
Multidimensional Systems and Signal Processing (2020) 31:793–827
https://doi.org/10.1007/s11045-019-00686-z

PAC-Bayesian framework based drop-path method for 2D
discriminative convolutional network pruning

Qinghe Zheng1 · Xinyu Tian2 ·Mingqiang Yang1 · Yulin Wu1 · Huake Su3

Received: 9 May 2019 / Revised: 25 July 2019 / Accepted: 4 October 2019 / Published online: 19 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Deep convolutional neural networks (CNNs) have demonstrated its extraordinary power on
various visual tasks like object detection and classification. However, it is still challenging
to deploy state-of-the-art models into real-world applications, such as autonomous vehicles,
due to their expensive computation costs. In this paper, to accelerate the network inference,
we introduce a novel pruning method named Drop-path to reduce model parameters of 2D
deep CNNs. Given a trained deep CNN, pruning paths with different lengths is achieved
by ordering the influence of neurons in each layer on the probably approximately correct
(PAC) Bayesian boundary of the model. We believe that the invariance of PAC-Bayesian
boundary is an important factor to guarantee the generalization ability of deep CNN under
the condition of optimizing as much as possible. To the best of our knowledge, this is the
first time to reduce model size based on the generalization error boundary. After pruning,
we observe that the convolutional kernels themselves become sparse, rather than some being
removed directly. In fact, Drop-path is generic and can be well generalized onmulti-layer and
multi-branch models, since parameter ranking criterion can be applied to any kind of layer
and the importance scores can still be propagated. Finally, Drop-path is evaluated on two
image classification benchmark datasets (ImageNet and CIFAR-10) with multiple deep CNN
models, including AlexNet, VGG-16, GoogLeNet, and ResNet-34/50/56/110. Experimental
results demonstrate that Drop-path achieves significant model compression and acceleration
with negligible accuracy loss.

Keywords Deep learning · Model compression · Model acceleration · Structure
exploration · Generalization error boundary

B Mingqiang Yang
yangmq@sdu.edu.cn

1 School of Information Science and Engineering, Shandong University, Qingdao 266237, China

2 College of Mechanical and Electrical Engineering, Shandong Management University, Jinan
250357, China

3 School of Microelectronics, Xidian University, Xi’an 710126, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11045-019-00686-z&domain=pdf
http://orcid.org/0000-0003-1466-2542
http://orcid.org/0000-0003-1247-6076
http://orcid.org/0000-0002-5598-8357
http://orcid.org/0000-0001-8116-715X
http://orcid.org/0000-0002-0642-618X

794 Multidimensional Systems and Signal Processing (2020) 31:793–827

1 Introduction

Relying on the ultra-large-scale parameters (Lecun et al. 2015), deep neural networks have
become the flexible function approximators and have been very successful in a wide range of
tasks, such as industrial automation control (Miao and He 2017), computer aided diagnosis
(Shin et al. 2016; Samala et al. 2019) and financial data analysis (Jang and Lee 2018; Jie and
Wang 2017). With the development of deep learning, the structure of deep neural networks
becomes more and more complex. Inevitably, deep neural networks require high computa-
tional costs in both training and testing phases, which is one of the most important reasons
that restricts its practical application in consumer electronics. For mobile and embedded
devices (Gutierrez-Galan et al. 2018), the inference speed and file size of the model are crit-
ical. The depth, size and amount of computation, as well as the memory overhead during the
model runtime are rapidly increasing, which make it difficult for deep networks to be applied
to mobile terminals or embedded devices with low hardware resources and high real-time
requirements, such as autonomous vehicles (Li et al. 2018). Therefore, how to reduce the
network size and inference time under the premise of ensuring performance and promote its
application in consumer electronics is a hot topic of current research. There have been great
interests in reducing the redundancy of deep neural networks to achieve model compression
and acceleration (He et al. 2017; Frankle and Carbin 2019; Zoph et al. 2018). The lightening
of neural networks (Xu et al. 2019; Kim et al. 2016; Zheng et al. 2017) is the future develop-
ment direction, and network pruning (Huang andWang 2018; Yu et al. 2018; Liu et al. 2017)
is one of the key technologies.

The pruning of neural networks is meant to reduce or control the number of non-zero
parameters or feature maps that need to be used in the model. Pruning can be seen as a struc-
tural exploration that finds out howmany parameters or featuremaps are really needed in each
layer to get the best performance. In fact, researchers found that only about 4% of the param-
eters need to be updated during back-propagation (Molchanov et al. 2017). By sparsifying
deep neural networks, we can avoid unnecessary computation and resources, since irrelevant
degrees of freedom are pruned away and do not need to be computed. Another benefit is
that by reducing the number of parameters (i.e., the redundancy in the parameter space), the
generalization ability of the neural network can even be improved. As we have seen in the
recent research on the generalization ability of deep neural networks (Painsky and Rosset
2016; Hu et al. 2017; Zheng et al. 2018), the original number of parameters (L0-norm) cannot
actually predict its performance. In other words, based on the experimental results, people
found that pruning the network in prudent manners even helps to improve generalization.
At the same time, new parameter correlations are being developed to predict and describe
generalization ability, such as the Fisher-Rao norm (Goh et al. 2014). Interestingly, Fisher
pruning algorithm has been proved to have a good correlation with Fisher–Rao norm (Tian
et al. 2017), which means that there is a deeper and incomprehensible relationship between
network pruning, parameter redundancy and its generalization.

Pruning parameters is simple but challenging because removing parameters in one layer
might dramatically impair the input of the following layers. Our goal is to reduce the com-
putational cost of network inference, especially in the transfer-learning environment: when
a pre-trained model starts to be fine-tuned, it inherits the large amount of computation that
was used to solve the original task, which may be superfluous for solving the target task. On
the other hand, small models that are gradually pruned from a dense neural network usually
yield much better results than the direct training from scratch of small models, which shows
that the value of automatic pruning methods may lie in identifying efficient structures and

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 795

performing implicit architecture searches rather than just selecting “important” weights. In
practice, the denser network can help to avoid bad local minimums and provide better initial-
izations which are critical for sparser network to learn effective representations (Kim et al.
2016).

In the main part of this paper, to accelerate the network inference, we propose a holis-
tic pruning method named Drop-path to reduce model parameters of 2D deep convolutional
neural networks, utilizing redundancy inter parameters per layer under PAC-Bayesian frame-
work. The whole process is followed in two alternative steps: pruning and fine-tuning. Given
a trained deep CNN, pruning each path is achieved by ordering the influence of neurons in
each layer on the PAC-Bayesian boundary of the model. We believe that the invariance of
PAC-Bayesian boundary is an important factor to guarantee the generalization ability of deep
CNN under the condition of optimizing as much as possible. To the best of our knowledge,
this is the first time to reduce model size based on the generalization error boundary. In the
pruning step, parameters in paths with different lengths are removed, as shown in Fig. 1. It
is worth noting that most convolutional kernels become sparse, rather than some convolu-
tional kernels being completely removed and acting like Atrous convolution operation (Yu
and Koltun 2015). In the fine-tuning step, the new network initialized by the previous model
is optimized to retain its classification capability. The two steps are alternated to achieve
the trade-off between model size and the performance. The pruning ratio in Drop-path is
pre-defined as a hyper-parameter which can be determined according to the actual needs
of specific applications, e.g., accuracy, memory, and floating-point operations per second
(FLOPs). Drop-path is generic and can be well generalized on multi-layer and multi-branch
models, since parameter ranking can be applied to any kind of layer and the importance
scores can still be propagated. Compared with layer-by-layer pruning and retraining inde-
pendently (Yang et al. 2017) or greedily (Li et al. 2017), the reasons for cross-layer removal
of connections in different paths are as follows:

• For deep neural networks, the overall pruning and fine-tuning can extremely save the
training time.

• Pruning parameters across layers gives a holistic view of the robustness of the model,
resulting in a smaller network.

• The overall consideration is necessary, as the pruning of bottom and top layers may affect
each other. For example, for the residual network (ResNet), pruning the identity mapping
layers or the second layer of each residual block results in additional pruning of subsequent
layers.

Finally, we perform various experiments to demonstrate the effectiveness of the proposed
Drop-path method. Eight popular deep CNNs [e.g., AlexNet (Krizhevsky et al. 2012), VGG-
16 (Simonyan and Zisserman 2014), GoogLeNet (Szegedy et al. 2015) and ResNet (He
et al. 2016)] trained on ImageNet (Russakovsky et al. 2015) and CIFAR-10 (Krizhevsky and
Hinton 2009) achieve about 2 × inference speed up along with no more than 1% increase
of classification error. In this way, we show that Drop-path can accelerate the inference of
network with practical implementations, without seriously hurting the performance of deep
CNN.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to the
relatedwork of network pruningmethods. Section 3 introduces the PAC-Bayesian framework
based Drop-path method. Extensive experiments and analyses are presented in Sect. 4. Some
properties and conjectures of Drop-pathmethod are discussed in Sect. 5. Finally, we conclude
our works and future directions in Sect. 6.

123

796 Multidimensional Systems and Signal Processing (2020) 31:793–827

Full
connection

Output

Hidden layers

… …

… …

…

…

Input

…

Drop-path operation

path 1Im
po

rt
an

ce

sc
or

es

path 2 path 3 path 4 path 5 path 6 path 7 path 8 path 9 path 10 path 11 path τpath 12

…

Fig. 1 An illustration of Drop-path method running in a simple neural network model. Paths with different
lengths, e.g., green and yellow paths, are gradually pruned during the training process. The dotted lines
represent the connections that are removed

2 Related work

Heavy-duty deep neural networks are difficult to be applied tomobile terminals and embedded
devices which require great intelligence and real-time performance in real life. Compression
and acceleration of deep neural networks have recently drawnmuch attention in deep learning
community. Recent studies (Kim et al. 2016; Srinivas and Babu 2016; Han et al. 2015) have
investigated the significant redundancy (the parameters that are not important or meaningless
in the reasoning process of deep neural network) in deep neural networks and reduced the
number of neurons and filters by pruning the unimportant ones.

