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Abstract
Medical imaging has been an indispensable tool in modern medicine in last decades. 
Various types of imaging systems provide structural and functional information about tis-
sues. But most of the time both kinds of information are necessary to make proper deci-
sion. Image fusion aims at gathering complementary information of different sources in 
one image to be more informative. This paper proposes a new method for this purpose. 
In proposed method, source images are first decomposed using nonsubsampled shear-
let transform. Extracting most of relevant information and merging them to achieve the 
best weights for fusion task is done by principal component analysis and particle swarm 
optimization. Fused image is provided by merging source images according to weights 
achieved from previous steps. Quantitative and qualitative analysis prove outperformance 
of our methods compared to well-known fusion methods. The experimental results show 
improvement compared to subsequent best method, in terms of peak-signal-to-noise-ratio 
(+ 8.85%), entropy (+ 3.48%), standard deviation (+ 16.3%), and quality index (+ 14.84%).
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1 Introduction

Medical imaging is taking an increasingly vital role in healthcare processes. Different 
imaging modalities like Magnetic Resonance Imaging (MRI), Computed Tomography 
(CT), Single Photon Emission Computed Tomography (SPECT) and Positron Emission 
Tomography (PET) provide information about structure and dynamic behavior of tissues 
and organs of human body. Most of the time, such information is complementary. Modali-
ties such as MRI and CT provide information about structure of organs while SPECT and 
PET give information about dynamic behavior of tissues. But both types of information are 
needed for reliable diagnosis. Then it would be a good idea to gather all information in a 
single image. Image fusion is the way to achieve this goal.

Image fusion is the process of gathering information from different sources into an 
image to get complementary information and remove redundant data. It mainly aims at 
keeping all the salient and complementary information while omitting redundant ones, 
without adding any noise and artifacts to fused image. As fused image offers better rep-
resentation of information, it is preferred in many medical applications such as neurology 
and oncology.

Image fusion could be performed at three levels: pixel, feature, and decision (Pohl and 
Van Genderen 1998). During pixel level fusion, the initial information from the source pix-
els is directly merged; thus, the fused image is more informative (Li et al. 2017). According 
to James and Dasarathy (2014), Matsopoulos et al. (1994), pixel level image fusion meth-
ods can be divided into five major groups: knowledge-based methods (Dou et  al. 2003; 
Radhouani et al. 2009), methods based on fuzzy logic (Singh et al. 2004; Singh et al. 2015; 
Koley et al. 2016; Yang et al. 2016), neural network based methods (Wang and Ma 2008; 
Liu et al. 2014; Zhao et al. 2014; Ganasala and Kumar 2014, 2016; Tang et al. 2017), mor-
phological methods (Matsopoulos et al. 1994; Jiang and Wang 2014) and methods based 
multiresolution analysis (Bhatnagar et al. 2013; Shuaiqi et al. 2014; Prakash et al. 2012).

Knowledge-based methods exploit expert knowledge which is highly trusted for deci-
sion making. The benefit of these methods is to introduce standards of the human visual 
system in tasks. The shortcoming of these methods appears in cases where there is a large 
variability in the image intensities of different parts. Fuzzy logic methods have proved 
their efficiency in image fusion with their disjunctive and conjunctive properties; however, 
choosing the appropriate membership functions and fuzzy sets is still a challenging prob-
lem. Neural networks are able to learn and then form a model for future decision-making 
tasks. Their ability to work without complex mathematical models is advantageous, but 
their performance is limited by the nature of training data and training algorithms. Mor-
phological methods have been used in medical image processing for a long time. In this 
group of methods, morphological filters are highly dependent on structuring elements 
which perform opening and closing operations. The accuracy of these methods is affected 
by variations in image, like the noise, shape, and size of features.

Methods based on multiscale transforms have proved their efficiency for medical image 
fusion. In this family of methods, source images are decomposed by means of basic func-
tions to get information about important features like edge and sharpness. This process 
yields coefficients further employed to choose the desired information.

