFT {Vi }, i = 0, . . . , 3, and let
UOFT = V0 + V1e1 + V2e2 + V3e1e2, u = F−1

OFT {UOFT}. Then
u(x1, x2, x3) = v0(x1, x2, x3) + v1(x1,−x2,−x3) · e1

+ v2(−x1, x2,−x3) · e2 + v3(−x1,−x2, x3) · e1 · e2.
From Theorem 4 and Corollary 1 one can draw several direct conclusions related to the

behavior of the octonion transformation in infinity and the composition of the transformations.

123



1240 Multidimensional Systems and Signal Processing (2020) 31:1227–1257

Theorem 6 Let u : R3 → O be integrable (in Lebesgue sense) and UOFT = FOFT {u}. Then
lim|f |→∞UOFT(f) = 0.

Proof It is a direct corollary from the classical Riemann-Lebesgue theorem (Duoandikoetxea
2001), Theorem 4 and Corollary 1. 	


Before we formulate and prove the next result, let us recall the classical theorem known
from Fourier analysis (Duoandikoetxea 2001).

Theorem 7 Let u : Rn → C be smooth and rapidly decreasing (i.e. element of Schwartz
class). Then

FCFT {FCFT {u}} (x) = u(−x),

and so the classical Fourier transform has period 4 (i.e. if we apply it four times, we get the
identity operator).

In the case of OFT, the analogous result is very similar, but slightly more complicated.

Theorem 8 Let u : R3 → C be smooth and rapidly decreasing (i.e. element of Schwartz
class). Then

FOFT {FOFT {u}} (x1, x2, x3) = 1

2

(
u(x1, x2, x3) + u(−x1, x2,−x3)

+ u(−x1,−x2, x3) − u(x1,−x2,−x3)
)
,

and so the OFT has period 4.

Proof We begin with the case of u : R3 → C. Let U = FCFT {u}. By carrying out direct
calculations, we can write the claim of Theorem 4 in the form

FOFT {u} (f) = Uee(f) −Uoe(f) · e1 · e2 −Ueo(f) · e1 · e4 −Uoo(f) · e2 · e4,
whereUyz , y, z ∈ {e, o}, are four components ofU of different parity with respect to f2 and
f3, i.e.

Uyz( f1, f2, f3) = (U ( f1, f2, f3) + εyU ( f1,− f2, f3)

+εzU ( f1, f2,− f3) + εyεzU ( f1,− f2,− f3))/4,

where εy = 1 if y = e and εy = −1 if y = o, etc.
Note that this is the form as in the assumptions of Corollary 1, so when calculating the

OFT of function UOFT we get

FOFT {FOFT {u}} (x1, x2, x3) =FOFT {Uee } (x1, x2, x3)

+ FOFT {−Uoe · e1} (−x1, x2,−x3) · e2
+ FOFT {−Ueo · e1} (−x1,−x2, x3) · e4
+ FOFT {−Uoo } (x1,−x2,−x3) · e2 · e4.

All functions which OFTs we want to calculate are C-valued functions, so we can again use
Theorem 4. After tedious calculations we get that

FOFT {Uee } (x1, x2, x3) = uee(−x1,−x2,−x3),

FOFT {−Uoe · e1} (−x1, x2,−x3) · e2 = −uoe(x1,−x2,−x3),
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FOFT {−Ueo · e1} (−x1,−x2, x3) · e4 = −ueo(x1,−x2,−x3),

FOFT {−Uoo } (x1,−x2,−x3) · e2 · e4 = −uoo(−x1,−x2,−x3),

where uyz , y, z ∈ {e, o}, are four components of u of different parity with respect to x2 and
x3, just like earlier. By expanding the above functions and rearranging the components we
will receive a claim in the case of functions with complex values. It is easy to calculate that
by applying this “double OFT” transformation twice, we get identity.

In the general case of u : R3 → O we proceed like in the proof of Corollary 1. Let
u = v0 + v1e2 + v2e4 + v3e2e4, where v0, . . . , v3 : R3 → C. Then, from (28), (25)–(27) we
get

FOFT {FOFT {u}} = FOFT {FOFT {v0}} + FOFT {FOFT {v1}} e2
+ FOFT {FOFT {v2}} e4 + FOFT {FOFT {v3}} e2e4.

We immediately receive a claim of the theorem from the previous part of the proof. 	

In Hahn and Snopek (2011) it was proved that the octonion Fourier transform of the real-

valued function can be represented as the octonion sum of components of different parity,
i.e.

UOFT = Ueee −Uoeee1 −Ueoee2 +Uooee3 −Ueeoe4 +Uoeoe5 +Ueooe6 −Uoooe7, (39)

where Uxyz , x, y, z ∈ {e, o} are defined as

Ueee(f) =
∫
R3

ueee(x) cos(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx, (40)

Uoee(f) =
∫
R3

uoee(x) sin(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx, (41)

Ueoe(f) =
∫
R3

ueoe(x) cos(2π f1x1) sin(2π f2x2) cos(2π f3x3) dx, (42)

Uooe(f) =
∫
R3

uooe(x) sin(2π f1x1) sin(2π f2x2) cos(2π f3x3) dx, (43)

Ueeo(f) =
∫
R3

ueeo(x) cos(2π f1x1) cos(2π f2x2) sin(2π f3x3) dx, (44)

Uoeo(f) =
∫
R3

uoeo(x) sin(2π f1x1) cos(2π f2x2) sin(2π f3x3) dx, (45)

Ueoo(f) =
∫
R3

ueoo(x) cos(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx, (46)

Uooo(f) =
∫
R3

uooo(x) sin(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx, (47)

where f = ( f1, f2, f3), x = (x1, x2, x3), and functions uxyz(x), x, y, z ∈ {e, o}, are eight
components of u of different parity with respect to x1, x2 and x3, i.e.

uxyz(x1, x2, x3) = (u(x1, x2, x3) + εxu(−x1, x2, x3)

+ εyu(x1,−x2, x3) + εxεyu(−x1,−x2, x3)

+ εzu(x1, x2,−x3) + εxεzu(−x1, x2,−x3)

+ εyεzu(x1,−x2,−x3) + εxεyεzu(−x1,−x2,−x3))/16,

where εx = 1 if x = e and εx = −1 if x = o, etc.

