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Abstract
This paper proposes a new sparse array geometry for 2-D (azimuth and elevation) direction-
of-arrival (DOA) estimation based on coprime sampling. The proposed array structure is
L-shaped coprime array (LCA) whose each portion is one dimensional coprime linear arrays
in y- and z-dimensions. Each portion of the array is used separately for 1-D azimuth and
elevation angle estimation. In order to obtain the paired DOA estimates the cross-covariance
matrix of two portion of the array is utilized and the paired DOA angles are estimated. LCA
provides to estimate K ≤ MN source directions with 2M+N−1 sensors in each portion and
totally 4M + 2N − 3 sensor elements. The proposed method is evaluated through numerical
simulations and its performance is compared with other coprime planar array structures. It is
shown that LCA has less computational complexity together with less real sensor elements
and it provides superior performance as compared to the conventional 2-D coprime planar
arrays.

Keywords L-shaped arrays · Coprime arrays · Sparse arrays · Direction of arrival estimation

1 Introduction

In array signal processing direction-of-arrival (DOA) estimation is an important issue for a
number of applications such as radar, sonar and wireless communications (Krim and Viberg
1996). Several methods are proposed for the estimation of unknown source locations and one
of the most popular method in this context is the MUSIC (MUltiple SIgnal Classification)
algorithm (Schmidt 1986). The effectiveness of the MUSIC algorithm is attributed to the
orthogonality of signal and noise spaces. The performance limit of the MUSIC algorithm is
to estimate up to K ≤ M − 1 source directions for an M-element sensor array.

While uniform array structures such as uniform linear and circular arrays (Friedlander
and Weiss 1991) are mostly used in the literature, nonuniform arrays gain much interest in
recent studies. A general form for nonuniform array is random array structures which are
considered in Lo (1964), Elbir and Tuncer (2016) and Elbir (2017). While random arrays
provide flexibility to deploy the sensor elements, the number of resolvable sources is limited
with the same order as for the uniform arrays. Recently, sparse array structures are intro-
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duced as a promising structure since they enjoy the increased degrees of freedom (DOF)
for the estimation of more sources than sensors, namely K > M (Pillai et al. 1985; Pal and
Vaidyanathan 2010; Abramovich et al. 1998, 1999; Pal andVaidyanathan 2011). Sparse array
structures are mainly useful in radar tracking applications where there are more targets than
the number of physical antennas in the environment (Vaidyanathan and Pal 2010). Further-
more, sparse array geometries provide the effective use of antenna elements where the same
estimation performance is achieved with less number of antennas. One of the nonuniform
array structures is the minimum redundancy arrays (MRAs) which are discussed in Pillai
et al. (1985). While MRA provides higher DOF than usual uniform linear arrays (ULAs),
there is no closed for expression for the sensor positions of an MRA for a certain number of
sensors M (Pal and Vaidyanathan 2010). In Abramovich et al. (1998, 1999), the augmenta-
tion of covariance matrices for enhancing DOF is proposed where the resulting covariance
matrix is not positive semidefinite for a finite number of snapshots. In Pal and Vaidyanathan
(2010), nested array structures are proposed for estimating O(M2) sources with O(M) sen-
sors. Since nested arrays have more closely spaced sensors which eventually cause relatively
higher mutual coupling, coprime array structures are introduced in Pal and Vaidyanathan
(2011), Wang et al. (2017) and Liu and Vaidyanathan (2017) where the array is composed of
less number of element pairs that are closely spaced and hence less coupling occurs. Using
a coprime array, up to K ≤ MN sources can be identified with only 2M + N − 1 sensor
elements. To increase the DOF of the sparse array, NA with increased DOF is proposed in
Huang et al. (2018) where the proposed approach can provide (P2−1)/2+ P DOFwhere P
is the number of antennas in the array. Virtual array interpolation (VAI) technique is proposed
in Zhou et al. (2018) to map the array data to fill the holes in the virtual array. While this
approach provides the same DOF, the DOA estimation performance is improved due to array
interpolation. Note that above array structures are 1-dimensional (1-D) and they cannot be
employed for 2-D (azimuth and elevation) DOA estimation.