The discrete wavelet transforms (DWT) is one of the most frequent transforms used for 
medical image fusion. DWT has been used in combination with different rules and various 
other methods. It can offer information about image approximation and horizontal, verti-
cal, and diagonal directions. It also establishes good multiresolution and time–frequency 
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localization characteristics. The main deficiency of DWT is the pseudo-Gibbs effect that 
appears in fused images because of the downsampling happening at each decomposition 
level. Shift variance is another deficiency of DWT (Bradley 2003). Curvelets are an effi-
cient model for resolving the disadvantages of DWT. They perform better than wavelets 
in extracting curvilinear properties such as edges (Ali et al. 2008; Himanshi et al. 2015). 
The curvelet transform (CVT) was initially developed for continuous space, but due to the 
rotation operation, it was too challenging to exploit it for discrete images (Do and Vetterli 
2005). Unlike the curvelet transform, the contourlet transform is constructed in the dis-
crete domain. It is a real, two-dimensional transform that can extract the basic geometric 
properties of a shape (Li et al. 2011). Because of its directional and multiscale represen-
tation of images, it performs better in extracting edges, textures, and complex contours, 
but the problem of shift variance still exists. Nonsubsampled contourlet transform (NSCT) 
is the shift invariant version of contourlet transform which exploits nonsubsampled filters 
and pyramids, and thus provides a more precise representation of the image (Li and Wang 
2011). Still, the high computational cost is a major drawback of NSCT. Nonsubsampled 
shearlet transform (NSST) was introduced in Easley et al. (2008) to benefit from low com-
putational costs, shift invariance, and optimal representation of images.

The general framework for image fusion based on multiresolution involves two key 
problems (Li et al. 2017). These are the selection of proper multiresolution decomposition 
method and selected approach to merge multiscale representation. Many methods such as 
DWT (Rangarajan 2017; Ravichandran et al. 2017; Sanjay et al. 2017), SWT (Indira et al. 
2015), CVT (Bhadauria and Dewal 2013; Ali et al. 2008), contourlet transform (Al-Azzawi 
et al. 2009; Bhateja et al. 2015), and NSST (Singh et al. 2015; Liu et al. 2018) are sug-
gested for obtaining the features of source images. The most common set of rules for the 
fusion of coefficients is to use the average of the coefficients for approximation and the 
bigger absolute value of details (Hill et al. 2002). Other examples include contrast (Bhat-
nagar et al. 2015), variance (Yang et al. 2010), energy (Yang et al. 2014), spatial frequency 
(Bhatnagar et  al. 2013) and principal component analysis (PCA) (Himanshi et  al. 2015; 
Krishn et al. 2014; Moin et al. 2016).

PCA is a standard tool in modern data analysis to extract important information from 
complicated datasets (Shlens 2014). It aims at finding the best basis to redefine data. It is 
simple, non-parametric and effective in extracting relevant information. Generally, PCA 
is considered as a feature extraction method to be merged with techniques such wavelets 
(Zheng et al. 2004; Cui et al. 2009; Al-Azzawi et al. 2009; Krishn et al. 2015; Benjamin 
and Jayasree 2018).

In Vijayarajan and Muttan (2015), a new method is presented to utilize DWT and PCA 
for medical image fusion. In this method, both source images are first transferred to the 
multiresolution space using DWT. Then, PCA is performed on each related pair of sub-
bands to achieve principal components. The average of all the components yields values for 
the fusion task. However, as mentioned before, DWT lacks shift invariance and a pseudo-
Gibbs effect. As mentioned before, the selection of the proper fusion role plays a critical 
role in the quality of the fused image. According to Li et al. (2013) rules could be classified 
into two groups: those based on features such as contrast (Bhatnagar et al. 2013), variance 
and visibility (Yang et al. 2010) and those which assign weights to each of features. The 
major advantage of first group is in keeping details, but these rules lack spatial consistency 
(Li et al. 2013). Assigning weights based on optimization methods could solve this prob-
lem. In this paper, particle swarm optimization (PSO) is the selected optimization tech-
nique because of its simplicity, ease of use and fast convergence.
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In this paper, a new method in pixel-level fusion is proposed based on NSST and PSO, 
namely STPCPSO for medical image fusion. In this method, one pair of source images are 
first transferred to multiresolution space via NSST. Then PCA is performed on each related 
subband and fusion coefficients are derived. PSO is used to find the optimal weight combi-
nation of coefficients instead of averaging and finding the final fusion weights. The fused 
image is formed by applying these weights. The main contributions of this study are the use 
of a more efficient multiresolution transform and using optimization to achieve better fusion 
weights.