123



1242 Multidimensional Systems and Signal Processing (2020) 31:1227–1257

In this notation we use indices e and o to denote that the function is even (e) or odd (o)
with respect to the proper variable, e.g. function ueeo(x) is even with respect to x1 and x2
and odd with respect to x3. Analogous considerations can be performed for Uxyz , e.g. Ueoo

is even with respect to f1 and odd with respect to f2 and f3.
It should be noted that in case of the real-valued functions u, all terms Uxyz in (39) are

real-valued functions. Similar formulas can be obtained for the octonion-valued functions
but we omit the details here.

3 Properties of the octonion Fourier transform

Properties of the complex Fourier transform and its quaternion counterpart are well known
in literature (Allen and Mills 2003; Bülow 1999; Duoandikoetxea 2001; Ell et al. 2014). In
(Błaszczyk and Snopek 2017) we already proved some of their octonion analogues (i.e. shift
theorem stated in Theorem 13 and Hermitian symmetry analogue) and in this section we
will derive equivalents of other classical properties such as argument scaling and modulation
theorem. Sketches of some proofs can be found in (Błaszczyk 2018), here we will present all
previously omitted details, but also present previously unpublished results. The summary of
the content of this section is shown in Table 3.

If we do not state otherwise, then in each of the following statements we assume that
u : R3 → O and U = FOFT {u}.
Theorem 9 Let a, b, c ∈ R\{0} and v : R3 → O be defined by v(x1, x2, x3) = u( x1a , x2

b , x3
c ),

V = FOFT {v}. Then
V ( f1, f2, f3) = |abc|U (a f1, b f2, c f3).

Proof Proof is very similar to the classical case and utilizes integration by substitution. From
the definition of the OFT we have

V (f) =
∫
R3

u
( x1
a

,
x2
b

,
x3
c

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx = (�).

We introduce the substitution (y1, y2, y3) = ( x1
a , x2

b , x3
c

)
. Let us note that determinant of the

Jacobian matrix of this substitution is equal to
∣∣∣ ∂(x1,x2,x3)
∂(y1,y2,y3)

∣∣∣ = |abc|. Then

(�) =
∫
R3

u(y1, y2, y3)e
−e12πa f1y1e−e22πb f2 y2e−e42πc f3y3 |abc| dy

= |abc|U (a f1, b f2, c f3),

which concludes the proof. 	

Theorem 9 can be generalized to all linear maps of x. In the case of quaternion Fourier

transform one can find similar result in (Bülow 1999) for functions u : R2 → R and v(x) =
u(Ax), where A real-valued 2 × 2 matrix such that det(A) �= 0. Then

V ( f1, f2) = 1

2 detA

(
U (ã22 f1 + ã21 f2, ã12 f1 + ã11 f2) +U (ã22 f1 − ã21 f2,−ã12 f1 + ã11 f2)

− e3U (−ã22 f1 + ã21 f2,−ã12 f1 + ã11 f2) + e3U (−ã22 f1 − ã21 f2, ã12 f1 + ã11 f2)
)
,

where
(
ã11 ã12
ã21 ã22

)
= 1

detAA.
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Table 3 Summary of octonion Fourier transform properties

Function Octonion Fourier transform

1. u(
x1
a ,

x2
b ,

x3
c ) |abc|U (a f1, b f2, c f3)

2. u(x) · cos(2π f0x1)
(
U ( f1 + f0, f2, f3) +U ( f1 − f0, f2, f3)

) · 1
2

u(x) · cos(2π f0x2)
(
U ( f1, f2 + f0, f3) +U ( f1, f2 − f0, f3)

) · 1
2

u(x) · cos(2π f0x3)
(
U ( f1, f2, f3 + f0) +U ( f1, f2, f3 − f0)

) · 1
2

3. u(x) · sin(2π f0x1)
(
U ( f1 + f0, − f2,− f3) −U ( f1 − f0, − f2,− f3)

) · e1
2

u(x) · sin(2π f0x2)
(
U ( f1, f2 + f0,− f3) −U ( f1, f2 − f0, − f3)

) · e2
2

u(x) · sin(2π f0x3)
(
U ( f1, f2, f3 + f0) −U ( f1, f2, f3 − f0)

) · e4
2

4. u(x) · exp(−e12π f0x1) U ( f1 + f0, f2, f3)

u(x) · exp(−e22π f0x2)
(
U ( f1, f2 + f0, f3) +U ( f1, f2 − f0, f3)

+U (− f1, f2 + f0, f3) −U (− f1, f2 − f0, f3)
) · 1

2

u(x) · exp(−e42π f0x3)
(
U ( f1, f2, f3 + f0) +U ( f1, f2, f3 − f0)

+U (− f1,− f2, f3 + f0) −U (− f1, − f2, f3 − f0)
) · 1

2

5. u(x1 − α, x2, x3) cos(2π f1α)U ( f1, f2, f3) − sin(2π f1α)U ( f1, − f2, − f3) · e1
u(x1, x2 − β, x3) cos(2π f2β)U ( f1, f2, f3) − sin(2π f2β)U ( f1, f2, − f3) · e2
u(x1, x2, x3 − γ ) cos(2π f3γ )U ( f1, f2, f3) − sin(2π f3γ )U ( f1, f2, f3) · e4

6. ux1 (x) U ( f1, − f2, − f3) · (2π f1e1)

ux2 (x) U ( f1, f2,− f3) · (2π f2e2)

ux3 (x) U ( f1, f2, f3) · (2π f3e4)

7. 2πx1 · u(x) U f1 ( f1,− f2, − f3) · e1
2πx2 · u(x) U f2 ( f1, f2, − f3) · e2
2πx3 · u(x) U f3 ( f1, f2, f3) · e4

8. (u ∗ v)(x) V ( f1, f2, f3) · (Ueee(f) −Ueeo(f) e4)

+V ( f1, − f2,− f3) · (−Uoee(f) e1 +Uooe(f) e3)
+V ( f1, f2,− f3) · (−Ueoe(f) e2 +Uoeo(f) e5)
+V (− f1, f2,− f3) · (Ueoo(f) e6 −Uooo(f) e7)

In the octonion setup, considering v(x) = u(Ax), where A is some arbitrary nonsingular
3 × 3 matrix, we would get a result containing 64 different terms. Due to the complication
of calculations and slight significance for further research we skip this formula.