Apart from 1-D DOA estimation with sparse arrays, 2-D DOA estimation techniques are
also proposed with the use of sparse array geometries (Wu et al. 2016; Zheng et al. 2017; Liu
et al. 2015). However these works do not explicitly use the sparsity structure of the array to
increase the DOF. For instance, the authors inWu et al. (2016) propose a coprime planar array
(CPA) structure where the proposed approach fails to resolve more sources than sensors (See
Table 2). In particular, CPA consists of P1 × P1 and P2 × P2 subarrays where P1 and P2 are
coprime integers. It is reported that this method can resolve K ≤ min{P2

1 , P2
2 } − 1 sources

with MCPA = P2
1 + P2

2 sensor elements. The method in Zheng et al. (2017) generalizes
the construction of coprime planar arrays (GCPA) and Zheng et al. (2017) uses N1 × M1

and N2 × M2 two subarrays where N1, N2 and M1, M2 are coprime integer sets. Hence
GCPA can resolve K ≤ min{N1M1, N2M2}−1 which provides higher DOF than CPA using
MGCPA = N1M1 + N2M2 sensors. While GCPA provides more DOF, it uses large number
of elements. In order avoid the use of large number of antennas, L-shaped array geometries
are also used in Liu et al. (2015) where a sparse recovery method is employed. However, the
estimated azimuth and elevation angles are not paired, i.e., ambiguous 2-D DOA angles are
obtained.

Instead of planar arrays, L-shaped arrays provide much simpler structure and it is widely
used for 2-D DOA estimation (Yang et al. 2016; Dong et al. 2016a; Tayem et al. 2016;
Dong et al. 2016b, 2017). In Yang et al. (2016), steering matrix estimation is done for the
estimation of azimuth and elevation angles separately. In Dong et al. (2016a), L-shaped
nested arrays are considered for the same problem. In Tayem et al. (2016), Dong et al.
(2016b, 2017), augmented data matrices are constructed for aperture and snapshot extension
to utilize the structure of L-shaped arrays. While L-shaped array provides less complexity
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since it requires 1-D search algorithm, it usually suffers from the angle pairing problem in
2-D DOA estimation scenario. In above studies, this issue is solved with various techniques
which are mainly based on the use of cross-covariance matrix.

Above sparse array structures provide limited number of DOF where the theoretical max-
imum DOF of an M-element array is M(M − 1) + 1 (Pal and Vaidyanathan 2010). Hence
there is a need to enhance the DOF that can be achieved from the antenna array through
signal processing. The motivation of this study is to reduce the complexity of the parameter
estimation and obtain sufficient estimation accuracy with the given array structure. Hence, an
L-shaped coprime array (LCA) structure is proposed in this paper for 2-D DOA estimation.
The proposed array structure consists of two portions, namely y- and z-axis portions. Each
portion is composed of 2M + N − 1 sensors where M and N are coprime integers. Since the
sensor at the origin is commonly placed the total number of sensors isMLCA = 4M+2N−3.
The proposed method can resolve K ≤ MN sources and it provides much less sensor ele-
ments as compared to other 2-D nonuniform arrays such as CPA (Wu et al. 2016) and GCPA
(Zheng et al. 2017). In order to estimate the 2-D DOA angles the coprime structure of each
portion is utilized and a longer virtual ULA is constructed by vectorization of the covariance
matrix of data from each portion. Since the obtained data model is in Vandermonde form,
spatial smoothing is employed then the rank-enhanced covariance matrix is obtained (Pal and
Vaidyanathan 2011; Liu and Vaidyanathan 2015). The covariance matrices of each portions,
y- and z-axis, are used for azimuth and elevation angles estimation respectively. In order to
obtain paired 2-D DOA angles, the cross-covariance matrix between the data of each portion
is used and automatically paired 2-D DOA estimation is achieved. The main contributions
of this paper are as follows

1. A new array geometry, namely L-shaped coprime array, is proposed where LCA requires
much less sensor elements as compared to the other planar coprime arrays for 2-D param-
eter estimation.

2. The proposed method is advantageous in terms of computational complexity where it
does not require 2-D search method which is a computational prohibitive task and it
can simply be performed using 1-D search algorithms such as the MUSIC algorithm for
azimuth and elevation separately.

3. Since the virtual array data of each portion enjoys the Vandermonde structure, root-
MUSIC method can also be employed which further accelerates the computation time.

4. The statistical performance of the proposed method is evaluated through several exper-
iments and it is shown that LCA provides less root-mean-square error (RMSE) as
compared to the other array geometries.