The rest of this paper is organized as follows. In Sect. 2, the new algorithm is presented, 
and the preliminaries of NSST, PCA, and PSO are briefly reviewed. The experimental setup, 
results, and discussions are presented in Sect. 3. Conclusions are presented in Sect. 4.

2  Proposed algorithm

Image fusion is a process for gathering the necessary information from different sources to 
achieve a more informative image. Methods based on multiresolution analysis have been 
widely exploited in this area due to their good performance in spectral domains. PCA is a 
simple yet effective method for this task. The idea behind method of (Vijayarajan and Muttan 
2015) was to benefit from both methods in medical image fusion, but the deficiencies of DWT 
and averaging of weights are still two concerns. This paper proposes a new method to over-
come these imperfections.

2.1  Nonsubsampled shearlet transform

The NSST is a multidimensional and multidirectional representation of WT that includes 
multidirectional and multiscale analysis. Firstly, nonsubsampled Laplacian pyramid (NSLP) 
is exploited to decompose the original image and form low and high frequency subbands. 
Directional filtering is then applied to extract the different direction shearlet coefficients in a 
high frequency component. Shear matrixes are exploited for directional filtering. A three-level 
decomposition of NSST is depicted in Fig. 1. This process is described briefly as follows.

A two-dimensional affine system with composite dilations is considered as in Easley et al. 
(2008),

where � is the mother function to generate basis functions, ADS is the family of basic func-
tions produced by scale, shift and orientation changes of � . D is the anisotropic matrix, S 
refers to the shear matrix, and j, k, and m denote scale, direction, and shift parameter, 
respectively. D and S are 2 × 2 invertible matrices and |det S| = 1 . D is an anisotropic 

matrix in the form of 
[
d 0

0 d1∕2

]
 or 

[
d1∕2 0

0 d

]
 in which d > 0 is to control the scale of the 

shearlets. S is the shear matrix in the form of 
[
1 s

0 1

]
 or 

[
1 0

s 1

]
 which is to control only the 

direction of the shearlets. The transform function is then (Singh et al. 2015):

(1)ADS =
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in which ≥ 0 , −2j ≤ k ≤ 2j , m ∈ ℤ
2 , �̂� (0)(𝜉) = �̂� (0)

(
𝜉1, 𝜉2

)
= �̂�1

(
𝜉1
)
�̂�1(𝜉2∕𝜉1) and

where � =
(
�1, �2

)
∈ R2 and �̂� (i) are denoted to basic functions which support special 

regions of space.
A discrete transform is obtained by sampling continues wavelet transform on a proper 

discrete set. This transform is able to cope with discontinuities more effectively (Cao et al. 
2011).

2.2  Principal component analysis (PCA)

A detailed description of PCA method is presented in Ehlers (1991). Fusion based on PCA 
consists of the following steps:

1. Arranging source images in column vectors and merging them to form a 2 × n matrix 
�.

2. Forming the covariance matrix of � and computing eigenvectors � and eigenvalues � 
and sorting them from large to small.

3. Computing P1 and P2 as follows:

(3)�
(1)

j,k,m
(x) = 2j

3

2� (0)
(
Sk
1
D

j

1
x − m

)

(4)�̂� (1)(𝜉) = �̂� (1)
(
𝜉1, 𝜉2

)
= �̂�1

(
𝜉2
)
�̂�1(𝜉1∕𝜉2).