In general, there are two common understandings behind the pruning process. First, it
is important to train a large and over-parameterized model which can provide strong repre-
sentation and optimization capabilities, and people can safely remove redundant parameters
without significant damage to accuracy. Therefore, it is generally accepted that this method
is more effective than directly training a smaller network from scratch. Second, the pruned
architecture and the relevant weights are considered to be the key to achieving the efficient
performance. Therefore, most of the existing pruning techniques choose to fine-tune the
pruned model instead of training it from scratch. The weights that are retained after pruning
are often considered critical (Wang et al. 2018) because it is difficult to select an important
set of weights accurately from the structural space.

To measure the importance of neurons or connections in a network, the exact solutions
are very hard to obtain given the complexity of highly non-linearity. Some previous works
(Molchanov et al. 2017; Theis et al. 2018; Luo et al. 2017) approximate it using 2nd-order
Taylor expansion. Our work is a different approximation based on the PAC-Bayesian frame-
work. Bolukbasi et al. (2017) regularize runtime in convolutional layers to determine whether
some kernels or weights can be bypassed. Sparsity regularization terms (Figurnov et al. 2016)
have been used to learn sparse CNN structure. Han et al. (2016) propose to learn important
connections and perform network pruning based on the weight of network connection. Den-
ton et al. (2014) apply singular value decomposition to neural network to preserve important
connections. The meProp (Sun et al. 2017) uses approximate gradients by keeping only top-k

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 797

elements based on the magnitude values. Torfi and Shirvani (2018) propose group sparsity to
constrain the effective parameters and set an extra loss term to force some parameters not to
be sparse to keep the network performance. The above methods prune the “least important”
neurons layer-by-layer either independently or greedily, without considering weights in dif-
ferent layers jointly and the influence of error propagation in the deep network. In fact, one
problem with such methods is that neurons deemed unimportant in an early layer can con-
tribute significantly to responses of important neurons in later layers. Therefore, the neurons
in the network must be pruned as a whole according to a unified goal.

Huang and Wang (2018) add an item to structural blocks or neural nodes to regularize
the network structure and control the output. It adjusts the unit while processing the whole
structure, making the final neural network model look cleaner. Yu et al. (2018) determine the
importance of each channel in the back-propagation process, and then selects the important
parts based on Inf-FSmethod. Sau and Balasubramanian (2016) use a noisy network to guide
the training of another small network. Liu et al. (2017) add a scale quantization factor to each
channel of the convolution kernel, which is regularized during training. Controlling each
channel is equivalent to controlling the convolution kernels of the corresponding cube. Sun
et al. (2016) propose an iterative learning sparse ConvNets, and retrains the entire model with
initial weights learned in previous iterations. Targeted Dropout (Gomez et al. 2018) combines
the post hoc pruning strategy into the training process and has no significant influence on the
potential performance of the particular architecture. Since the estimation of the importance
of neurons (i.e., weights) is based on the situation before Dropout, such estimation errors may
accumulate during the optimization, and eventually leading to divergence results. In addition,
there are special designs that enable small-scale networks to directly train for outstanding
performance, such as ShuffleNet (Zhang et al. 2018), Xception (Chollet 2017), Squeezenet
(Iandola et al. 2017), andMobileNet (Howard et al. 2017). The introduction of additional prior
knowledge (or manual removal of redundancy) makes these frameworks not applicable to a
variety of visual tasks, so it is difficult to be integrated into the mobile-end visual processing
system.

3 Drop-pathmethod based on PAC-Bayesian framework

In this section, we present the Drop-path method under PAC-Bayesian framework for net-
work pruning and demonstrate the advantages of this approach in achieving more efficient
computation and storage capacity savings. It consists of the following steps:

1. Pretrain the baseline deep CNN until convergence on the image classification task;
2. Prune and fine-tune the network alternately;
3. Output the sparse deep CNN model after achieving the target trade-off between classifi-

cation accuracy and pruning objective, e.g., FLOPs or memory footprint.

The overall pruning and fine-tuning procedure using Drop-path is shown in Fig. 2.

3.1 Network pruning and fine-tuning

The goal of network pruning is to remove redundant parameters or connections while min-
imizing accuracy loss. Our starting point is a well-trained high-performance baseline deep
CNN model N0 : f (x; θ0), in which x and θ0 represent the inputs (i.e., sample images) and
initialized network weights, respectively. Then the paths in deep CNN are defined as connec-
tions formed by parameters in different layers, which do not necessarily span the entire model

123

798 Multidimensional Systems and Signal Processing (2020) 31:793–827

Initialize the network

Evaluate the importance
of network path

Remove the least
important network path

Pre-training

Fine-tuning

Reach the target trade-
off

Save the network model

Yes

No

Network preparation

Network pruning

Network fine-tuning

Architecture output

Fig. 2 Network pruning and fine-tuning procedure using Drop-path method

and therefore have varying lengths. Then we remove redundant paths from path set Pt �{
p1t , p2t , . . . , pτ

t

}
in the deep CNN model in a global manner, including all convolutional

and fully or locally connected layers. In the path set, pi
t � {

θ j , θ j+1, . . . , θk
}
1≤ j<k≤L

represents the i-th path from j-th layer to k-th layer and L is a hyper-parameter representing
the maximum length of the path, that is, a path contains at most L (≥2) parameters, and each
of which comes from a different layer. Suppose a deep CNN model consists of s layers with
r (>1) parameters per layer, then the total number of paths τ can be formulated by

τ � (S − 1)r2 + (S − 2)r3 + · · · + (S − L + 1)r L

�
L−1∑

i�1

(S − i)r i+1 �
L−1∑

i�1

Sri+1 −
L−1∑

i�1

ir i+1

� Sr2
1 − r L−1

1 − r
− r2

1 − r L−1

(1 − r)2
+ r

(L − 1)r L

1 − r

� (S − 1)2 − Sr3 + (L − S)r L+1 + (S − L + 1)r L+2

(1 − r)2

� o(r L−1), r �� 1 (1)

The above equation indicates that the total number of paths is the L-order infinitesimal of r.
The number of parameters per layer is determined by the structure of the baseline model, so
we can constrain themaximum length of paths to limit their number. Generally, themaximum
length of paths in deep CNN is set to less than 4 to prevent operation overflow. Given the
initial pruning rate ξ0 (0 ≤ ξ0 ≤ 1), a total of ξ0 τ paths which includes ξ0 τ L parameters
are pruned from the total number of parameters |θ | after Drop-path pruning. In the pruning

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 799

process, the number of removed parameters at each iteration is controlled by step ζ , i.e., the
pruning rate at t-th pruning is updated according to

ξt � ξt−1 − ζ (2)

This means that a total number of (1 − ξ0 + ζ)τ paths are removed at each iteration.
When the connections are sparsified, a newnetworkNt : f (x; θ t) initialized by the previous

model is trained by using mini-batch stochastic gradient descent (SGD) method, as given by

θ i
t � θ i−1

t − α · 1

M

M∑

i�1

∇
θ i−1

t

[L(xi , yi)
]

(3)

where θ i
t represents the updated weights at the i-th iteration of mini-batch SGD in t-th fine-

tuning process. θ 0
t is the weights after t-th pruning. α and M denotes the learning rate and

batch size, respectively. L is a loss function to measure the gap between model output f (x)
and its corresponding ground-truth label y, such as the negative log-likelihood function:

L(xi , yi) � − 1

C

C∑

j�1

[
y j

i log f (xi ; θ)
j + (1 − y j

i) log(1 − f (xi ; θ)
j)

]
+ λ||θ ||2 (4)

where C denotes the total number of dataset categories, that is, the dimension of the output
vector. y j

i and f (xi) j represent the j-th component of ground-truth label andmodel prediction,
respectively. λ is weight decay parameter that controls the L2-regularization intensity. The
choice of loss function is independent of pruning, but only depends on the task to be solved
by the original baseline model. The parameters transferred from the denser network Nt−1

are good initialization of the sparser network Nt to be further fine-tuned. Finally, a sequence

123

800 Multidimensional Systems and Signal Processing (2020) 31:793–827

of network models {N0, N1, . . . , NT } with fewer and fewer parameters are fine-tuned and
NT is the final sparse deep CNN model obtained. During the whole pruning and fine-tuning
process, the previous well-trained network is used to calculate the importance of paths in
current version of deep CNN model and guide the next parameter removing procedure.

During alternate pruning and fine-tuning process, we use a binary matrix (referred to as
inhibitionmask I) with the same size as the weight matrix of the whole CNNmodel to specify
the reserved or removed parameters in each path. Before the next fine-tuning of the pruned
network, the weight matrix is first updated by dot-multiplying with the inhibition mask:

θ̂ t � θ t ◦ I t (5)

where ◦ represents the element-wise operation for computing the Hadamard product. By
doing this, the redundant parameters are removed by multiplying with 0, while the remaining
parameters can be preserved by multiplying with 1. Then the following training procedure
can be performed in the same way as the baseline network, and the model gradually becomes
sparse. All the removed parameters being updated through fine-tuning would be truncated to
zero again before next pruning. When the pruned model is deployed for testing on mobile
devices or embedded systems, the storage space and computation requirements have been
greatly reduced, since the memory footprint of inhibition mask (~10% at 30% pruning rate)
is much smaller than that of removed real-valued parameters. Based on this, the sparse
convolutional kernels of the pruned network can be transformed into a structured matrix for
storage and computation. In other words, a matrix of m × n size only needs less than m × n
parameters to describe.

The network pruning and fin-tuning process with Drop-path is summarized in Algorithm
1, in which the parameter ranking criterion will be introduced in Sect. 3.2.