2 Array signal model

Consider an L-shaped array composed of two portions placed in y- and z-axis as seen in
Fig. 1a. Let each portion consists of two subarrays with 2M- and N -element subarrays
where M < N and M, N ∈ N

+ are coprime numbers (Pal and Vaidyanathan 2011). The
locations of the 2M sensors are in the set S2M = {Nmd : 0 ≤ m ≤ 2M − 1} and the
locations of the N sensors are in the set SN = {Mnd : 0 ≤ n ≤ N −1} respectively where d
is the fundamental element spacing in the array and d = λ/2 for narrowband source signals
to avoid spatial aliasing (Stoica and Moses 2005). This property yields 2M + N − 1 sensors
in each portion. Hence the total number of sensors in the array is MLCA = 4M + 2N − 3
where the sensor at the origin is the common element in all subarrays. Assume that there are
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Fig. 1 L-shaped coprime array structure for M = 2, N = 5 and d = λ/2. a The real sensor positions. b
Co-array of each portion of LCA. c The contagious part of each co-array

K source signals impinging on the array from directions {θk, φk}Kk=1 where θk and φk are
being the elevation and the azimuth angle of the kth source respectively. Then the outputs of
each portion are given by

y(ti ) =
K∑

k=1

aY(φk)sk(ti ) + nY(ti ) (1)

z(ti ) =
K∑

k=1

aZ(θk)sk(ti ) + nZ(ti ) (2)

where i = 1, . . . , T and T is the number of snapshots and nY(ti ),nZ(ti ) ∈ C
(2M+N−1) are

temporarily and spatially white noise vectors. {sk(ti )}K ,T
k=1,i=1 is the set of uncorrelated source

signals and aY(φk), aZ(θk) denote the steering vectors corresponding to the kth source and
their i th elements are given by

[aY(φk)]i = exp

{
j
2π

λ
yi sin(φk)

}
(3)

[aZ(θk)]i = exp

{
j
2π

λ
zi sin(θk)

}
(4)

where [·]i denotes i th element of the vector quantity. Note that the azimuth and elevation
angles are defined different than the conventional definition as in Dong et al. (2016b, a)
and a unique transformation between each other can always be performed without loss of
generality. λ is the wavelength and yi , zi ∈ S where S which is defined as

S = {Mnd : 0 ≤ n ≤ N − 1} ∪ {Nmd : 0 ≤ m ≤ 2M − 1}

The aim in this work is to estimate DOAs {θk, φk}1≤k≤K of K ≤ MN sources by using
only MLCA = 4M + 2N − 3 sensors when the sensor positions {yi , zi }1≤i≤2M+N−1 are
known.

Remark 1 Due to the computation of the noise subspace in the MUSIC algorithm, the pro-
posed method requires the knowledge of the number of sources K . While the estimation
process of K is an important issue in many fields of array signal processing (Wax and
Kailath 1985; Yang and Xie 2015), in this paper it is assumed that K is known a priori.
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3 DOA estimation with coprime arrays

Using the array model in (1) and (2), the covariance matrices for each portion are defined as

RY = E{y(t) yH (t)} = AYRSAH
Y + σ 2

n I (5)

RZ = E{z(t) zH (t)} = AZRSAH
Z + σ 2

n I (6)

where AY and AZ are (2M + N − 1) × K steering matrices whose kth columns are aY(φk)

and aZ(θk) respectively. RS = diag{σ 2
1 , . . . , σ 2

K } is K × K signal correlation matrix, I is the
identity matrix and σ 2

n is the noise variance.
Due to the structure of coprime arrays, a longer virtual array can be constructed by taking

advantage of the second order statistics RY and RZ. While the real array includes the lags
given in the set S, the elements of RY and RZ can provide a larger positions set whose
elements constitute the difference co-array Sdiff which is defined as the unique terms in the
set

S
2 = {(Mn − Nm)d : 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1} .