Fig. 1  Three-level decomposition of nonsubsampled shearlet transform
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where V(1) and V(2) are two first eigenvectors and 
∑

V  is summation of the 
eigenvectors.

4. Finding the fused image using the following equation:

2.3  Particle swarm optimization

Particle swarm optimization (PSO), is a member of evolutionary computation paradigms 
(Eberhart and Kennedy 1995). PSO is an off-line and low cost algorithm suitable for solv-
ing complex algorithm. PSO is preferred to other evolutionary algorithms due to three 
main improvements (Chen and Leou 2012): (1) PSO needs only basic mathematical opera-
tions. (2) Each particle is a possible solution, moving in space with a specific velocity. 
(3) The particles and swarm have their own memories. Each particle resembles a possible 
solution of a complex space. Its position is influenced by its best position and best particle 
in swarm. It means that each particle learns from experiences of all other particles. Perfor-
mance of each particle is assessed by fitness function. During the search process, the new 
velocity of particle i at dimension, i.e., vd

i
 and the new position of particle i at dimension d , 

i.e., xd
i
 , are updated, by Chen and Leou (2012):

where t donates the iteration counter, � is the inertia weight controlling the impact of pre-
vious velocity,c1 and c2 are learning constants, r1 and r2 are random variables in the range 
[0, 1] , pi is the best position of particle i , and pg is the best position of all particles within 
iteration t . In this paper, r1 and r2 are selected randomly and c1 and c2 have the value of 
1.49.

2.4  Proposed fusion algorithm

In this method, perfectly registered MRI images are first transformed to spectral domains 
based on NSST. The transform takes place in one level, so we have details on eight direc-
tions and one approximation. PCA is then performed on each pair of analogues subbands 
and approximations, and the necessary principal component values for fusion are derived. 
The problem is then modeled as an optimization problem with an objective function of a 
linear combination of eighteen variable. Coefficients of variables in linear combination are 
derived from previous step (PCA on subbands). PSO is used to solve this problem and get 
optimum values of variables. Achieved values are merged by their matched PCA values 
and summed up to get the final principal components necessary for fusion. A block dia-
gram of the proposed algorithm is illustrated in Fig. 2. The new algorithm is formulized 
as:Input: source images  I1 and  I2

1. Decompose  I1 and  I2 images to achieve  S1i and  S2i, i = 1,2,…,9

(5)P1 =
V(1)
∑

V
and P2 =

V(2)
∑

V

(6)Ifus = P1I1 + P2I2

(7)vd
i
(t + 1) = �.vd

i
+ c1.r1(t).

(
pd
i
(t) − xd

i
(t)
)
+ c2.r2(t).

(
pd
g
(t) − xd

i
(t)
)

(8)xd
i
(t + 1) = xd

i
(t) + vd

i
(t + 1)
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2. Perform PCA on each related subband pair:  [P1k,P2k] = PCA(S1k,S2k), k = 1,…,9
3. Model optimization problem as:
  a1P11 +⋯ + a9P19 + b1P21 +⋯ + b9P29 = 1 , 

{
a1,… , a9, b1,… , b9

}
 are unknown.

  PSO is exploited to solve the problem.

4. PF1 =
9∑
i=1

aiP1i, PF2 =
9∑
i=1

biP2i.

5. IF = PF1 × I1 + PF2 × I2

Output: IF

3  Experimental results and discussion

To evaluate the performance of the proposed method, experiments were carried out on 
platform Windows 8, MATLAB R2016b tools. Experiments were performed on two sets of 
perfectly registered MRI images. First set contains 10 pairs of T1 and T2 weighted MRIs of 
healthy slices from MICCAI 2008 dataset. Second dataset, includes a pairs of T1 weighted 
and T2 weighted acquired at MRI center of Dr. Alinasab hospital, Tabriz, Iran. Images of 
first dataset are of size 512 × 512, second dataset 384 × 273. A sample of first dataset and 
images of second dataset are demonstrated in Fig. 3.