The next three theorems are known in signal and system theory as themodulation theorem.
One can notice that the claim of cosinemodulation theorem (with cosine function as a carrier)
is exactly the same as in the case of complex Fourier transform. This can not be said about
the sine modulation theorem.

Theorem 10 Let f0 ∈ R and denote ucos,i (x) = u(x) ·cos(2π f0xi ), U cos,i = FOFT
{
ucos,i

}
,

i = 1, 2, 3. Then
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U cos,1( f1, f2, f3) = (
U ( f1 + f0, f2, f3) +U ( f1 − f0, f2, f3)

) · 1
2
,

U cos,2( f1, f2, f3) = (
U ( f1, f2 + f0, f3) +U ( f1, f2 − f0, f3)

) · 1
2
,

U cos,3( f1, f2, f3) = (
U ( f1, f2, f3 + f0) +U ( f1, f2, f3 − f0)

) · 1
2
.

Proof We will use the equivalent definition of the cosine function, i.e. Eq. (6). Then

cosα = 1

2

(
ee1α + e−e1α

) = 1

2

(
ee2α + e−e2α

) = 1

2

(
ee4α + e−e4α

)
. (48)

Then for i = 1 we have

U cos,1( f1, f2, f3) =
∫
R3

(
u(x) · cos(2π f0x1)

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

u(x)
(
e−e12π f1x1 cos(2π f0x1)

)
e−e22π f2x2e−e42π f3x3 dx

= 1

2

∫
R3

u(x)
(
e−e12π f1x1(ee12π f0x1 + e−e12π f0x1)

)
e−e22π f2x2e−e42π f3x3 dx

= 1

2

∫
R3

u(x)
(
e−e12π( f1− f0)x1 + e−e12π( f1+ f0)x1

)
e−e22π f2x2e−e42π f3x3 dx

= 1

2

(
U ( f1 − f0, f2, f3) +U ( f1 + f0, f2, f3)

)
,

which concludes the proof in this case. For i = 2, 3 proceed analogously. 	


Theorem 11 Let f0 ∈ R and denote usin,i (x) = u(x) · sin(2π f0xi ), U sin,i = FOFT
{
usin,i

}
,

i = 1, 2, 3. Then

U sin,1( f1, f2, f3) = (
U ( f1 + f0,− f2,− f3) −U ( f1 − f0,− f2,− f3)

) · e1
2

,

U sin,2( f1, f2, f3) = (
U ( f1, f2 + f0,− f3) −U ( f1, f2 − f0,− f3)

) · e2
2

,

U sin,3( f1, f2, f3) = (
U ( f1, f2, f3 + f0) −U ( f1, f2, f3 − f0)

) · e4
2

.

Proof We proceed similarly as in proof of Theorem 10. We will also use the equivalent
definition of the sine function formulated in Eq. (6), i.e.

sin α = 1

2e1

(
ee1α − e−e1α

) = 1

2e2

(
ee2α − e−e2α

) = 1

2e4

(
ee4α − e−e4α

)
. (49)

The following properties of octonion numbers,which can be derived using direct calculations,
will also be necessary. For any o ∈ O and α1, α2, α3 ∈ R we have

((
o · (e−e1α1 · e1)

) · e−e2α2
)

· e−e4α3 =
((

(o · e−e1α1) · ee2α2) · ee4α3
)

· e1, (50)

(
(o · e−e1α1) · (e−e2α2 · e2)

) · e−e4α3 =
((

(o · e−e1α1) · e−e2α2
) · ee4α3

)
· e2, (51)

(
(o · e−e1α1) · e−e2α2

) · (e−e4α3 · e4) =
((

(o · e−e1α1) · e−e2α2
) · e−e4α3

)
· e4. (52)
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Then, for i = 1 we have

U sin,1( f1, f2, f3) =
∫
R3

(
u(x) · sin(2π f0x1)

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

u(x)
(
e−e12π f1x1 sin(2π f0x1)

)
e−e22π f2x2e−e42π f3x3 dx

= −
∫
R3

u(x)
(
e−e12π f1x1 · e1 sin(2π f0x1) · e1

)
e−e22π f2x2e−e42π f3x3 dx

(50)= −1

2

∫
R3

u(x)
(
e−e12π f1x1(ee12π f0x1 − e−e12π f0x1)

)
ee22π f2x2ee42π f3x3 dx · e1

= −1

2

∫
R3

u(x)
(
e−e12π( f1− f0)x1 − e−e12π( f1+ f0)x1

)
e−e22π f2x2e−e42π f3x3 dx

= −1

2

(
U ( f1 − f0, f2, f3) −U ( f1 + f0, f2, f3)

) · e1,
which concludes the proof. For i = 2, 3 the property is proved analogously, using Eq. (51)
and (52). 	


It may seem that the next theorem is a simple consequence of Theorem 10 and 11 .
However, that is not the case since OFT is not a O-linear operation. We need to prove it
independently.

Theorem 12 Let f0 ∈ R and uexp,i (x) = u(x)·exp(−e2i−12π f0xi ), U exp,i = FOFT
{
uexp,i

}
,

i = 1, 2, 3. Then

U exp,1( f1, f2, f3) = U ( f1 + f0, f2, f3),

U exp,2( f1, f2, f3) = (
U ( f1, f2 + f0, f3) +U ( f1, f2 − f0, f3)

+U (− f1, f2 + f0, f3) −U (− f1, f2 − f0, f3)
) · 1

2
,

U exp,3( f1, f2, f3) = (
U ( f1, f2, f3 + f0) +U ( f1, f2, f3 − f0)

+U (− f1,− f2, f3 + f0) −U (− f1,− f2, f3 − f0)
) · 1

2
.