In Fig. 1b, the difference co-array of each portion of the LCA is presented. In order to exploit
the co-array structure inherit in the covariance matrices, vectorization is applied to RY and
RZ and we get

yS2 = vec{RY} = AY
S2
p + nY

S2
(7)

zS2 = vec{RZ} = AZ
S2
p + nZ

S2
(8)

where AY
S2

= AY � AY, AZ
S2

= AZ � AZ and � denotes the Khatri–Rao product (Khatri

and Rao 1968; Pal and Vaidyanathan 2011). p = [σ 2
1 , . . . , σ 2

K ]T represents the signal powers
and nY

S2
= nZ

S2
= vec{σ 2

n I}. Now observe that yS2 can be viewed as the output of a virtual
array with sensor positions Sdiff which includes 2MN + 1 contiguous terms from −MN to
MN as seen in Fig. 1c. Hence a longer virtual ULA can be constructed from the row elements
of yS2 , say ySULAdiff

, where the virtual array position set for contagious part SULAdiff is defined as

S
ULA
diff = {nd : −MN ≤ n ≤ MN } (9)

which the set of sensor positions of (2MN + 1)-element virtual ULA. Therefore the rows of
yS2 and zS2 corresponding to S

ULA
diff are collected and the following model is obtained, i.e.

y
S
ULA
diff

= AY
S
ULA
diff

p + nY
S
ULA
diff

(10)

z
S
ULA
diff

= AZ
S
ULA
diff

p + nZ
S
ULA
diff

(11)

where AY
S
ULA
diff

,AZ
S
ULA
diff

∈ C
(2MN+1)×K are the array manifold matrices corresponding to

the sensor elements with positions yi , zi ∈ S
ULA
diff . In order to estimate the DOA angles,

the MUSIC algorithm can be applied to the covariance matrices of y
S
ULA
diff

and z
S
ULA
diff

. Since
the resultant covariances will be rank 1, spatial smoothing is required to estimate the DOA
angles. In order to obtain a spatially smoothed covariance matrix a rank-enhanced Toeplitz
positive semidefinite matrix is constructed (Liu and Vaidyanathan 2015) where the smoothed
covariancematrix is obtained from theobservationsy(ti ) and z(ti )directly.Then the smoothed
covariance matrix RY-SS is obtained as
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where L = (|SULAdiff | + 1)/2 = MN + 1 and

[ỹ
S
ULA
diff

]l = 1

L(l)

∑

n1,n2∈L(l)

[R̃Y]n1,n2 (12)

where R̃Y = 1
T

∑T
i=1 y(ti )y

H (ti ) is the sample covariance matrix and L(l) is defined as

L(l) = {(n1, n2) ∈ S
2 : n1 − n2 = l, l ∈ S

ULA
diff } (13)

In other words, L(l) is set of the pairs (n1, n2) that has contribution to the co-array index
l. Note that RY-SS ∈ C

(MN+1)×(MN+1) provides the same DOA estimation performance as
compared to the conventional smoothed covariancematrix computed in Pal andVaidyanathan
(2011) for finite snapshot case (Liu and Vaidyanathan 2015). Once RY-SS and RZ-SS are
computed they are inserted into the MUSIC algorithm to obtain the MUSIC pseudo-spectra
as

PY(φ) = 1

aHY (φ)UYnU
H
Yn
aY(φ)

(14)

PZ(θ) = 1

aHZ (θ)UZnU
H
Zn
aZ(θ)

(15)

where aY(φ) and aZ(θ) are the steering vectors constructed by using the position sets yi , zi ∈
S
ULA-SS
diff where S

ULA-SS
diff = {nd : 0 ≤ n ≤ MN }. UYn and UZn are the noise subspace

eigenvector matrices of RY-SS and RZ-SS respectively.
In Fig. 2, the line spectra for azimuth PY(φ) and elevation PZ(θ) is presented by using

RY-SS and RZ-SS in the MUSIC algorithm. While PY(φ) and PZ(θ) provide peaks at true
source locations, the estimated azimuth and elevation angles are not paired due to 1-D
searches. In order to obtain a paired estimation results, the cross-covariance matrix of two
portions of LCA is utilized in the following section for accurate 2-D DOA estimation.

4 2-D paired DOA estimationWith LCA

In order to obtain the paired DOA estimates, the cross-covariance of y(ti ) and z(ti ) is com-
puted. In the following we first discuss the estimation of the azimuth angles by using only
y(ti ). Then the elevation angles are estimated which are automatically paired with the esti-
mated azimuth angles.

4.1 Azimuth angle estimation

The MUSIC pseudo-spectrum given in (14) is used and the azimuth angle estimates can be
obtained from the K highest peaks of PY(φ). Once the azimuth angles are estimated the
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Fig. 2 The azimuth and elevation estimation performance of LCA with M = 4, N = 5, MLCA = 23. The
number of sensors in each portion is 2M + N − 1 = 12 and number of sources is K = 20, SNR = 0dB
and the number of snapshots is T = 500. The true locations of the sources are denoted with vertical lines and
φ̄ = sin(φ) and θ̄ = sin(θ)

estimated array steering matrix ÂY ∈ C
(2M+N−1)×K can be constructed as

ÂY = [aY(φ̂1), . . . , aY(φ̂K )] (16)

where {φ̂k}Kk=1 is the set of estimated azimuth angles. In the sequel, ÂY will be used for
elevation angle estimation.