3.2 Path ranking criterion

In this part, we introduce the path ranking criteria used to determine the importance of
parameters in each path based on the PAC-Bayesian framework. Our intuition is that the
invariance of generalization error boundary of deep CNNmodel should play a key role in the
model pruning since the remaining parameters ensure that the potential of the pruned model
can be stimulated by fine-tuning. In other words, parameters that have the least impact on the
generalization error boundary are the least important. For simpler deep CNN models such
as AlexNet and VGG-16, we can easily prune any of the parameters in any trainable layers.
However, for more complex network model like ResNet, pruning filters directly is usually
difficult. The structure of residual block imposes restrictions, which leads to the interaction
of pruning between layers. Therefore, we do not remove the entire convolutional kernels, but
prune the parameters on each path to form sparse filters.

Suppose the input space is represented by X and the classifier f (·) satisfying the distribu-
tion F is used to predict the labels of samples. In order to introduce the criterion for judging
the influence of parameters on generalization error boundary, we first give the following
relevant definitions (Langford and Schapire 2015) of PAC-Bayesian boundary:

Definition 1 The expected error of a classifier f (·) is defined as the probability Pr of mis-
classifying the randomly sampled datum (x, y), as given by

CX ≡ Pr(x,y)∈X (f (x) �� y) (6)

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 801

Definition 2 The empirical error of a classifier f (·) is defined as the average probability of
misclassifying dataset D with a total number N of samples, as given by

ĈD ≡ Pr(x,y)∈D(f (x) �� y) � 1

N

N∑

i�1

P(f (xi) �� yi) (7)

Definition 3 The expected distribution error of the classifier f ∈ F is defined as the proba-
bility of misclassifying the sample (x, y) ∈ X , as given by

FX ≡ E f ∈FCX (8)

Definition 4 The empirical distribution error of classifier f ∈ F is defined as the probability
of misclassifying the sample (x, y) ∈ D, as given by

F̂D ≡ E f ∈F ĈD (9)

Based on the above two error metrics, the property of the PAC-Bayes boundary can be
summarized as follows:

Theorem 1 (PAC-Bayesian Boundary) For the entire input space X , all the prior distribu-
tions P(f) of classifier f (·) satisfy the following inequality for any ε ∈ (0, 1]:

PrD∼X N

[
∀F(f) : K L(F̂D||FX)

]
≤ K L[F(f) || P(f)] + ln(N+1

ε
)

N
≥ 1 − ε (10)

where

K L
(
F̂D||FX

)
� FX ln

FX
F̂D

+ (1 − FX) ln
1 − FX
1 − F̂D

(11)

K L[F(f) || P(f)] � E f ∈F ln(
F(f)

P(f)
) (12)

123

802 Multidimensional Systems and Signal Processing (2020) 31:793–827

Theorem 1 illustrates that for any classifier f satisfying the distribution F, their expected
error and empirical error can be defined by its prior distribution and empirical distribution.
Furthermore, if the prior distribution of a classifier is known and the prior distribution and
empirical distribution are assumed to be of the same type, the inequality (8) can be further
simplified to make the classification boundary more compact, i.e., the loss is smaller. It gives
the upper bound of the average empirical error, which can be used as the absolute measure
to evaluate the generalization performance of the model. For a given learning algorithm
and training set, the empirical error is fixed. And in this case, the empirical error and the
relative entropy [i.e., KL(F ||P)] are increased. In fact, PAC-Bayesian boundary (Herbrich
and Graepel 2002) provides the most compact generalization boundary for the classifier and
can therefore be used as a favorable way to evaluate the generalization ability of the learning
algorithm.

In practice, the generalized error boundary of deep CNN model is usually difficult to
calculate due to large-scale parameters. We propose to use the cross-layer parameters in the
path to locally observe their influence on the generalization error boundary, and estimate
the change of the generalization error boundary of the whole model. In the end, it is used as
ranking criterion for judging the importance of the path.Motivated by this, we tend to remove
paths (and the corresponding parameters)where the connected neurons have negligible effects
on the generalization error boundary of the model.

The influence of paths on generalization error boundary of deep CNN can be characterized
by KL-divergence ψi between model losses before and after pruning i-th path, which can be
formulated by

ψi � K L
(
L̂D||LD

)
� LD ln

LD

L̂D
+ (1 − LD) ln

1 − LD

1 − L̂D
(13)

where LD and L̂D represent the model loss on training set D before and after pruning,
respectively. And L̂D can be calculated by

L̂(xi , yi) � − 1

C

C∑

j�1

[
y j

i log f (xi ; θ̂)
j + (1 − y j

i) log(1 − f (xi ; θ̂)
j)

]
+ λ||θ̂ ||2 (14)

Then ψi is min–max normalized as the criterion to determine the importance of each path
(i.e., the corresponding parameters), as calculated by

ψi ← ψi − ψmin

ψmax − ψmin
(15)

Finally, we can get a series of importance sequences sorted from small to large as shown
below to remove redundant paths:

ψmin ≤ ψi ≤ ψ j ≤ · · · ≤ ψmax (16)

In other words, the paths are removed in terms of normalized KL-divergence ψi from small
to large. In the end, there are τξt removed paths Pt � {p1t , p2t , . . . , pτξt

t } at the t-th pruning

iteration, and the removed parameters include {p1 ∩ p2 ∩ · · · ∩ pτξt
t }. Finally, the inhibition

mask It is created for network fine-tuning, in which 1 and 0 denotes reserved and removed

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 803

parameters, respectively. The path ranking procedure based on PAC-Bayesian framework is
summarized in Algorithm 2.

3.3 Reasons for pruning paths rather than individual parameters

Path is a collection of parameters spanning multiple layers in a model, which plays a role of
“receptive field” of convolutional kernels but on model structures, and estimates the impor-
tance of local structure of deep CNN in pruning process. Compared with the statistics based
on single parameter, the variation of generalized error boundary based on the calculation
of multiple parameters in the path is more accurate, which can capture the change of deep
CNN in the structure space more comprehensively. On the other hand, the compulsory cross-
layer parameter removal mechanism can improve the multi-scale feature extraction ability
of the model. In the fine-tuning process after Drop-path, the potential of the model can be
fully exploited and the representational ability can be exerted through more sparse convo-
lutional kernels, playing the role of structure distillation like “data distillation” proposed in
Radosavovic et al. (2018). Perhaps the redundancy of deep CNN is centralized, which means
that the model only needs a small number of parameters to mine the implicit knowledge
hidden in the sample set.

Weobserve the loss gains of two deepCNNmodels (AlexNet andVGG-16) by suppressing
the parameters one by one. Four cases, including the original networks and pruned networks
with three different pruning rates, are counted. The results are min-max normalized to [0, 1]
and shown in Fig. 3. We observe the effect of the parameters on the total loss of test samples
by zeroing the weights in the network one by one. Although the impact of parameters on
model classification results cannot directly reflect the importance of the weight, the loss gain
can characterize their role in the model. It can be clearly seen that there are sharp rises in the
pruned networks, which indicates that the parameters at the bottom play a more important
role. On the other hand, the effects of single parameter on the classification results gradually
becomes consistent with the pruning process, while at the beginning a large number of
parameters hardly affect the results. In other words, in themodel structure space, the structure
which contains a lot of redundant information is full of the whole space, and a small number
of effective sparse structures are clustered together. This is inspiring for model pruning or
structure exploration: we can remove model parameters centrally in a small range, i.e., find
the appropriate structure along several directions in the structure space, which is exactly what
Drop-path implements.

Compared with traditional sorting and pruning algorithms based on single parameter,
Drop-path can improve the computational efficiency. The computational complexity of single
parameter based ranking method is L/(L − 1) times that of path based ranking method.
Furthermore, the variation of generalized error boundary caused by a single parameter is
similar and indistinguishable. The ranking criterion based on single parameter is unstable,
which usually leads to the sharp collapse of deep CNN in the alternative pruning and fine-
tuning process. The classification accuracy of the model would be drastically reduced as the
pruning proceeds. In Drop-path method, the parameters in one path span at most the L layers
at the same time, avoiding excessive removal of a layer of parameters. In fact, the parameters
in bottom layers are usually more important, and Drop-path can remove more parameters in
top layers as much as possible while retaining more underlying parameters.

123

804 Multidimensional Systems and Signal Processing (2020) 31:793–827

Fi
g.
3
L
os
s
ga
in
s
of

A
le
xN

et
an
d
V
G
G
-1
6
by

su
pp
re
ss
in
g
th
e
pa
ra
m
et
er
s
on
e
by

on
e

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 805

4 Experiments

4.1 Experimental setup

4.1.1 Baseline models and benchmark datasets

We conduct experiments on two image classification benchmark datasets, that is, ImageNet
(Russakovsky et al. 2015) and CIFAR-10 (Krizhevsky and Hinton 2009). The ImageNet is a
large scale dataset, which contains 1000 classes of 1.2 million natural images for training and
50,000 images for testing. CIFAR-10 is a popular benchmark for small-scale natural image
classification, which contains 10 classes of 50,000 images for training and 10,000 images
for testing.

Then we evaluate the Drop-path method by testing eight popular deep CNN models:
AlexNet (Krizhevsky et al. 2012), VGG-16 (Simonyan and Zisserman 2014), GoogLeNet
(Szegedy et al. 2015), ResNet-34/50 (He et al. 2016) for ImageNet, and a modified VGG-16,
ResNet-56/110 for CIFAR-10. The architectures for ImageNet, including the category of
layers, the size and number of convolutional kernels, are shown in Table 1. In the modified
VGG-16 for CIFAR-10, the first two fully connected layers fc1 and fc2 are removed, only the
last fully connected layer fc3 with 10 neurons is used for classification. ResNet-56/110 have
three stages of residual blocks for outputting feature maps with sizes of 32× 32, 16× 16, and
8 × 8. For the subsequent comparison, the number of parameters, FLOPs, and classification
accuracies of above baseline models are summarized in Table 2.