Proof Properties in the claim of this theorem are proved similarly as those of Theorems 10
and 11—using Eqs. (48) and (49). Furthermore we will use the following fact—for each
o ∈ O and α1, α2, α3 ∈ R we have:((

(o · e1) · e−e1α1
) · e−e2α2

)
· e−e4α3 =

((
o · (e−e1α1 · e1)

) · e−e2α2
)

· e−e4α3 , (53)
((

(o · e2) · e−e1α1
) · e−e2α2

)
· e−e4α3 = (

(o · ee1α1) · (e−e2α2 · e2)
) · e−e4α3 , (54)

((
(o · e4) · e−e1α1

) · e−e2α2
)

· e−e4α3 = (
(o · ee1α1) · ee2α2) · (e−e4α3 · e4). (55)

Then for i = 3 we have

U exp,3( f1, f2, f3) =
∫
R3

(
u(x) · e−e42π f0x3

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

(
u(x) · (cos(2π f0x3) − e4 sin(2π f0x3))

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

(
u(x) · cos(2π f0x3)

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx
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−
∫
R3

(
u(x) · e4 sin(2π f0x3)

)
e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

(55)=
∫
R3

u(x)e−e12π f1x1e−e22π f2x2
(
e−e42π f3x3 · cos(2π f0x3)

)
dx

−
∫
R3

u(x)ee12π f1x1ee22π f2x2
(
e−e42π f3x3 · e4 sin(2π f0x3)

)
dx

= 1

2

(
U ( f1, f2, f3 − f0) +U ( f1, f2, f3 + f0)

)

− 1

2

(
U (− f1, − f2, f3 − f0) −U (− f1, − f2, f3 + f0)

)
,

which concludes the proof in this case. Proofs for i = 1, 2 are similar and use Eqs. (53)
and (54). 	


To complete our considerations about properties of the octonion Fourier transforms of
octonion-valued functions, we should also state and prove the shift theorem. In case of real-
valued functions we already stated this theorem in our earlier work, i.e. article (Błaszczyk
and Snopek 2017).

Theorem 13 Let α, β, γ ∈ R and denote uα(x) = u(x1 − α, x2, x3), uβ(x) = u(x1, x2 −
β, x3) and uγ (x) = u(x1, x2, x3 − γ ). Let U � = FOFT

{
u�

}
, � = α, β, γ . Then

Uα( f1, f2, f3) = cos(2π f1α)U ( f1, f2, f3) − sin(2π f1α)U ( f1,− f2,− f3) · e1, (56)

Uβ( f1, f2, f3) = cos(2π f2β)U ( f1, f2, f3) − sin(2π f2β)U ( f1, f2,− f3) · e2, (57)

U γ ( f1, f2, f3) = cos(2π f3γ )U ( f1, f2, f3) − sin(2π f3γ )U ( f1, f2, f3) · e4. (58)

Proof We will use again the tools used in proofs of previous claims. Consider the OFT of
function uα . Using integration by substitution we get

Uα( f1, f2, f3) =
∫
R3

u(x1 − α, x2, x3)e
−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

u(x1, x2, x3)e
−e12π f1(x1+α)e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

u(x)(e−e12π f1x1 · e−e12π f1α)e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

u(x)
(
e−e12π f1x1 · (cos(2π f1α) − e1 sin(2π f1α))

)
e−e22π f2x2e−e42π f3x3 dx

(50)= cos(2π f1α)

∫
R3

u(x)e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

− sin(2π f1α)

∫
R3

u(x)e−e12π f1x1ee22π f2x2ee42π f3x3 dx · e1
= cos(2π f1α)U ( f1, f2, f3) − sin(2π f1α)U ( f1,− f2,− f3) · e1,

which concludes the proof for uα . The derivation of (57) and (58) is very similar and utilises
properties (51) and (52). 	


Next properties that we will prove are a key element in the analysis of multidimensional
linear time-invariant systems described by a system of partial differential equations. In our
considerations, however, we will limit ourselves to real-valued functions and from now on
we assume that u, v : R3 → R and U and V are the OFTs of u and v, respectively. We will
also assume that the relevant derivatives of u exist, as well as their OFTs.
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Theorem 14 Let U ∂x1 , U ∂x2 and U ∂x3 denote the OFTs of ux1 , ux2 and ux3 , respectively.
Then

U ∂x1( f1, f2, f3) = U ( f1,− f2,− f3) · (2π f1e1), (59)

U ∂x2( f1, f2, f3) = U ( f1, f2,− f3) · (2π f2e2), (60)

U ∂x3( f1, f2, f3) = U ( f1, f2, f3) · (2π f3e4). (61)

Proof We will prove only the first formula. Consider derivative ux1 and its octonion Fourier
transform U ∂x1 . ux1 is a real-valued function, hence we can write U ∂x1 as a sum of eight
components of different parity

U ∂x1 = U ∂x1
eee −U ∂x1

oee e1 −U ∂x1
eoe e2 +U ∂x1

ooe e3 −U ∂x1
eeo e4 +U ∂x1

oeo e5 +U ∂x1
eoo e6 −U ∂x1

ooo e7,

where

U ∂x1
eee (f) =

∫
R3

ux1(x) cos(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx,

U ∂x1
oee (f) =

∫
R3

ux1(x) sin(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx,

U ∂x1
eoe (f) =

∫
R3

ux1(x) cos(2π f1x1) sin(2π f2x2) cos(2π f3x3) dx,

U ∂x1
ooe (f) =

∫
R3

ux1(x) sin(2π f1x1) sin(2π f2x2) cos(2π f3x3) dx,

U ∂x1
eeo (f) =

∫
R3

ux1(x) cos(2π f1x1) cos(2π f2x2) sin(2π f3x3) dx,

U ∂x1
oeo (f) =

∫
R3

ux1(x) sin(2π f1x1) cos(2π f2x2) sin(2π f3x3) dx,

U ∂x1
eoo (f) =

∫
R3

ux1(x) cos(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx,

U ∂x1
ooo (f) =

∫
R3

ux1(x) sin(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx,

where f = ( f1, f2, f3), x = (x1, x2, x3).
We will use integration by parts and utilize the fact that for every integrable and smooth

function u and every x2, x3 ∈ R we have lim
x1→±∞ u(x) = 0. Then

U ∂x1
eee (f) =

∫
R3

u(x) sin(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx · 2π f1 = Uoee(f) · 2π f1,