4.2 Elevation angle estimation

In order to estimate the elevation angles the cross-covariance matrix is computed as

RYZ = E{y(t)zH (t)} = AYRSAH
Z (17)

where the noise terms are vanished due to assumption that the noise is spatially white. Note
that in practice, sample cross-covariance matrix R̂YZ = 1

T

∑T
i=1 y(ti )z

H (ti ) is available and
the noise terms are very small. Now our aim is to estimate the steering matrix AZ whose
columns correspond to the elevation angleswhich are pairedwith the columns of the estimated
steering matrix ÂY.

Remark 2 Since the columns of AY and AZ have the same order, this process will yield an
automatically paired azimuth and elevation angle estimates.

Hence we solve the following least squares problem, i.e.

ÂZ = argmin
AZ

||RYZ − ÂYRSAH
Z ||2F (18)

where the knowledge of RS is required for the computation of AZ. In order to estimate RS

we consider the eigendecomposition of the covariance matrix RY in (5) as

RY = UY�UH
Y (19)
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whereUY = [UYs UYn ] andUYs ,UYn are the signal and noise subspace eigenvector matrices
respectively. � is a diagonal matrix composed of the eigenvalues of RY. (19) can also be
written as

RY = UYs�sUH
Ys

+ UYn�nUH
Yn

(20)

where�s ∈ C
K×K and�n ∈ C

(2M+N−1−K )×(2M+N−1−K ) are diagonal matrices composed
of the eigenvalues of RY with respect to signal and noise subspaces respectively. Using (5),
(20) and the fact that the columns of AY and UYs span the same space, RS can be estimated
from

R̂S = Â
†
YUYs�sUH

Ys

(
Â

H
Y

)†
(21)

where (·)† denotes the Moore-Penrose pseudo-inverse operation. Then the steering matrix
AZ is estimated from (18) by using the following closed form expression, i.e.

ÂZ =
(
R̂

−1
S

(
ÂY

)†
RYZ

)H

. (22)

Using (21), (22) can be written explicitly as

ÂZ =
((

Â
†
YUYs�sUH

Ys
(Â

H
Y )†

)−1
Â
†
YRYZ

)H

. (23)

Note that the size of the estimated steering matrix ÂZ is (2M + N − 1) × K and in under-
determined case we have (2M + N − 1) < K . While in this case the covariance matrix of
ÂZ does not lead to accurate results due to rank-deficiency, we instead use the columns of
ÂZ to estimate the elevation angles one by one so that each elevation angle is paired with the
corresponding azimuth angle. Hence the elevation angles can be estimated by the MUSIC
algorithm using the covariance matrix R̂Zk which is given as

R̂Zk = [ÂZ]:,k[ÂZ]H:,k . (24)

In other words, R̂Zk can be obtained for the kth column of ÂZ. Since rank{R̂Zk } = 1, 1-D
MUSIC algorithm is used to estimate θk . In particular, θk is estimated from

θ̂k = argmax
θ

1

aHZ (θ)GkGH
k aZ(θ)

(25)

for k = 1 . . . , K where aZ(θ) ∈ C
(2M+N−1) is the steering vector corresponding to the

position set zi ∈ S.Gk ∈ C
(2M+N−1)×(2M+N−2) is the noise subspace eigenvector matrix of

R̂Zk .

Remark 3 When there are sources with the same azimuth (elevation) but different elevation
(azimuth) angles. The proposed 2-D DOA estimation technique can be applied by first esti-
mating the elevation (azimuth) then pairing them with azimuth (elevation) angles to achieve
unambiguous 2-D DOA estimation.