As is known, different parts of the brain appear with different intensities in different 
sequences of an MRI; thus, fusing them together provides much more information and aids 
diagnosis. For comparison purposes, the results of the our method are compared to results 
achieved by applying our data to methods presented by SWT (Indira et  al. 2015), DWT 
(Sharmila et al. 2013), UDWT + PCA (Benjamin and Jayasree 2018), NSCT (Tang et al. 
2007) and DWTPCAAV (Vijayarajan and Muttan 2015). A brief review of all the methods 
is presented in Table 1.

3.1  Objective evaluation metrics

Fusion is carried out for different purposes, so there is no universal assessment for fusion 
performance. Fusion results could be assessed subjectively or objectively. A subjective 

Fig. 2  Block diagram of the proposed method
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evaluation is based on the human visual system; thus, it is difficult to perform. To over-
come this problem, many objective evaluation metrics are offered. Most of the objective 
metrics have been reviewed in Jagalingam and Hegde (2015). In this paper, fusion perfor-
mance is evaluated using seven metrics as follows:

• Quality index (QI)

QI is used model any distortion as the combination of three factors: loss of correlation, 
luminance distortion and contrast distortion (Zhou Wang et al. 2004). Its range is between 
-1 and 1. Higher values indicate less distortion and higher degree of similarity between 
source and fused image. It is calculated as:

(9)QI =
4𝜎xyxy(

𝜎2
x
+ 𝜎2

y

)(
(x̄)2 + (ȳ)2

)

Fig. 3  MRI slices a dataset 1, b dataset 2

Table 1  Brief description of methods to which proposed method is compared

Method Description

SWT (Indira et al. 2015) Images are transferred to multiresolution space via SWT 
and approximate is achieved by averaging while details 
are fused based on energy

DWT (Sharmila et al. 2013) Images are transferred to multiresolution space via DWT 
and maximum rule is used to merge approximate while 
details are fused based on entropy

UDWT + PCA (Benjamin and Jayasree 2018) Images are transferred to multiresolution space via UDWT. 
At first stage, details are fused via PCA and inverse 
transform in applied to get an image of details. The same 
is done for approximation. At second stage, UDWT is 
applied on these images and fusion is performed with 
maximum rule

NSCT (Tang et al. 2007) Images are transferred to multiresolution space via NSCT 
and maximum rule is used to merge coefficients.

DWTPCAav (Vijayarajan and Muttan 2015) PCA based method, fusion weights are achieved by per-
forming PCA on subbands achieved by transferring image 
to multiresolution space via DWT
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Here, x̄ and ȳ are the mean of image x and image y and �2
x
 and �2

y
 are their variance, respec-

tively.�xy denotes the covariance of two variables.

• Entropy (E)

Entropy shows the average amount of information in the fused image (Li et al. 2013). 
Larger values of E mean a higher amount of information in the fused image. Entropy is 
computed as follows:

where l is the number of gray levels of image, and p(i) means the probability of pixels 
whose gray value is i over the total number of pixels.

• Structural similarity (SSIM)

Having images a and b, the SSIM between two images is defined as follows:

where �a and �b denote average values of a and b, respectively, �ab is the covariance 
between the two images, and �a and �b are the variances of the variables.

• Peak signal-to-noise ratio (PSNR)

PSNR reflects the quality of the reconstructed image (Cao et  al. 2011). A larger 
PSNR means less distortion in the fused image. It comes as:

where Imax is the maximum intensity value of image and MSE is the mean square error:

where Is and If  are the source and fused images of size m × n , respectively.

• Mutual information (MI)

It is used to measure the similarity of intensity between source and fused images. 
Higher value means better performance.

• Correlation coefficient (CC)

This metric is used to compute the spectral similarity between reference and fused 
image. Values closer to 1 indicate better performance (Zhu and Bamler 2013).