U ∂x1
oee (f) = −

∫
R3

u(x) cos(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx · 2π f1 = −Ueee(f) · 2π f1,

U ∂x1
eoe (f) =

∫
R3

u(x) sin(2π f1x1) sin(2π f2x2) cos(2π f3x3) dx · 2π f1 = Uooe(f) · 2π f1,

U ∂x1
ooe (f) = −

∫
R3

u(x) cos(2π f1x1) sin(2π f2x2) cos(2π f3x3) dx · 2π f1 = −Ueoe(f) · 2π f1,

U ∂x1
eeo (f) =

∫
R3

u(x) sin(2π f1x1) cos(2π f2x2) sin(2π f3x3) dx · 2π f1 = Uoeo(f) · 2π f1,

U ∂x1
oeo (f) = −

∫
R3

u(x) cos(2π f1x1) cos(2π f2x2) sin(2π f3x3) dx · 2π f1 = −Ueeo(f) · 2π f1,
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U ∂x1
eoo (f) =

∫
R3

u(x) sin(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx · 2π f1 = Uooo(f) · 2π f1,

U ∂x1
ooo (f) = −

∫
R3

u(x) cos(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx · 2π f1 = −Ueoo(f) · 2π f1,

where

U = Ueee −Uoeee1 −Ueoee2 +Uooee3 −Ueeoe4 +Uoeoe5 +Ueooe6 −Uoooe7

is a sum of eight components of different parity, as explained in Sect. 2. Hence

U ∂x1 = (
Uoee +Ueeee1 −Uooee2 −Ueoee3 −Uoeoe4 −Ueeoe5 +Uoooe6 +Ueooe7

) · 2π f1

= (
Ueee −Uoeee1 +Ueoee2 −Uooee3 +Ueeoe4 −Uoeoe5 +Ueooe6 −Uoooe7

)
· (2π f1e1).

Considering the parity of each component we get formula (59). 	

Let us note that the statement of the above theorem is analogous to the claim of the classic

version of the Fourier transform of the derivative. The difference is first of all the kind of
imaginary unit by which the Fourier transform is multiplied and the change of sign at some
variables. This is a characteristic feature of the octonion Fourier transformation. Similar
argument leads to the following corollaries for the OFTs of partial derivatives of higher
order.

Corollary 3 Let U ∂xi ...x j denote the OFT of uxi ...x j . Then

U ∂x1x2( f1, f2, f3) = U ( f1,− f2,− f3) · (2π f1)(2π f2)e3,

U ∂x1x3( f1, f2, f3) = U ( f1, f2,− f3) · (2π f1)(2π f3)e5,

U ∂x2x3( f1, f2, f3) = U (− f1, f2,− f3) · (2π f2)(2π f3)e6,

U ∂x1x2x3( f1, f2, f3) = U (− f1, f2,− f3) · (2π f1)(2π f2)(2π f3)e7.

An analogous conclusion can also be drawn for pure partial derivatives of the second
order. It is worth noting that the claim of the theorem is no different from the corresponding
theorem for the classic Fourier transform. We leave claims of Corollary 3 and 4 without
proof.

Corollary 4 Let U ∂xi xi denote the OFT of uxi xi . Then

U ∂x1x1( f1, f2, f3) = −U ( f1, f2, f3) · (2π f1)
2,

U ∂x2x2( f1, f2, f3) = −U ( f1, f2, f3) · (2π f2)
2,

U ∂x3x3( f1, f2, f3) = −U ( f1, f2, f3) · (2π f3)
2.

Another significant result that can be demonstrated is the OFT differentiation theorem.
First of all, however, the concept of differentiation of octonion-valued function should be
defined. We will say that the partial derivative vxi , i = 1, 2, 3, of the function v : R3 → O,
v = v0 + v1e1 + · · · + v7e7, exists if and only if all the partial derivatives v j,xi , i = 1, 2, 3,
j = 0, . . . , 7, exist and then:

vxi (x) = v0,xi + v1,xi (x)e1 + · · · + v7,xi (x)e7.

We can now formulate the theorem on partial derivatives of the OFT U of u : R3 → R,
analogous to the theorem known from the classical Fourier analysis. As before, we will
assume that all considered derivatives and transforms exist.
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Theorem 15 Let Vi and Wi , where i = 1, 2, 3, denote the OFTs of vi (x) = −2πxi u(x) and
wi (x) = vi (x) · e2i−1 , i = 1, 2, 3, respectively. Then

U f1( f1, f2, f3) = V1( f1,− f2,− f3) · e1 = W1( f1, f2, f3), (62)

U f2( f1, f2, f3) = V2( f1, f2,− f3) · e2 = W2(− f1, f2, f3), (63)

U f3( f1, f2, f3) = V3( f1, f2, f3) · e4 = W3(− f1,− f2, f3). (64)

Proof We will apply methods analogous to those used in the proof of Theorem 14. We will
prove only the first of the given formulas, the remaining ones are shown in the same way.
Consider function v(x) = −2πx1u(x) and notice that

veyz(x) = −2πx1uoyz(x), y, z ∈ {e, o},
voyz(x) = −2πx1ueyz(x), y, z ∈ {e, o}.