5 Computational complexity

In this section, the complexity of the proposed method is discussed. In order to esti-
mate the azimuth angles 1-D spectral search is required together with the computation
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Table 1 Computational
complexity comparison LCA (MN + 1)

(
Nφ (MN + 1 − K ) + K Nθ MN

)

CPA NφNθ
P4
1

P2
2

+ NφNθ
P4
2

P2
1

GCPA NφNθ (M1N1(M1N1 − K ) + M2N2(M2N2 − K ))

of the singular value decomposition (SVD) of RY-SS to obtain the noise subspace.
Hence O

(
(MN + 1)3 + Nφ (MN + 1) (MN + 1 − K )

)
is the complexity of azimuth angle

estimation where (MN + 1)3 is the complexity of SVD and Nφ is the number of
search angles in the grid. In order to estimate the elevation angles, the SVD of R̂Zk
is computed for k = 1, . . . , K . Hence the complexity order of elevation angle esti-
mation is O

(
K (MN + 1)3 + K Nθ (MN + 1) MN

)
where Nθ is the number of search

angles in the elevation grid. Since the spectral search is much heavier burden than
the other operations, it suffices to state the complexity of the proposed method as
O

(
(MN + 1)

(
Nφ (MN + 1 − K ) + K Nθ MN

))
where we ignore the other terms. In order

compare the complexity of the proposed method with GCPA and CPA we note the follow-
ing. GCPA and CPA uses M1 × N1, M2 × N2 and P1 × P1, P2 × P2 arrays respectively
which require much higher number of sensors than LCA. Another disadvantage of GCPA
and CPA is to use 2-D search algorithms which require NφNθ grid points to compute the
MUSIC pseudo-spectrum. The complexity of the algorithm in Zheng et al. (2017) using
GCPA is O

(
NφNθ (M1N1(M1N1 − K ) + M2N2(M2N2 − K ))

)
which is much higher than

the complexity of the proposed method due to 2-D search has complexity of NφNθ and MN
is usually lower than M1N1 + M2N2. The complexity of the method in Wu et al. (2016) for

CPA is O

(
NφNθ

P4
1

P2
2

+ NφNθ
P4
2

P2
1

)
which is also much higher than the complexity of the

proposed method. In Table1, the complexities of the arrays are summarized.

6 Numerical simulations

In this section, the performance of the proposed method is evaluated with numerical sim-
ulations. We compare the performance of the proposed array geometry in terms of the
maximum number of resolvable sources with the same number of antennas. Then we show
the DOA estimation performance of competing sparse arrays to demonstrate the supe-
rior performance of our LCA geometry. In Table2, the number of sensors required to
resolve K sources is presented where the number of sensor elements are kept minimum
for different K values. The performance limits of LCA, CPA and GCPA are K ≤ MN ,
K ≤ min{P2

1 , P2
2 } − 1 K ≤ min{N1M1, N2M2} − 1 respectively. As it is seen from the

table, LCA requires the lowest number of sensors to resolve K sources in all the scenarios
considered. Furthermore, as K increases, the efficiency of LCA becomes much significant
in terms of the required number of sensors. Since CPA and GCPA has planar structures they
require two uniform rectangular arrays, hence they have relatively larger number of sensors
as compared to LCA.

In Fig. 3, the line spectrums for azimuth (a) and elevation (b)–(c) are presented for K = 12,
SNR=0dB and T = 500. As it is seen the proposed method can handle resolving K = 12
sources with using 9 sensor in each portion and MLCA = 4M + 2N − 3 = 17 for M = 3
and N = 4. Moreover the azimuth and elevation angle estimates are paired after the cross-
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Table 2 Number of sensors required to resolve K sources with different array configurations: LCA, CPA and
GCPA. Note that the number of real sensors are given as MLCA = 4M + 2N − 3, MCPA = P2

1 + P2
2 − 1 and

MGCPA = N1M1 + N2M2 − 1

K LCA CPA GCPA

8 M = 2, N = 5, MLCA = 15 P1 = 3, P2 = 4, MCPA = 24 M1 = 3, N1 = 3, M2 = 2, N2 = 4,
MGCPA = 16

10 M = 2, N = 5, MLCA = 15 P1 = 4, P2 = 5, MCPA = 40 M1 = 4, N1 = 4, M2 = 3, N2 = 5,
MGCPA = 30

12 M = 3, N = 5, MLCA = 19 P1 = 4, P2 = 5, MCPA = 40 M1 = 4, N1 = 4, M2 = 3, N2 = 5,
MGCPA = 30

17 M = 2, N = 9, MLCA = 23 P1 = 5, P2 = 6, MCPA = 60 M1 = 4, N1 = 5, M2 = 3, N2 = 7,
MGCPA = 40

20 M = 4, N = 5, MLCA = 23 P1 = 5, P2 = 6, MCPA = 60 M1 = 4, N1 = 5, M2 = 3, N2 = 7,
MGCPA = 40

28 M = 4, N = 7, MLCA = 27 P1 = 6, P2 = 7, MCPA = 84 M1 = 4, N1 = 7, M2 = 5, N2 = 6,
MGCPA = 57

covariance matrix is used. Note that the other 2-D sensor arrays based on coprime property
such as GCPA or CPA cannot work in this scenario. For instance CPA requires MCPA = 40
and GCPA requires MGCPA = 30 sensors respectively to resolve K = 12 sources.