4.1.2 Pruning and fine-tuning details

In the pruning process, pruning rate is set to set to 1 to ensure that each network can be
pruned as much as possible. Step size is set to 0.01 and the intermediate state of deep CNN is
preserved to observe the effectiveness of pruning method. In the fine-tuning process, hyper-
parameters including batch size, learning rate, weight decay, momentum, and dropout rate for
two datasets are set by default, as shown in Table 3. A Large batch size can help optimization,
while large momentum can help model avoid local minimum. The learning rates of models
trained on ImageNet and CIFAR-10 are reduced by a factor of 10 after 30 and 15 epochs,
respectively. The maximum length of paths in AlexNet, VGG-16, GoogLeNet, and ResNet is
set to 2, 3, 3, and 3, respectively. All the training and testing process of various deep CNNs are
carried out under the Caffe deep learning framework (Jia et al. 2014), based on a workstation
consisting of an Intel Core i9-9900k CPU, two NVIDIA GeForce GTX Titan XP GPUs, and
4 × 16 gigabytes of memory. In order to make a reasonable comparison with baseline and
state-of-the-art methods, no data augmentations are used in training process.

4.2 Model fine-tuning and baseline performance comparison

We first plot the learning curves of final fine-tuning process of eight deep CNNs on Ima-
geNet and CIFAR-10 under different pruning rates, including 20%, 40%, 60%, and 80% of
parameters being removed, as shown in Fig. 4. For ImageNet, we fine-tune the networks
for 150 epochs and report the log-likelihood loss. For CIFAR-10, 70 epochs are sufficient
to optimize the network because too much training leads to over-fitting problem. With the
increase of pruning rate, i.e., the decrease of model parameters, the final loss of the model
increases slightly: from 20 to 80% of pruning rate, the final loss increases by about 0.07

123

806 Multidimensional Systems and Signal Processing (2020) 31:793–827

Ta
bl
e
1
N
et
w
or
k
ar
ch
ite
ct
ur
es

of
ba
se
lin

e
m
od
el
s
fo
r
Im

ag
eN

et

A
le
xN

et
V
G
G
-1
6

G
oo
gL

eN
et

R
es
N
et
-3
4

L
ay
er

O
ut
pu

t
L
ay
er

O
ut
pu

t
L
ay
er

O
ut
pu

t
L
ay
er

O
ut
pu

t

11
×

11
co
nv
,9

6
55

×
55

[3
×

3
co
nv
,6

4]
×

2
2

×
2
m
ax

po
ol

11
2

×
11

2
7

×
7
co
nv
,6
4

11
2

×
11

2
7

×
7
co
nv
,6
4

11
2

×
11

2

3
×

3
m
ax

po
ol

27
×

27
[3

×
3
co
nv
,1

28
]
×

2
2

×
2
m
ax

po
ol

56
×

56
3

×
3
m
ax

po
ol

3
×

3
co
nv
,1
92

56
×

56
3

×
3
m
ax

po
ol

[3
×

3
co
nv
,6
4]

×
6

56
×

56

5
×

5
co
nv
,2
56

27
×

27
[3

×
3
co
nv
,2

56
]
×

2
2

×
2
m
ax

po
ol

28
×

28
3

×
3
m
ax

po
ol

in
ce
pt
io
n,

25
6

in
ce
pt
io
n,

48
0

28
×

28
3

×
3
m
ax

po
ol

[3
×

3
co
nv
,1
28

]
×

8
28

×
28

3
×

3
m
ax

po
ol

[3
×

3
co
nv
,3
84

]
×

3
13

×
13

[3
×

3
co
nv
,5

12
]
×

3
2

×
2
m
ax

po
ol

14
×

14
3

×
3
m
ax

po
ol

[i
nc
ep
tio

n,
51

2]
×

3
in
ce
pt
io
n,

52
8

in
ce
pt
io
n,

83
2

14
×

14
3

×
3
m
ax

po
ol

14
×

14

3
×

3
m
ax

po
ol

6
×

6
[3

×
3
co
nv
,5

12
]
×

3
2

×
2
m
ax

po
ol

7
×

7
3

×
3
m
ax

po
ol

in
ce
pt
io
n,

83
2

in
ce
pt
io
n,

10
24

7
×

7
3

×
3
m
ax

po
ol

[3
×

3
co
nv
,5
12

]
×

6
7

×
7

10
00

fc
1

10
00

fc
2

10
00

fc
3,

so
ft
m
ax

1
×

1
10

00
fc
1

10
00

fc
2

10
00

fc
3,

so
ft
m
ax

1
×

1
A
ve
ra
ge

po
ol

10
00

fc
So

ft
m
ax

1
×

1
A
ve
ra
ge

po
ol

10
00

fc
So

ft
m
ax

1
×

1

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 807

Ta
bl
e
2
Pa
ra
m
et
er

si
ze
,F

L
O
Ps
,a
nd

cl
as
si
fic
at
io
n
ac
cu
ra
cy

of
ba
se
lin

e
ne
tw
or
k
m
od
el
s

M
ea
su
re
m
en
t

N
et
w
or
ks

fo
r
Im

ag
eN

et
N
et
w
or
ks

fo
r
C
IF
A
R
-1
0

A
le
xN

et
V
G
G
-1
6

G
oo
gL

eN
et

R
es
N
et
-3
4

R
es
N
et
-5
0

V
G
G
-1
6

R
es
N
et
-5
6

R
es
N
et
-1
10

Pa
ra
m
et
er
s

6.
0

×
10

7
1.
4

×
10

8
7.
5

×
10

6
2.
2

×
10

7
2.
6

×
10

7
1.
4

×
10

7
8.
5

×
10

5
1.
7

×
10

6

FL
O
Ps

7.
3

×
10

7
1.
6

×
10

10
1.
6

×
10

9
3.
6

×
10

9
3.
8

×
10

9
3.
1

×
10

8
1.
3

×
10

8
2.
5

×
10

8

A
cc
ur
ac
y

68
.5
%

78
.2
%

81
.3
%

82
.4
%

82
.8
%

94
.7
%

95
.4
%

96
.2
%

123

808 Multidimensional Systems and Signal Processing (2020) 31:793–827

Table 3 Hyper-parameters setting on two benchmark datasets

Hyper-parameters Batch size Learning rate Weight decay Momentum Dropout rate

ImageNet 256 0.01 0.0005 0.6 0.5

CIFAR-10 64 0.001 0.0001 0.9 0.5

and 0.015 on ImageNet and CIFAR-10, respectively. Even if most of the parameters of deep
CNNs are removed, the optimization of the model is not significantly affected, thanks to the
good initialization provided by the previous model.

We now evaluate the full iterative pruning procedure on two image classification tasks.
Figure 5 shows the classification results of AlexNet, VGG-16, GoogLeNet, and ResNet-
34/56/110 after pruning and fine-tuning on ImageNet and CIFAR-10. Results of ResNet-50
and modified VGG-16 for CIFAR-10 are only used to demonstrate comparisons with some
state-of-the-art algorithms, as shown in Sect. 4.3. The figure depicts classification accu-
racy relative to the pruning rate of model parameters. Baseline methods, including random
and minimum weight pruning, minimum activation criterion, L0-regularization and targeted
Dropout (Gomez et al. 2018), are compared to illustrate the effectiveness of Drop-path
method. In random and minimum weight pruning, the order of parameters to be pruned
is randomly permuted and arranged from small to large, respectively. Minimum activation
criterion based pruning sorts the activation values of neurons and removes parameters from
small to large. The performance of Drop-path in both six models is much higher than that of
random and minimum weight pruning, and minimum activation criterion. Even if the param-
eters are removed more than 60%, the classification accuracy of six models in ImageNet and
CIFAR-10 remains above 70% and 80%, respectively. Furthermore, Drop-pathmethodmain-
tains almost the highest classification accuracy on AlexNet, VGG-16, and ResNet-56 under
all parameter sizes. L0-regularization based criterion shows the second-best performance
which is closely followed by targeted Dropout. The classification accuracy of removing
parameters with larger L0-norms decreases quickly as the pruning rate increases, which indi-
cates the importance of parameters with larger L0-norms. Actually, our pruning method can
be combined with these baseline techniques. For example, a deep CNN may be first learned
with L0-regularization. Then parameters in the small network can be further pruned by using
Drop-path.

4.3 Comparison with state-of-the-art methods

In this section, we compare Drop-path with existing state-of-the-art pruning methods on
AlexNet, VGG-16, GoogLeNet and ResNet-34/50/56/110, and show results in Table 4 for
ImageNet and Table 5 for CIFAR-10. To compare model inference speedup, we report the
accuracy loss and the reduction in the number ofmultiplication and the number of parameters,
and denote them as [Accuracy (↓%)], [FLOPs (↓%)], and [Parameters (↓%)] in the Table.
FLOPs is a commonly used metric for comparing the computation complexities of various
deep CNN models. It is easy to calculate and can be accomplished statically, which is inde-
pendent of the underlying hardware and software implementations. The trade-off between
accuracy loss and the reduction of FLOPs and parameters can be used to illustrate the effec-
tiveness of proposed Drop-path method.