(10)E = −

l−1∑

i=0

p(i) log2 p(i)

(11)SSIM(a, b) =
�ab

�a�b
.
2�a�b

�2
a
+ �2

b

.
2�a�b

�2
a
+ �2

b

(12)PSNR = 10 × log
(
I2
max

/
MSE

)

(13)MSE =
1

m × n

m∑

i=1

n∑

j=1

(
Is(i, j) − If (i, j)

)2
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• Standard deviation (STD)

STD is the measure of contrast in fused image. Higher value means higher contrast in 
fused image. It is calculated as follows:

where M and N are dimensions of image, while � is the average value of image intensity.

3.2  Performance evaluation of first dataset

Perfectly registered T1 and T2 weighted images were tested with different methods, and 
the results of quantitative analysis on dataset are presented in Table 2. Fusion results for 
two pairs of source images from dataset 1 are available in Figs. 4 and 5.

Source images are depicted in Fig. 4a, b. Methods of Indira et al. (2015) and Tang et al. 
(2007) returned low quality images with almost no details indicating incapability of these 
methods to catch details. Results of Sharmila et  al. (2013) and Benjamin and Jayasree 
(2018) have higher contrast and more details, although they are not visually recognizable. 
Method of Vijayarajan and Muttan (2015) reduced the contrast of image, especially at brain 
ventricles. Results of cases in which the best method is other than proposed method, are 
depicted in bold italic. Case in which the proposed method is the best are depicted in bold.

The values of the quantitative metrics are presented in Table 2. The proposed method 
has the highest PSNR among all; thus, it shows the best performance in constructing the 
fused image and transferring intensity levels to it. The PSNR is improved with this method 
compared to the method which has the best performance of PSNR among compared meth-
ods [DWTPCAav (Vijayarajan and Muttan 2015)].

QI measures the structural similarity of images instead of only intensity similarity. The 
proposed method has the best QI and, thus, the best performance in gathering structural 
information. It improves QI compared with the second-best method. SSIM is based on QI, 
and luminance and contrast are also considered. The method of Tang et al. (2007) gained 
the highest similarity value. Looking at images 4a, b, d and h it can be noticed that the 
result of the proposed method gained most of its visual characteristics from a T1-weighted 
image; thus, less luminance and contrast similarity with the other source image is inevita-
ble. This leads to a reduction in total.

Here, the proposed method shows a reduction in SSIM compared with the method 
which has the highest SSIM among other examined methods [NSCT (Tang et al. 2007)]. 

(14)STD =

√√√√ 1

M × N

M∑

i=1

N∑

j=1

[
f (i, j) − �

]2

Table 2  Quantitative evaluations of different methods on dataset1

PSNR QI SSIM Entropy MI CC STD

SWT (Indira et al. 2015) 21.193 0.166 1.778 2.752 8.484 0.939 0.202
NSCT (Tang et al. 2007) 21.298 0.165 1.799 2.669 2.485 0.940 0.200
DWT (Sharmila et al. 2013) 16.668 0.177 1.777 2.782 6.204 0.936 0.216
UDWT + PCA (Benjamin and Jayasree 2018) 21.526 0.172 1.778 2.812 14.500 0.932 0.210
DWTPCAav (Vijayarajan and Muttan 2015) 22.973 0.145 1.781 2.692 2.389 0.932 0.177
Proposed method 24.712 0.204 1.771 2.909 2.980 0.909 0.252
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More research is needed to solve this issue. The highest entropy of the proposed method 
shows the richest information content in the fused image. Entropy is raised by the proposed 
method, providing the highest contrast among methods. Thus, the fused image is more 
understandable for the human visual system.

MI values are very high compared with the proposed method, but when looking at the 
standard deviation of the dataset (Table  3), the proposed method performs better. High 
standard deviation values demonstrate the high sensitivity of methods to data variations 
and their unreliability. Highest values are depicted in bold.

The proposed method performed best in the spatial domain but not the same in the spec-
tral domain due to its low CC. This is another issue which needs more research.

3.3  Performance evaluation of second dataset

Perfectly registered T1 and T2 weighted images were tested with different methods, and 
the results of different metrics are presented in Table  4. Highest values are depicted in 
bold. Fusion results are available in Fig. 6.