As in the previous considerations, we can write U and V (the OFT of v) as sums of eight
components of different parity

U = Ueee −Uoeee1 −Ueoee2 +Uooee3 −Ueeoe4 +Uoeoe5 +Ueooe6 −Uoooe7,

V = Veee − Voeee1 − Veoee2 + Vooee3 − Veeoe4 + Voeoe5 + Veooe6 − Voooe7,

where Uxyz , x, y, z ∈ {e, o} are defined as in (40)–(47) and Vxyz analogously.
Assuming that the functions u and v are integrable (in the Lebesgue sense), we can

differentiate under the integral sign and then we get

Ueee, f1(f) = −
∫
R3

2πx1ueee(x) sin(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx = Voee(f),

Uoee, f1(f) =
∫
R3

2πx1uoee(x) cos(2π f1x1) cos(2π f2x2) cos(2π f3x3) dx = −Veee(f),

...

Ueoo, f1(f) = −
∫
R3

2πx1ueoo(x) sin(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx = Vooo(f),

Uooo, f1(f) =
∫
R3

2πx1uooo(x) sin(2π f1x1) sin(2π f2x2) sin(2π f3x3) dx = −Veoo(f).

Hence

U f1 = Voee + Veeee1 − Vooee2 − Veoee3 − Voeoe4 − Veeoe5 + Voooe6 + Veooe7
= (Veee − Voeee1 + Veoee2 − Vooee3 + Veeoe4 − Voeoe5 + Veooe6 − Voooe7) · e1.

Considering the parity of each component we get the first equality in formula (62). Using
the fact that for any o ∈ O and α1, α2, α3 ∈ R we have

(
((o · e1) · e−e1α1) · e−e2α2

) · e−e4α3 = (
((o · e−e1α1) · ee2α2) · ee4α3) · e1

we get the second equality in (62), which concludes the proof. 	


At the end of this section we go to one of the most important Fourier transform properties
and the most frequently used in signal analysis–the so-called Convolution theorem. This
claim was already signaled in (Błaszczyk 2019), here we present the details of the proof.
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Theorem 16 Let FOFT{u ∗ v} denote the OFT of the convolution of u and v, i.e.

(u ∗ v)(x) =
∫
R3

u(y) · v(x − y) dy.

Then

FOFT{u ∗ v}(f) = V ( f1, f2, f3) · (Ueee(f) −Ueeo(f) e4)

+ V ( f1,− f2,− f3) · (−Uoee(f) e1 +Uooe(f) e3)

+ V ( f1, f2,− f3) · (−Ueoe(f) e2 +Uoeo(f) e5)

+ V (− f1, f2,− f3) · (Ueoo(f) e6 −Uooo(f) e7),

where

U = Ueee −Uoeee1 −Ueoee2 +Uooee3 −Ueeoe4 +Uoeoe5 +Ueooe6 −Uoooe7

is a sum of 8 terms with different parity with relation to x1, x2, and x3, as in (40)–(47).

This theorem is the generalization of results presented in (Bülow 1999) and (Ell 1993).
Moreover, if at least one of the functions u or v is even with respect to both x1 and x2 then
the abovementioned formula reduces to the well-known form. However, one should bear in
mind the fact that in general the above complicated form this claim is of little use. In the next
section we will provide the argument similar to one presented in (Ell 1993) which will give
much simpler formula.

Proof of Theorem 16 We will use the fact that for every α1, α2, α3 ∈ R we have
(
(e−e1α1) · (e−e2α2)

) · (e−e4α3) = (
(e−e1α1 · e−e2α2) · e−e4α3

)
, (65)(

(e−e1α1 · e1) · (e−e2α2)
) · (e−e4α3) = (

(e−e1α1 · ee2α2) · ee4α3) · e1, (66)(
(e−e1α1) · (e−e2α2 · e2)

) · (e−e4α3) = (
(e−e1α1 · e−e2α2) · ee4α3) · e2, (67)(

(e−e1α1 · e1) · (e−e2α2 · e2)
) · (e−e4α3) = (

(e−e1α1 · ee2α2) · ee4α3) · e3, (68)(
(e−e1α1) · (e−e2α2)

) · (e−e4α3 · e4) = (
(e−e1α1 · e−e2α2) · e−e4α3

) · e4, (69)(
(e−e1α1 · e1) · (e−e2α2)

) · (e−e4α3 · e4) = (
(e−e1α1 · e−e2α2) · ee4α3) · e5, (70)(

(e−e1α1) · (e−e2α2 · e2)
) · (e−e4α3 · e4) = (

(ee1α1 · e−e2α2) · ee4α3) · e6, (71)(
(e−e1α1 · e1) · (e−e2α2 · e2)

) · (e−e4α3 · e4) = (
(ee1α1 · e−e2α2) · ee4α3) · e7. (72)

From the definition of the OFT and the convolution, the Fubini theorem and using inte-
gration by substitution we have

∫
R3

(∫
R3

u(y) · v(x − y) dy
)

· e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

=
∫
R3

u(y) ·
(∫

R3
v(x − y) · e−e12π f1x1e−e22π f2x2e−e42π f3x3 dx

)
dy

=
∫
R3

u(y) ·
(∫

R3
v(x) · e−e12π f1(x1+y1)e−e22π f2(x2+y2)e−e42π f3(x3+y3) dx

)
dy = (�).

Consider the inner integral. We can write the transformation kernel in the following way:

e−e12π f1(x1+y1)e−e22π f2(x2+y2)e−e42π f3(x3+y3)

= (
(e−e1α1 · cos(β1)) · (e−e2α2 · cos(β2))

) · (e−e4α3 · cos(β3))
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− (
(e−e1α1 · e1 sin(β1)) · (e−e2α2 · cos(β2))

) · (e−e4α3 · cos(β3))

− (
(e−e1α1 · cos(β1)) · (e−e2α2 · e2 sin(β2))

) · (e−e4α3 · cos(β3))

+ (
(e−e1α1 · e1 sin(β1)) · (e−e2α2 · e2 sin(β2))

) · (e−e4α3 · cos(β3))

− (
(e−e1α1 · cos(β1)) · (e−e2α2 · cos(β2))

) · (e−e4α3 · e4 sin(β3))

+ (
(e−e1α1 · e1 sin(β1)) · (e−e2α2 · cos(β2))