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 809

Fi
g.
4
L
ea
rn
in
g
cu
rv
es

of
fin

al
fin

e-
tu
ni
ng

pr
oc
es
s
of

va
ri
ou

s
ne
tw
or
k
m
od

el
s
us
in
g
D
ro
p-
pa
th

pr
un

in
g
m
et
ho

d
(2
0%

,
40

%
,
60

%
,
an
d
80

%
pr
un

in
g
ra
te
s)

on
Im

ag
eN

et
an
d

C
IF
A
R
-1
0

123

810 Multidimensional Systems and Signal Processing (2020) 31:793–827

Fi
g.
5
C
om

pa
ri
so
n
re
su
lts

w
ith

ba
se
lin

e
m
et
ho
ds

on
si
x
de
ep

C
N
N

m
od
el
s,

in
cl
ud
in
g
A
le
xN

et
,
V
G
G
-1
6,

G
oo
gL

eN
et
,
an
d
R
es
N
et
-3
4
on

Im
ag
eN

et
an
d
R
es
N
et

56
/1
10

on
C
IF
A
R
-1
0

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 811

Table 4 ImageNet classification results based on various pruning method

Model Algorithm Accuracy (↓%) FLOPs (↓%) Parameters (↓%) Time
(ms/image)

AlexNet Perforated
(Figurnov et al.
2016)

2.00 50.00 – 2

Tucker (Kim
et al. 2016)

1.70 62.55 – 0.5

NISP-A (Yu
et al. 2018)

1.43 67.85 33.77 –

Learning
(Srinivas and
Babu 2016)

1.20 48.19 – –

Drop-path-A1 1.04 69.17 62.00 11

NISP-B (Yu et al.
2018)

0.97 62.69 1.96 –

NISP-C (Yu et al.
2018)

0.54 53.70 2.91 –

AlexNet Pruned
(Han et al.
2015)

0.01 88.89 89.02 4

Drop-path-A2 0.01 34.80 24.00 17

VGG-16 VGG-16-pruned
(Huang and
Wang 2018)

3.93 75.24 5.64 7

Taylor criterion
(Molchanov
et al. 2017)

2.30 54.61 – 20

VGG-16 (4 ×)
(He et al. 2017)

1.00 60.00 8.31 3.3

ThiNet-GAP
(Luo et al.
2017)

1.00 69.79 93.99 –

Drop-path-V1 0.98 90.32 84.00 14

VGG-16 Pruned
(Han et al.
2015)

0.16 92.31 92.54 4

50% Pruned (Liu
et al. 2017)

0.03 30.40 82.50 –

Drop-path-V2 0.01 35.57 28.00 34

GoogLeNet Tucker (Kim
et al. 2016)

0.24 51.50 31.88 1.83

NISP (Yu et al.
2018)

0.21 58.34 33.76 –

Drop-path-G 0.17 64.40 58.00 11

ResNet-34 Res34-B (Li
et al. 2017)

1.06 24.20 10.80

Drop-path-34-
R1

1.03 57.81 44.00 13

123

812 Multidimensional Systems and Signal Processing (2020) 31:793–827

Table 4 continued

Model Algorithm Accuracy (↓%) FLOPs (↓%) Parameters (↓%) Time
(ms/image)

NISP-34-B (Yu
et al. 2018)

0.92 43.76 43.68 –

Res34-C (Li
et al. 2017)

0.75 7.50 7.20 14

Res34-A (Li
et al. 2017)

0.67 15.50 7.60 12

NISP-34-A (Yu
et al. 2018)

0.28 27.32 27.14 –

Drop-path-34-
R2

0.27 35.46 28.00 17

ResNet-50 ThiNet-C (Luo
et al. 2017)

4.46 71.50 66.12 11

ResNet-50-
pruned (Luo
et al. 2017)

3.82 24.22 33.33 9

ThiNet-B (Luo
et al. 2017)

1.87 55.83 51.56 14

Drop-path-50-
R1

1.74 76.80 70.00 16

NISP-50-B (Yu
et al. 2018)

0.89 44.01 43.82 –

ThiNet-A (Luo
et al. 2017)

0.84 36.79 33.67 19

NISP-50-A (Yu
et al. 2018)

0.21 27.31 27.12 –

Drop-path-50-
R2

0.20 23.92 18.00 23

[Accuracy (↓%)], [FLOPs (↓%)], and [Parameters (↓%)] represent the accuracy loss, the reduction of com-
putations, and the reduction of parameter numbers, respectively. For the sake of comparison, our method is
shown in bold

4.3.1 ImageNet classification

In Table 4, on AlexNet, Drop-path-A1 and Drop-path-A2 represent models with 62% and
24% pruning rates, respectively. By achieving smaller accuracy loss (1.04%), Drop-path-
A1 reduces significantly more FLOPs (69.17%) than NISP-A (Yu et al. 2018). Drop-path-
A2 can achieve lowest accuracy loss (0.01%) with 33.80% and 24% reduction in FLOPs
and parameters, respectively. On VGG-16, Drop-path-V1 achieves similar accuracy loss
(0.98% vs 1.00%) with larger FLOPs reduction (90.32%), and Drop-path-V2 achieves lowest
accuracy loss (0.01%)with 35.57% and 28% reduction in FLOPs and parameters. Comparing
with Tucker (Kim et al. 2016) and NISP (Yu et al. 2018), GoogLeNet with Drop-path-
G improves accuracy loss by 0.04% and 0.07%, respectively. Using ResNet, our methods
(Drop-path-34-R1 and Drop-path-50-R1) reduce more FLOPs and parameters with smaller
accuracy loss, which demonstrate the superior performance when compared with the state-
of-the-art methods (Frankle and Carbin 2019; Yu et al. 2018; Li et al. 2017). On the other
hand, the test time for a single image of pruned AlexNet, VGG-16, GoogLeNet, ResNet-34

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 813

Table 5 CIFAR-10 classification results based on various pruning method

Model Algorithm Accuracy (↓%) FLOPs (↓%) Parameters (↓%) Time
(ms/image)

VGG-16 One-shot pruning
(0.01) (Frankle
and Carbin
2019)

0.25 51.17 47.44 –

One-shot pruning
(0.1) (Frankle
and Carbin
2019)

0.21 33.00 30.27 –

VGG-16-pruned-
A (Li et al.
2017)

0.15 34.20 64.00 5

VGGNet (70%
pruned) (Liu
et al. 2017)

0.14 51.00 88.50 5

Sparse VGG-16
(Frankle and
Carbin 2019)

0.09 37.43 60.00 –

Drop-path-V 0.05 57.92 48.00 7

ResNet-56 One-shot pruning
(0.01) (Frankle
and Carbin
2019)

0.34 40.82 34.40 –

One-shot pruning
(0.1) (Frankle
and Carbin
2019)

0.24 37.20 30.57 –

NISP-56 (Yu
et al. 2018)

0.03 43.61 42.60 –

Drop-path-56-
R1

0.17 60.24 54.00 11

ResNet-56-B (Li
et al. 2017)

− 0.02 27.60 13.70 12

ResNet-56-A (Li
et al. 2017)

− 0.06 10.40 9.40 17

Drop-path-56-
R2

− 0.03 14.37 6.00 18

ResNet-110 ResNet-110-B
(Li et al. 2017)

0.23 38.60 32.40 11

NISP-110 (Yu
et al. 2018)

0.18 43.78 43.25 –

Drop-path-110-
R1

0.15 57.84 48.00 15

ResNet-110-A
(Li et al. 2017)

0.02 15.90 2.30 14

Drop-path-110-
R2

− 0.04 17.24 4.00 21

Our results in bold to facilitate comparison

123

814 Multidimensional Systems and Signal Processing (2020) 31:793–827

and ResNet-50 are reduced from 24, 38, 32, 29 and 36 to 11, 14, 11, 13 and 16 ms. It can be
seen that the test time of the pruned model is lower than that of the original model, which
shows the effectiveness of the pruning method.

4.3.2 CIFAR-10 classification

On VGG-16 for CIFAR-10 classification, Drop-path achieves 0.05% accuracy loss, while
the parameter saving can be up to 2 × and the FLOPs reduction is typically around 50%.
It achieves the lowest accuracy loss while reducing the maximum number of FLOPs. On
ResNet-56 and 110, classification accuracy under Drop-path-56-R2 and Drop-path-110-R2
even rises slightly (0.03%↑ and 0.04%↑) with a small number of parameters (6% and 4%)
removed. We conjecture this is due to the removal of some parameters can help improve the
generalization of the “bottleneck” structure. For compression and acceleration, Drop-path-
56-R1 and Drop-path-110-R1 removes approximately half of the parameters and achieves
almost the same accuracy loss as One-shot pruning (0.1) (Frankle and Carbin 2019) and
NISP-110 (Yu et al. 2018). We also observe that with the same accuracy loss, the parameter
reduction rate on CIFAR-10 is typically slightly lower than ImageNet, which is possibly due
to the fact that ImageNet contains more samples and categories, and thus the deep CNN
has more redundancy. The test time for a single image of pruned VGG-16, ResNet-56 and
ResNet-110 are reduced from 11, 22 and 24 to 7, 11 and 15 ms.

In theory, both the energy consumption and the inference delay of the networkwill decrease
when the parameters and the amount of computation are reduced. But in practice, they are
not simply proportional to these complexity measures. Due to the complexity of physical
hardware, the inference time of the large network may be shorter than that of the small
network in some cases.

4.4 Layer robustness to drop-path pruning

The more parameters removed, the less the classification accuracy, which is consistent with
our understanding. Both layers in the model can be pruned but with different sensitivity.
To observe the pruning sensitivity for convolutional layers and fully connected layers of
Drop-path, we plot the trade-off curves between classification accuracy and the number of
parameters in each layer, as shown in Fig. 6. Preliminary results show that the classification
accuracy of deep CNN is related to the total number of parameters in each layer. Moreover,
the length of a path is positively correlatedwith the possibility of removal. The longer the path
is, the greater the probability of removal will be, which means that the bottom connections
are more important. The majority of parameters of baseline networks reside in the fully or
locally connected layers. We remove as many parameters as possible at these higher layers,
while the underlying connections are kept untouched.

On AlexNet, even the parameters in last three convolutional layers (i.e., conv3 to conv5)
and fully connected layers (fc1 to fc3) are reduced to less than 20%, the accuracy loss is
no more than 20%. The convolutional layers are more sensitive to pruning than the fully
connected layers, especially the first two convolutional layers conv1 and conv2. The first
convolutional layer conv1, which interacts with the input image directly, is undoubtedly the
most sensitive to pruning. This sensitivity is due to the fact that the input has only 3 channels
and therefore it has less redundancy than the other convolutional layers.