The same performance is also true for the second dataset. In the case of MI, more image 
pairs are needed to evaluate the sensitivity of the methods to data variations. A comparison 

Fig. 4  An image pair of dataset 1 and average results of different fusion methods: a MR-T1, b MR-T2, c 
SWT (Indira et al. 2015), d NSCT (Tang et al. 2007), e DWT (Sharmila et al. 2013), f cascade of UDWT 
and PCA (Benjamin and Jayasree 2018), g DWTPCAav (Vijayarajan and Muttan 2015), h proposed method
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of performance between proposed method and method which shows the best results among 
other methods used for comparison is presented in Fig. 7.

Proposed method shows improvement compared to the best of other methods in spa-
tial domain. But fails to show the same performance in spectral domain because per-
cent of improvement is negative. It is an issue to discuss in future works. As shown in 
Fig. 7, PSNR is improved about 8.85%, entropy about 3.48%, STD by amount of 16.3% 
and QI shows an increase of 14.84%.

The proposed method shows improvement in PSNR, QI, and STD and decreases in 
SSIM and CC on both datasets. In the case of entropy, the proposed method displays 
reverse behavior on both datasets. The skull presented in the second dataset could have 
caused these results. It is another issue to discuss in the future.

To prove the robustness of proposed method, Poisson noise is applied to all of 
source images and the same metrics are calculated as in case without noise. The out-
comes of all the methods are depicted in Table  5. Our method has the same perfor-
mance even in presence of noise. So, it is robust. It has the highest PSNR in pres-
ence of noise with an improvement of (+ 11.1), QI improvement of (+ 7.52) and STD 

Fig. 5  Second image pair of dataset 1 and average results of different fusion methods: a MR-T1, b MR-T2, 
c SWT (Indira et al. 2015), d NSCT (Tang et al. 2007), e DWT (Sharmila et al. 2013), f cascade of UDWT 
and PCA (Benjamin and Jayasree 2018), g DWTPCAav (Vijayarajan and Muttan 2015), h proposed method
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improvement of (+ 9.13). The quality of image is preserved and is not distorted in 
presence of noise, which is an important point for the next steps of this research.

4  Conclusion

In this paper, a new method is presented for the fusion of multimodal MRI by exploit-
ing NSST in combination with PCA and PSO. This process takes place in both spatial 
and transform domains. PCA is a computationally simple algorithm and integrates images 
based on a simple covariance-based approach. This process was further improved in this 
study by calculating the principal components at different subbands of NSST for the 
images. PSO is a well-known optimization tool that is used here to find the best combi-
nation of PCA values for the fusion process. The performance of the proposed method 
was tested on two datasets and compared with recent works on multimodal medical image 
fusion. Quantitative analysis confirmed that the proposed method outperformed others in 
terms of standard deviation, signal-to-noise ratio, quality index, and entropy.

Table 4  Quantitative evaluations of different methods on dataset2

PSNR QI SSIM Entropy MI CC STD

SWT (Indira et al. 2015) 21.270 0.182 1.650 4.862 3.603 0.923 0.212
NSCT (Tang et al. 2007) 21.430 0.178 1.673 4.981 3.630 0.925 0.207
DWT (Sharmila et al. 2013) 16.747 0.146 0.765 4.780 3.624 0.924 0.169
UDWT + PCA (Benjamin and Jayasree 2018) 21.416 0.175 1.663 5.035 6.632 0.925 0.204
DWTPCAav (Vijayarajan and Muttan 2015) 21.984 0.180 1.691 4.681 3.708 0.920 0.210
Proposed method 23.929 0.187 1.676 4.888 4.253 0.897 0.221
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Fig. 6  Dataset 2 and results of different fusion methods: a MR-T1, b MR-T2, c SWT (Indira et al. 2015), 
d NSCT (Tang et al. 2007), e DWT (Sharmila et al. 2013), f cascade of UDWT and PCA (Benjamin and 
Jayasree 2018), g DWTPCAav (Vijayarajan and Muttan 2015), h proposed method
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