) · (e−e4α3 · e4 sin(β3))

+ (
(e−e1α1 · cos(β1)) · (e−e2α2 · e2 sin(β2))

) · (e−e4α3 · e4 sin(β3))

− (
(e−e1α1 · e1 sin(β1)) · (e−e2α2 · e2 sin(β2))

) · (e−e4α3 · e4 sin(β3)),

where αi = 2π fi xi , βi = 2π fi yi , i = 1, 2, 3.
Using Eqs. (65)–(72) we get

(�) = V ( f1, f2, f3) ·Ueee(f) − V ( f1,− f2,− f3) ·Uoee(f)e1
− V ( f1, f2,− f3) ·Ueoe(f)e2 + V ( f1,− f2,− f3) ·Uooe(f)e3
− V ( f1, f2, f3) ·Ueeo(f)e4 + V ( f1, f2,− f3) ·Uoeo(f)e5
+ V (− f1, f2,− f3) ·Ueoo(f)e6 − V (− f1, f2,− f3) ·Uooo(f)e7,

which, after rearranging the terms, concludes the proof. 	

Note that (due to the commutativity of convolution) the following formula is also valid:

FOFT {u ∗ v} (f) = U ( f1, f2, f3) · (Veee(f) − Veeo(f) e4)

+U ( f1,− f2,− f3) · (−Voee(f) e1 + Vooe(f) e3)

+U ( f1, f2,− f3) · (−Veoe(f) e2 + Voeo(f) e5)

+U (− f1, f2,− f3) · (Veoo(f) e6 − Vooo(f) e7),

where

V = Veee − Voeee1 − Veoee2 + Vooee3 − Veeoe4 + Voeoe5 + Veooe6 − Voooe7

is a sum of 8 terms with different parity.
At the end of this section, we will cite several other results that are important from the

point of view of system analysis, i.e. octonion analogues of Parseval-Plancherel Theorems
for real-valued functions, which we proved in (Błaszczyk and Snopek 2017).

Theorem 17 Let u, v : R3 → R be square-integrable functions (in Lebesgue sense). Then

(u, v) = (UOFT, VOFT) ,

where

( f , g) =
∫
R3

f (x) · g∗(x) dx

denotes the classical scalar product of functions (real- or octonion-valued) of 3 variables.

In (Błaszczyk 2018) we presented a detailed commentary on these assertions, including
indicating the significance of the assumption in Theorem 17 that the considered functions
are real-valued—for the octonion-valued functions the claim of Theorem 17 doesn’t hold.
In case of real-valued functions Theorem 18 (also known in classical theory as Rayleigh
Theorem) is direct corollary of Theorem 17, but (as we proved in (Błaszczyk 2018) and was
shown independently in (Lian 2019)) is valid also in the general case of octonion-valued
functions.
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Theorem 18 L2-norm of any function u : R3 → O (square-integrable in Lebesgue sense) is
equal to the L2-norm of its octonion Fourier transform, i.e.

‖u‖L2(R3) = ‖UOFT‖L2(R3) ,

where ‖ f ‖L2(R3) = (∫
R3 | f (x)|2 dx

)1/2
for any square-integrable function f : R3 → O.

Of course, the above theorem shows that OFT preserves the energy of octonion-valued
functions. However, it is worth mentioning the recent result in (Lian 2019), where the author
argues that OFT of octonion-valued function also satisfies the Hausdorff-Young inequality.

4 Multidimensional linear time-invariant systems

As we mentioned in the previous section, the formulas in the theorems on the OFT properties
are quite complicated and it seems that they can not be applied in practice. In this section
we will show that using the notation of quadruple-complex numbers, we can simplify these
expressions.

We will focus on using the OFT and notion of quadruple-complex numbers in the analysis
of 3-D linear time-invariant (LTI) systems of linear partial differential equations (PDEs)
with constant coefficients. The classical Fourier transform is well recognized tool in solving
linear PDEs with constant coefficients due to the fact, that it reduces differential equations
into algebraic equations (Allen and Mills 2003). It is true also in case of the quaternion
Fourier transform (Ell 1993) and, as we will present in this section, the octonion Fourier
transform. We have already signaled the possibility of this application in (Błaszczyk 2019),
here we will develop these considerations and show additional examples.

In Sect. 3 we derived formulas for the OFT of partial derivatives. We can now reformulate
(by straightforward computations) those formulas using the multiplication in F algebra.

Corollary 5 Let u : R3 → R and U = FOFT {u}. Then
U ∂x1(f) = U (f) � (2π f1)e1,

U ∂x2(f) = U (f) � (2π f2)e2,

U ∂x1x2(f) = U (f) � (2π f1)(2π f2)e3,

U ∂x3(f) = U (f) � (2π f3)e4,

U ∂x1x3(f) = U (f) � (2π f1)(2π f3)e5,

U ∂x2x3(f) = U (f) � (2π f2)(2π f3)e6,

U ∂x1x2x3(f) = U (f) � (2π f1)(2π f2)(2π f3)e7.

It is worth noting here the advantages that the above theorem on the partial derivatives
transform brings. Let u : R3 → R be a function even with respect to each variable. Both
classic and octonion Fourier transforms of u are real-valued functions. Using the classical
Fourier transform for the function ux1x2 we get −U (f) · (2π f1)(2π f2), and thus also the
real-valued function. In a sense, we lose information that the function has been differentiated
at all. In turn, OFT of function ux1x2 is equal toU (f)·(2π f1)(2π f2)e3, therefore it is a purely
imaginary function (only the imaginary part standing next to the unit e3 will be non-zero).
This clearly indicates differentiation with respect to variables x1 and x2.