On VGG-16 for ImageNet, the underlying convolutional layers become more important
and sensitive. The accuracy loss has exceeded 20%, even if the parameters of layer conv1

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 815

Fig. 6 Pruning sensitivity to convolutional layers (left) and fully connected layers (right) of AlexNet and
VGG-16

are still more than 60%. We believe that the deeper the network structure, the greater the
importance of underlying building. To prove this empirically, we plot the distribution his-
togram of removing parameters under 50% pruning rate in Fig. 7. It can be observed that
fully connected layers in AlexNet and VGG-16 have a large amount of redundant parameters
that can be pruned. Moreover, with the layers going deeper, more and more parameters are
removed.

On VGG-16 for CIFAR-10, the pruning sensitivity of convolutional layers is generally
higher. There are four convolutional layers (conv1-conv4) with an accuracy loss of more than
20%, even though their parameters are preserved by more than 40%. It can be seen that the
sensitivity of fully connected layers and most convolutional layers to Drop-path pruning is
acceptable and usually does not produce devastating results.

5 Discussions

5.1 Difficulty in directly using small-sized networks

The classification performance of pruned deep CNNs presented in Sect. 4 are surprising and
also raise questions. Since small-sized models have the potential to show good performance,
can we directly optimize sparse models without relying on dense models? To answer this
question, we report the classification performance of eight pruned sparse networks with
random initializations being trained from scratch, as shown in Fig. 8. Networks pruned by
Drop-path with a 20% pruning rate are randomly initialized to MSRA Gaussian distribution
(i.e., θ ∼ G

[
0,

√
2/ninput

]
) (He et al. 2015) and Xavier Uniform distribution (i.e., θ ∼ U

123

816 Multidimensional Systems and Signal Processing (2020) 31:793–827

Fi
g.
7
D
is
tr
ib
ut
io
n
of

pr
un

in
g
pa
ra
m
et
er
s
un

de
r5

0%
pr
un

in
g
ra
te
.Y

el
lo
w
an
d
bl
ue

hi
st
og

ra
m
s
re
pr
es
en
tt
he

m
od

el
tr
ai
ne
d
on

Im
ag
eN

et
an
d
C
IF
A
R
-1
0,
re
sp
ec
tiv

el
y
(C

ol
or

fig
ur
e

on
lin

e)

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 817

0.6

0.65

0.7

0.75

0.8

0.85

AlexNet VGG-16 GoogLeNet ResNet-34 ResNet-50

Deep CNNs for ImageNet

Xavier MSRA Fine-tuning

0.86

0.88

0.9

0.92

0.94

0.96

0.98

VGG-16 ResNet-56 ResNet-110

Deep CNNs for CIFAR-10

Xavier MSRA Fine-tuning

Fig. 8 Classification results of pruned deepCNNswith fine-tuning or reinitialization on twobenchmark datasets

[
0, 2/(ninput + noutput)

]
) (Glorot and Bengio 2010), where ninput and noutput represent the

number of inputs and outputs in the current layer, respectively. Taking the same pruning rates,
networks learned from MSRA or Xavier re-initializations perform significantly worse than
the fine-tuned deep CNNs: the accuracy loss on ImageNet and CIFAR-10 has risen by 10%
and 5%, respectively. The results demonstrate that the weight initialization learned from the
previous network is crucial for continuing to learn sparse networks.

This result is interesting and has enlightened our inference on the optimization and gen-
eralization properties of deep CNNs. Although the learning ability of sparse networks is
sufficient enough to fit the training images, it is usually easier to fall into local minimum,
while the denser network with more parameters can help to explore better initial positions.
Once a good initialization position is found by the denser baseline model, fine-tuning the
network can improve its classification performance. To see how initialization affects the per-
formance of the network, we plot the loss landscapes of deep CNNs trained on ImageNet in
Fig. 9. Noises are added to the parameters along the first two principal component analysis
(PCA) directions μ and υ of the weight matrix to observe the loss of the model, which can
reflect the local optimization process of deep CNN. If the iterates of SGD are projected onto
the plane defined by two random directions, almost none of the motion can be captured.
PCA based visualization technique (Li et al. 2018) provides insights into the consequences
of a variety of choices facing the neural network practitioner, including network architecture,
optimizer selection, and batch size. Then the parameters near the optimal value are calculated
as

θ̃ (d1, d2) � θ∗ + d1μE + d2υE (17)

where d1 ∈ (− 1, 1) and d2 ∈ (− 1, 1) are forward steps along the two directions μ and υ

in principal component analysis. E is an all-one matrix which has the same dimensions as
weight. Finally, the loss of deep CNN can be updated according to

L̃(xi , yi)(d1, d2) � − 1

C

C∑

j�1

[
y j

i log f (xi ; θ̃ (d1, d2))
j + (1 − y j

i) log(1 − f (xi ; θ̃ (d1, d2))
j)

]

(18)

It can be seen that model after pruning and fine-tuning has a similar curvature and minimum
region as the baseline model, while the re-initialized network is sharper and accompanied
by more local minimums, which means that it is difficult to find a good solution for sparse
networks without any prior knowledge. Furthermore, the performance of pruned deep CNNs
can even be comparable to that of specially designed sparse networks, as shown in Table 6. By
fine-tuning, pruned deep CNNswithmuch fewer parameters outperform the sparse networks,
such as SqueezeNet (Iandola et al. 2017) and ShuffleNet (Zhang et al. 2018), which illustrates

123

818 Multidimensional Systems and Signal Processing (2020) 31:793–827

Fig. 9 Loss landscapes of various deep CNN models trained on ImageNet. a Original network; b MSRA
reinitialization, c Xavier reinitialization, d fine-tuning

that deepCNNswith gradually pruning andfine-tuning aremore suitable thandirectly training
from scratch for mobile systems or embedded devices.

5.2 The choice of maximum length of paths in the pruning of deep CNNs

In fact, the choice of maximum length of paths during the pruning process of deep CNNs is
critical. Intuitively, the long path containing a set of neurons spanning multiple layers can

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 819

Table 6 Comparison of lightweight CNNs and pruned deep CNN models on two benchmark datasets

Dataset Network model Accuracy (%) Storage (MB)

ImageNet SqueezeNet (Iandola et al. 2017) 57.5 4.8

Conv MobileNet (Howard et al. 2017) 71.7 29.3

Xception (Chollet 2017) 79.0 260.6

ShuffleNet (g=1) (Zhang et al. 2018) 66.4 143.0

ShuffleNet (g=2) (Zhang et al. 2018) 67.3 140.0

ShuffleNet (g=3) (Zhang et al. 2018) 67.4 137.0

ShuffleNet (g=4) (Zhang et al. 2018) 67.2 133.0

AlexNet-Drop-path

(10%) 68.7 206.1

(20%) 68.5 181.9

(30%) 67.7 157.3

VGG-16-Drop-path

(10%) 78.0 453.1

(20%) 77.4 404.6

(30%) 75.8 352.5

GoogLeNet-Drop-path

(10%) 80.7 26.4

(20%) 80.2 23.5

(30%) 79.4 19.7

ResNet-34-Drop-path

(10%) 82.1 74.1

(20%) 81.8 67.5

(30%) 80.6 53.9

ResNet-50-Drop-path

(10%) 82.3 91.0

(20%) 82.0 75.8

(30%) 81.4 64.6

CIFAR-10 LightweightNet (Xu et al. 2019) 93.53 9.4

NASNet-A (Zoph et al. 2018) 96.59 3.3

NASNet-B (Zoph et al. 2018) 97.03 27.6

VGG-16-Drop-path

(10%) 95.22 47.2

(20%) 95.13 41.1

(30%) 94.42 33.4

ResNet-56-Drop-path

(10%) 96.14 2.98

(20%) 96.02 2.51

(30%) 95.78 1.98

ResNet-110-Drop-path

(10%) 97.11 5.89

(20%) 97.07 5.21

(30%) 96.80 3.97

123

820 Multidimensional Systems and Signal Processing (2020) 31:793–827

0.55
0.6

0.65
0.7

0.75
0.8

0.85
No pruning

Lmax=4

Lmax=3Lmax=2

Lmax=1

AlexNet VGG-16 GoogLeNet ResNet-34 ResNet-50

Classification accuracy

0.75
0.8

0.85
0.9

0.95
1

No pruning

Lmax=4

Lmax=3Lmax=2

Lmax=1

VGG-16 ResNet-56 ResNet-110

Classification accuracy

Fig. 10 Classification results of the eight baseline CNNs with various maximum length of paths, including
Lmax � 1, 2, 3 and 4

comprehensively describe the network coding and decoding process and assess the impor-
tance of these neurons as a whole. However, this does not mean that each of these neurons has
the same level of importance. On the other hand, short paths can locally assess the importance
of neurons at other scales and are therefore still necessary. Larger Lmax can lead to more paths
with different sizes, which are beneficial for assessing the importance of network neurons or
connections. Researchers believe that neurons have the ability to encode light, sound, taste,
and other information that the body perceives (Carsen et al. 2016). In other words, the neu-
ral coding process attempts to establish a mapping from stimulus to response, focusing on
understanding how neurons respond to different stimuli and building models to predict the
response of neurons to specific stimuli. The corresponding neural decoding process studies
the mapping in the opposite direction, that is, from the known responses to reconstruct fea-
tures and estimate the external stimulus. Context relations play an important role in neural
networks (Chen and Jahanshahi 2017; Zheng et al. 2018, 2019), and it is difficult for a single
neuron to correctly reflect its importance in the inference process of neural networks.

Then we present the classification performance of the eight baseline CNN models with
different maximum lengths of path to illustrate the validity of Lmax � 4, as shown in Fig. 10.
The classification results of the eight networks showed consistency: all the models with Lmax

� 4 achieved the highest classification accuracy under the same pruning rate (~50%). When
Lmax equals 1, pruning is based on a single neuron and results in a cliff-like decline in the
accuracy of fine-tuning networks. During alternate pruning and fine-tuning steps, networks
with larger Lmax required more local preparation time, which means that more information
reflecting the importance of neurons was observed and utilized.

5.3 Sparse convolutional kernels are efficient

Intuitively, directly removing the entire convolutional kernels should be more appropriate
than removing the parameters, which guarantees the integrity of the convolution kernel.
However, the redundancy of deep CNN model is distributed in each filter, rather than some
specific filters are redundant. We present 64 kernels in the first convolutional layer of pruned
AlexNet for ImageNet and pruned VGG-16 for CIFAR-10 in Fig. 11. Even when 50% of the
parameters are pruned, the number of remaining convolutional kernels is still larger than the
number of raw input channels, and only the kernels are split into multiple small sawtooth-like
blocks and become sparse. We believe that sparse convolutional kernels play a similar role to
Atrous convolution operation (Yu and Koltun 2015), removing redundancy and guaranteeing

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 821

Fig. 11 Visualization of filters in the first convolutional layer of AlexNet and VGG-16 for ImageNet. Pruned
convolutional kernels are ranked by L2-norm. The left and right examples represent the original and pruned
convolutional kernels, respectively

the mining of potential features. At the same time, this enlarges the field of perception, so
that the output of each convolution layer contains a larger range of information. On the other
hand, VGG-16 has more inhibited filters than AlexNet as shown in the last two rows in the
figure. This is possible for a small-sized dataset such as CIFAR-10, on which the deep CNN
does not need to learn as much significative convolutional kernels as on ImageNet.

6 Conclusion

In this paper, we propose a generic approach named Drop-path for network compression and
acceleration based on identifying the importance levels of connections in different paths
under PAC-Bayesian framework. To the best of our knowledge, this is the first time to
reduce model size based on the generalization error boundary. Drop-path is generic and
straightforward, which can be easily and suitably applied to anymulti-layer andmulti-branch

123

822 Multidimensional Systems and Signal Processing (2020) 31:793–827

models. Extensive experiments have demonstrated that Drop-path can effectively reduce the
redundancy of deep CNN and achieve network compression and acceleration with negligi-
ble accuracy loss. Eight popular deep CNNs including AlexNet, VGG-16, GoogLeNet, and
ResNet-34/50/56/110 trained on ImageNet and CIFAR-10 achieve the state-of-the-art per-
formance by about 2 × speed up along with no more than 1% increase of error. This results
in smaller memory footprint and computational requirements for real-time image process-
ing, making the deep CNN easier to be deployed on mobile systems or embedded devices.
Moreover, the proposed Drop-path method can be viewed as a tool to further explore the
dependence of model structure on optimization and generalization of neural networks. In the
process of theoretical analysis and experimental verification, we conclude:

1. By iteratively removing the least important parameters in different paths, deep CNNs
can be successfully pruned by ensuring the invariance of network generalization error
boundary as much as possible.

2. Automatic structured pruning can usually find effective network architecture, which per-
forms better than directly training from scratch of sparse models.

3. Sparse convolutional kernels are more efficient than being removed directly as a whole.

As for futurework,weplan to apply our approach tomore deep learningbased applications,
such as real-time object detection and instance segmentation. It is also interesting to use
Drop-path method to accelerate more advanced neural networks, such as recurrent neural
network (RNN) and 3D CNN. In these cases, the approximation method used to estimate the
generalization error boundary of neural networks needs to be redesigned.

Acknowledgements This work was supported by National Key R&D Program of China (Grant No.
2018YFC0831503), National Natural Science Foundation of China (Grant No. 61571275), China Computer
Program for Education and Scientific Research (Grant No. NGII20161001), and Fundamental Research Funds
of Shandong University (Grant No. 2018JC040).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Bolukbasi, T., Wang, J., Dekei, O., & Saligrama, V. (2017). Adaptive neural networks for fast test-time
prediction. In Proceedings of 34th international conference on machine learning (ICML) (pp. 527–536),
Sydney.

Carsen, S., Marius, P., Nicholas, A. S., Michael, O., Peter, B., et al. (2016). Inhibitory control of correlated
intrinsic variability in cortical networks. Elife. https://doi.org/10.7554/elife.19695.

Chen, F. C., & Jahanshahi, R. J. (2017). NB-CNN: Deep learning-based crack detection using convolu-
tional neural network and naive Bayes data fusion. IEEE Transactions on Industrial Electronics, 65(5),
4392–4400.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of IEEE
conference on computer vision and pattern recognition (CVPR) (pp. 1800–1807), Honolulu.

Denton, E., Zaremba, W., Bruna, J., LeCun, Y., & Fergus, R. (2014). Exploiting linear structure within
convolutional networks for efficient evaluation. In Proceedings of conference and workshop on neu-
ral information processing systems (NIPS),Montreal, http://papers.nips.cc/paper/5544-exploiting-linear-
structure-within-convolutional-networks-for-efficient-evaluation.pdf.

Figurnov, M., Ibraimova, A., & Dmitry, P. V. (2016). PerforatedCNNs: Acceleration through elimination of
redundant convolutions. In Proceedings of conference and workshop on neural information processing
systems (NIPS) (pp. 1–9), Barcelona. https://arxiv.org/abs/1504.08362.

123

https://doi.org/10.7554/elife.19695
http://papers.nips.cc/paper/5544-exploiting-linear-structure-within-convolutional-networks-for-efficient-evaluation.pdf
https://arxiv.org/abs/1504.08362

Multidimensional Systems and Signal Processing (2020) 31:793–827 823

Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In Proceedings of international conference on learning representations (ICLR). https://openreview.net/
forum?id=rJl-b3RcF7.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of 13th international conference on artificial intelligence and statistics (AISTATS)
(pp. 249–256), Sardinia.

Goh, H., Thome, N., Cord, M., & Lim, J. (2014). Learning deep hierarchical visual feature coding. IEEE
Transactions on Neural Networks and Learning Systems, 25(12), 2212–2225.

Gomez, N. A., Zhang, I., Swersky, K., Gal, Y., & Hinton, G. E. (2018). Targeted dropout. In Proceedings of
conference and workshop on neural information processing systems (NIPS). https://nips.cc/Conferences/
2018/Schedule?showEvent=10941.

Gutierrez-Galan, D., Dominguez-Morales, J. P., Cerezuela-Escudero, E., Rios-Navarro, A., Tapiador-Morales,
R., Rivas-Perez, M., et al. (2018). Embedded neural network for real-time animal behavior classification.
Neurocomputing, 272, 17–26.

Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing DNNs with pruning, trained
quantization and huffman coding. InProceedings of international conference on learning representations
(ICLR), San Juan. https://arxiv.org/abs/1510.00149.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural
networks. In Proceedings of conference and workshop on neural information processing systems (NIPS)
(pp. 1–9), Montreal, Canada. http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-
for-efficient-neural-network.pdf.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance
on ImageNet classification. In Proceedings of IEEE international conference on computer vision (ICCV)
(pp. 1026–1034), Santiago.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition ResNet. In
Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778), Las
Vegas.

He,Y., Zhang,X.,&Sun, J. (2017).Channel pruning for accelerating very deepneural networks. InProceedings
of IEEE international conference on computer vision (ICCV) (pp. 1398–1406), Venice.

Herbrich, R., & Graepel, T. (2002). A PAC-Bayesian margin bound for linear classifiers”. IEEE Transactions
on Information Theory, 48(12), 3140–3150.

Howard, A. G., Zhu, M., Chen, B., & Kalenichenko, D. (2017). MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint, https://arxiv.org/abs/1704.04861.

Hu, Y., Li, C., Meng, K., Qin, J., & Yang, X. (2017). Group sparse optimization via l p, q, regularization.
Journal of Machine Learning Research, 8(30), 960–1011.

Huang, Z., &Wang, N. (2018). Data-driven sparse structure selection for deep neural networks. InProceedings
of European conference on computer vision (ECCV) (pp. 317–334), Munich.

Iandola, F.N.,Han, S.,Moskewicz,M.W.,Ashraf,K.,Dally,W. J.,&Keutzer,K. (2017). SqueezeNet:AlexNet-
Level accuracy with 50X fewer parameters and < 0.5 MB model size. In Proceedings of international
conference on learning representations (ICLR), Toulon. https://openreview.net/pdf?id=S1xh5sYgx.

Jang, H., & Lee, J. (2018). An empirical study on modeling and prediction of bitcoin prices with Bayesian
neural networks based on blockchain information. IEEE Access, 6, 5427–5437.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of 22nd ACM international conference on multimedia
(pp. 675–678), Florida.

Jie, W., & Wang, J. (2017). Forecasting stochastic neural network based on financial empirical mode decom-
position. Neural Networks, 90, 8–20.

Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., & Shi, D. (2016). Compression of deep convolutional neural
networks for fast and low power mobile applications. In Proceedings of international conference on
learning representations (ICLR), Caribe Hilton. https://arxiv.org/abs/1511.06530.

Krizhevsky, A., & Hinton, G. E. (2009). Learning multiple layers of features from tiny images. Technical
Report, 1(4), p. 7, University of Toronto, Toronto, Canada.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural
networks. In Proceedings of conference and workshop on neural information processing systems (NIPS).
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Langford, J., & Schapire, R. (2015). Tutorial on practical prediction theory for classification. Journal of
Machine Learning Research, 6(3), 273–306.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

123

https://openreview.net/forum%3fid%3drJl-b3RcF7
https://nips.cc/Conferences/2018/Schedule?showEvent=10941
https://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
https://arxiv.org/abs/1704.04861
https://openreview.net/pdf?id=S1xh5sYgx
https://arxiv.org/abs/1511.06530
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

824 Multidimensional Systems and Signal Processing (2020) 31:793–827

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2017). Pruning filters for efficient convnets. In
Proceedings of international conference on learning representations (ICLR), Toulon. https://openreview.
net/pdf?id=rJqFGTslg.

Li, H., Xu, Z., Taylor, G., &Goldstein, T. (2018). Visualizing the loss landscape of neural nets. In International
conference on learning representations workshop (ICLRW), Vancouver, BC, Canada (pp. 1–17).