Every linear partial differential equation with constant coefficients can be reduced to
algebraic equation (with respect to multiplication in F). Note that in the case of second
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order equations in which there are no mixed derivatives, this is also true in the sense of
multiplication of octonions, e.g. for a nonhomogeneous wave equation, i.e.

utt = ux1x1 + ux2x2 + f (t, x1, x2)

we have (
(2π f1)

2 + (2π f2)
2 − (2πτ)2

) ·U (τ, f1, f2) = F(τ, f1, f2),

where U = FOFT {u} and F = FOFT { f }. But on the other hand, if we consider the heat
equation, i.e.

ut = ux1x1 + ux2x2 + f (t, x1, x2),

where we get(
(2π f1)

2 + (2π f2)
2 + (2πτ)e1

) �U (τ, f1, f2) = F(τ, f1, f2).

An inverse (in sense of multiplication in F) of
(
(2π f1)2 + (2π f2)2 + (2πτ)e1

)
exists if and

only if (τ, f1, f2) �= (0, 0, 0) and is equal to

(
(2π f1)

2 + (2π f2)
2 + (2πτ)e1

)−1 = (2π f1)2 + (2π f2)2 − (2πτ)e1(
(2π f1)2 + (2π f2)2

)2 + (2πτ)2
.

Hence

U (τ, f1, f2) = (2π f1)2 + (2π f2)2 − (2πτ)e1(
(2π f1)2 + (2π f2)2

)2 + (2πτ)2
� F(τ, f1, f2).

You can not get such a simple formula using multiplication in octonion algebra. Additional
theoretical considerations regarding partial differential equations and the use of integral
transforms in Cayley–Dickson algebras can be found in (Ludkovsky 2010).

Moreover, the notion of quadruple-complex numbermultiplication can be used to describe
general linear time-invariant systems of three variables and to reduce parallel, cascade and
feedback connections of linear systems into simple algebraic equations, as in classical system
theory.

Consider a 3-D LTI system. We know from the classical signal and system theory that it
can be described by its impulse response h : R3 → R (sometimes called its Green function)
and then, given the input signal u : R3 → R, the output v : R3 → R of such system is given
by the formula:

v(x) =
∫
R3

u(y) · h(x − y) dy = (u ∗ h)(x).

The output is the convolution of the input signal and the impulse response of the system,
which can be schematicaly presented as in Fig. 1.

Corollary 6 The dependence between the OFTs of an input u and an output v of the 3-D LTI
system with the impulse response h is given by

V ( f1, f2, f3) = HOFT( f1, f2, f3) · (Ueee(f) −Ueeo(f) e4)

Fig. 1 3-D LTI system
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Fig. 2 Cascade connection of 3-D LTI systems

Fig. 3 Parallel connection of 3-D
LTI systems

+ HOFT( f1,− f2,− f3) · (−Uoee(f) e1 +Uooe(f) e3)

+ HOFT( f1, f2,− f3) · (−Ueoe(f) e2 +Uoeo(f) e5)

+ HOFT(− f1, f2,− f3) · (Ueoo(f) e6 −Uooo(f) e7), (73)

where V = FOFT {v}, U = FOFT {u} and HOFT = FOFT {h} will be called the octonion
frequency response of the system.

Corollary 7 Formula (73) can be restated using the multiplication in F algebra. We have

V (f) = HOFT(f) �U (f)

which is the same as the very well known input–output relation in classic signal and system
theory.

Consider now the classical connections between the systems, i.e. cascade, parallel and
feedback connections. We start with the cascade connection (Fig. 2), for which we can write

V (f) = H2,OFT(f) � W (f),

W (f) = H1,OFT(f) �U (f),

where V = FOFT {v},W = FOFT {w},U = FOFT {u}, H1,OFT = FOFT {h1} and H2,OFT =
FOFT {h2}. Since the multiplication in F is commutative and alternative, we obtain

V (f) = HOFT(f) �U (f), where HOFT(f) = H1,OFT(f) � H2,OFT(f),

as we have for classical (complex) Fourier transform.
In the case of parallel connection (Fig. 3) the computations are much simpler. We get

V (f) = HOFT(f) �U (f), where HOFT(f) = H1,OFT(f) + H2,OFT(f),

the same as in the classical theory.
It gets more complicated if we consider the feedback connection, as in Fig. 4. We can

write the system of equations:

V (f) = H1,OFT(f) � W (f),

W (f) = U (f) − H2,OFT(f) � V (f).

Using the commutativity and associativity of � we get

(1 + H1,OFT(f) � H2,OFT(f)) � V (f) = H1,OFT(f) �U (f),
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Fig. 4 Feedback connection of
3-D LTI systems

which leads to

V (f) = HOFT(f) �U (f), where HOFT(f) = (1 + H1,OFT(f) � H2,OFT(f))−1 � H1,OFT(f),

and the inverse is in sense of multiplication in F. The formula is very well-known, but we
need to remember that not every element of F has its inverse. Hence we can see that not every
3-D LTI system can be described with the convolution formula and analyzed with the OFT.

5 Discussion and conclusions

It has been shown that the theory of octonion Fourier transforms can be generalized to the
case of functions with values in higher-order algebras. Those transforms have properties
that are similar to their classical (complex) counterparts. Octonion analogues of scaling,
modulation and shift theorems proved in Sect. 3 form the foundation of octonion-based
signal and system theory. Properties of the octonion Fourier transform in context of other
signal-domain operations, i.e. derivation and convolution of real-valued functions, show that
it is a fine tool in the analysis of multidimensional LTI systems, as explained in Sect. 4.

It can still be argued that, from a practical point of view, there are no visible advantages of
using hypercomplex versions of Fourier transforms. However, as in the quaternion case (as
well as with a different approach to higher order algebras as in the case of Clifford-Fourier
transform), the level of computational complexity of OFT calculation remains almost the
same as in the classic version (as we showed in Sect. 2), while we get additional information
about signal structure—thanks to the properties of Hermitian symmetry, we know that all
spectrum information is contained in the first 3-D space octant (Błaszczyk and Snopek 2017),
and we also do not lose information about the relationships between individual coordinates of
a multidimensional signal, which is important in practical applications mentioned in Sect. 1.

It remains to study the discrete case, i.e. discrete-space octonion Fourier transform
(DSOFT). Preliminary studies show that the notion of quadruple-complex numbers can be
applied to define the DSOFT and to analyze linear difference equations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
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