Li, Y., Yin, G., Zhuang, W., Zhang, N., Wang, J., & Geng, K. (2018b). Compensating delays and noises in
motion control of autonomous electric vehicles by using deep learning and unscented Kalman predictor.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,. https://doi.org/10.1109/TSMC.2018.
2850367.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks
through network slimming. In Proceedings of IEEE international conference on computer vision (ICCV)
(pp. 2755–2763), Venice.

Luo, J., Wu, J., & Lin, W. (2017). Thinet: A filter level pruning method for deep neural network compression.
In Proceedings of IEEE international conference on computer vision (ICCV) (pp. 5068–5076), Venice.

Miao, H., & He, D. (2017). Deep learning based approach for bearing fault diagnosis. IEEE Transactions on
Industry Applications, 53(3), 3057–3065.

Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). Pruning convolutional neural networks
resource efficient inference. In Proceedings of international conference on learning representations
(ICLR), Toulon. https://openreview.net/forum?id=SJGCiw5gl.

Painsky, A., & Rosset, S. (2016). Isotonic modeling with non-differentiable loss functions with application to
Lasso regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 308–321.

Radosavovic, L., Dollár, P., Girshick, R., Gkioxari, G., & He, K. (2018). Data distillation: Towards omni-
supervised learning. InProceedings of IEEE/CVF conference on computer vision and pattern recognition
(CVPR) (pp. 4119–4128), Salt Lake City.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

Samala, R. K., Chan, H., Hadjiiski, L., Helvie, M. A., Richter, C. D., & Cha, K. H. (2019). Breast cancer
diagnosis in digital breast Tomosynthesis: effects of training sample size on multi-stage transfer learning
using deep neural nets. IEEE Transactions on Medical Imaging, 38(3), 686–696.

Sau, B. B., & Balasubramanian, V. N. (2016). Deep model compression: Distilling knowledge from noisy
teachers. arXiv preprint, https://arxiv.org/abs/1610.09650.

Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016). Deep convolutional neural networks
for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE
Transactions on Medical Imaging, 35(5), 1285–1298.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint, https://arxiv.org/abs/1409.1556.

Srinivas, S., & Babu, R. V. (2016). Learning the architecture of deep neural networks. In Proceedings of
international conference on learning representations (ILCR), Caribe Hilton. https://arxiv.org/abs/1511.
05497v1.

Sun, X., Ren, X., Ma, S., &Wang, H. (2017). meProp sparsified backpropagation for accelerated deep learning
with reduced overfitting. In Proceedings of 34th international conference on machine learning (ICML)
(pp. 3299–3308), Sydney.

Sun, Y., Wang, X., & Tang, X. (2016). Sparsifying neural network connections for face recognition. In Pro-
ceedings of IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 4856–4864),
Las Vegas.

Szegedy,C., Liu,W., Jia,Y., Sermanet, P., Reed, S.,Anguelov,D., et al. (2015).Going deeperwith convolutions.
InProceedings of IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–9), Boston.

Theis, L., Korshunova, I., Tejani, A., & Huszár, F. (2018). Faster gaze prediction with dense networks and
Fisher pruning. arXiv preprint, https://arxiv.org/abs/1801.05787.

Tian, Q., Arbel, T., & Clark, J. J. (2017). Deep LDA-pruned nets for efficient facial gender classification.
In Proceedings of IEEE conference on computer vision and pattern recognition workshops (CVPRW)
(pp. 512–521), Honolulu.

Torfi, A., & Shirvani, R. A. (2018). Attention-based guided structured sparsity of deep neural networks,
In Proceedings of international conference on learning representations workshops (ICLRW), Canada.
https://openreview.net/pdf?id=S1dGIXVUz.

Wang, J., Xu, C., Yang, X., & Zurada, J. M. (2018). A novel pruning algorithm for smoothing feedforward
neural networks based on group Lasso method. IEEE Transactions on Neural Networks and Learning
Systems, 29(5), 2012–2024.

Xu, T., Yang, P., Zhang, X., & Liu, C. (2019). LightweightNet: toward fast and lightweight convolutional
neural networks via architecture distillation. Pattern Recognition, 88, 272–284.

123

https://openreview.net/pdf?id=rJqFGTslg
https://doi.org/10.1109/TSMC.2018.2850367
https://openreview.net/forum?id=SJGCiw5gl
https://arxiv.org/abs/1610.09650
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1511.05497v1
https://arxiv.org/abs/1801.05787
https://openreview.net/pdf?id=S1dGIXVUz

Multidimensional Systems and Signal Processing (2020) 31:793–827 825

Yang, T. J., Chen, Y. H., & Sze, V. (2017). Designing energy-efficient convolutional neural networks using
energy-aware pruning. In Proceedings of IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 6071–6079), Honolulu.

Yu, F., & Koltun, V. (2015). Multi-scale context aggregation with dilated convolutions. arXiv preprint, https://
arxiv.org/abs/1511.07122v2.

Yu, R., Li, A., Chen, C. F., Lai, J., Morariu, V. I., Han, X., et al. (2018). NISP: Pruning networks using neuron
importance score propagation. In Proceedings of IEEE/CVF conference on computer vision and pattern
recognition (CVPR) (pp. 9194–9203), Salt Lake City.

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural
network for mobile devices. In Proceedings of IEEE/CVF conference on computer vision and pattern
recognition (CVPR) (pp. 6848–6856), Salt Lake City.

Zheng, Q., Tian, X., Yang, M., & Wang, H. (2019). Differential learning: a powerful tool for interactive
content-based Image Retrieval. Engineering Letters, 27(1), 202–215.

Zheng, Q., Yang, M., Zhang, Q., & Yang, J. (2018a). A bilinear multi-scale convolutional neural network for
fine-grained object classification. IAENG International Journal of Computer Science, 45(2), 340–352.

Zheng, Q., Yang, M., Zhang, Q., & Zhang, X. (2018b). Improvement of generalization ability of deep CNN
via implicit regularization in two-stage training process. IEEE Access, 6, 15844–15869.

Zheng, Q., Yang, M., Zhang, Q., Zhang, X., & Yang, J. (2017). Understanding and boosting of deep con-
volutional neural network based on sample distribution, In IEEE Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC). Chengdu, China, 2017, 823–827.

Zoph, B., Vasudevan, V., Shlens, J., & V. Le, Q. (2018). Learning transferable architectures for scalable image
recognition. InProceedings of IEEE/CVF conference on computer vision and pattern recognition (CVPR)
(pp. 8697–8710), Salt Lake City.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Qinghe Zheng was born in Jining, Shandong, China in 1993. He
received the B.E. degree in communication engineering from Xian Uni-
versity of Posts and Telecommunications, Xian, China, in 2014, and the
M.Eng. degree in information and communication engineering from
Shandong University, Jinan, China, in 2018. He is currently pursu-
ing the Ph.D. degree in information and communication engineering at
Shandong University, Qingdao, China. He is a member of the Intelli-
gent Visual Laboratory. He has authored more than 10 peer-reviewed
journal and conference papers on his research topic. His research inter-
ests include non-stationary signal processing, pattern classification, and
non-convex optimization.

123

https://arxiv.org/abs/1511.07122v2

826 Multidimensional Systems and Signal Processing (2020) 31:793–827

Xinyu Tian was born in Taian, Shandong, China in 1992. She received
the B.E. degree in electronic communication engineering from Shan-
dong Jiaotong University, Jinan, China, in 2014, and the M.Eng. degree
in electronic communication engineering from Shandong University,
Jinan, China, in 2018. She is currently a Teaching Assistant with Elec-
trical and Mechanical College, Shandong Management University. Her
research interests include computer vision, intelligent transportation,
path planning, and autonomous vehicles.

Mingqiang Yang was born in Jinan, Shandong, China in 1969. He
received the B.E. degree in radio technology from Shandong Univer-
sity of Technology, Jinan, China, in 1992, and the M.Eng. degree in
communication and information processing from Shandong University,
Jinan, China, in 2000. He received the Ph.D. degree in signal and image
processing from INSA-RENNES, Rennes, France, in 2008. From 2001
to 2004, he was a Research Assistant with Shandong University. Since
2009, he is an Associate Professor with the School of Information Sci-
ence and Engineering, Shandong University. He is the author of two
books, more than 60 peer-reviewed journal and conference papers, and
more than 10 patents. His research interests include image processing,
feature extraction, and pattern recognition.

Yulin Wu received B.E. and M.Eng. degrees in electronics and com-
munication engineering from Shandong University, China, in 2015
and 2018, respectively. He is currently a Ph.D. student at the School
of Information Science and Engineering, Shandong University. His
research interests include deep learning, image processing and com-
puter vision, such as image classification and detection.

123

Multidimensional Systems and Signal Processing (2020) 31:793–827 827

Huake Su was born in in Taining, Fujian, China in 1997. He received
B.E. degree in School of Microelectronics from Xidian University,
China, in 2019. He is currently pursuing the M. Eng. degree at the
School of Microelectronics, Xidian University. His research interests
include machine learning, integrated circuit design and semiconductor
optoelectronic devices, such as LED.

123

	PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning
	Abstract
	1 Introduction
	2 Related work
	3 Drop-path method based on PAC-Bayesian framework
	3.1 Network pruning and fine-tuning
	3.2 Path ranking criterion
	3.3 Reasons for pruning paths rather than individual parameters

	4 Experiments
	4.1 Experimental setup
	4.1.1 Baseline models and benchmark datasets
	4.1.2 Pruning and fine-tuning details

	4.2 Model fine-tuning and baseline performance comparison
	4.3 Comparison with state-of-the-art methods
	4.3.1 ImageNet classification
	4.3.2 CIFAR-10 classification

	4.4 Layer robustness to drop-path pruning

	5 Discussions
	5.1 Difficulty in directly using small-sized networks
	5.2 The choice of maximum length of paths in the pruning of deep CNNs
	5.3 Sparse convolutional kernels are efficient

	6 Conclusion
	Acknowledgements
	References