In order to explicitly demonstrate the performance of the proposed method to pair the
azimuth and elevation angles, another experiment is conducted where the source locations
are not selected in increasing order. In this experiment the source locations (in radians) are
selected in order as

{φk}Kk=1 ∈ {0.0444,−0.2222,−0.0444,−0.4000,

0.3111,−0.1333, 0.2222, 0.4000,−0.3111, 0.1333}
{θk}Kk=1 ∈ {0.0333,−0.1667,−0.0333,−0.3000,

0.2333,−0.1000, 0.1667, 0.3000,−0.2333, 0.1000}.
Hence there are K = 10 sources. The number of sensors is MLCA = 15 for M = 2, N = 5.
The number of sensors in each portion is 2M + N − 1 = 8, SNR = 0dB and T = 500.
The simulation results are presented in Fig. 4. As it is seen, azimuth and elevation angles are
paired and accurately estimated. Note that the pairing performance of the proposed method is
attributed to the estimation of the steering matrix AZ by using the estimated azimuth angles.
Therefore the estimation accuracy of the azimuth angles constitutes an important step for
elevation angle estimation. This is a general issue in all L-shaped array structures since
the estimation performance of the azimuth angle affects the accuracy of the elevation angle
estimation. This is due to the fact that azimuth and elevation angle estimation problems are
coupled (Elbir and Tuncer 2016; Filik and Tuncer 2010).

In Fig. 5, the comparison of the LCA, CPA and GCPA is done for different SNR levels.
Note that the RMSE calculation is performed in terms of both azimuth and elevation as

RMSEDOA =
⎛

⎝ 1

2J K

J∑

j=1

K∑

k=1

(
φk − φ̂k, j

)2 +
(
θk − θ̂k, j

)2
⎞

⎠
1/2

where J is the number of Monte Carlo experiments and J = 100 is selected. For fair
comparison, the number of sensors of the arrays are selected closely as MLCA = 39, MCPA =
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Fig. 3 Azimuth (a) and elevation
(b)–(c) spectrums for LCA with
M = 3, N = 4, MLCA = 17. The
number of sensors in each portion
is 2M + N − 1 = 9. The source
directions are located equally
spaced in the following intervals
φ ∈ [−0.45, 0.45] and
θ ∈ [−0.45, 0.45] respectively.
The true source locations are
denoted with vertical dashed
lines. The number of sources is
K = 12. SNR = 0dB and
T = 500
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Fig. 4 Azimuth (a) and elevation
(b)–(c) spectrums for LCA with
M = 2, N = 5, MVCA = 15.
The number of sensors in each
portion is 2M + N − 1 = 8. The
number of sources is K = 10,
SNR = 0dB and T = 500. The
vertical lines denote the true
source locations
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Fig. 5 The RMSE versus SNR graph for different array structures. The parameters of arrays are as follows:
LCA with M = 5, N = 11, MLCA = 39. CPA with P1 = 4, P2 = 5, MCPA = 40. GCPA with M1 = 3,
N1 = 6, M2 = 2, N2 = 11, MGCPA = 39. The number of sources is K = 6 and T = 500. The azimuth and
elevation angles of the sources are located equally spaced in φ ∈ [−0.3, 0.3] and θ ∈ [−0.4, 0.4] respectively

40 and MGCPA = 39. Note that this selection is sufficient to demonstrate the performances.
While CPA has one more sensor than GCPA, it still performs poorer due to its lack of array
aperture. In this scenario there are K = 6 sources and T = 500. As seen from Fig. 5,
LCA has superior performance as compared to CPA and GCPA. Another issue that needs to
be pointed out is the number of maximum resolvable sources in this scenario. Using these
placements of the arrays, GCPA and CPA can resolve up to 17 ( min{18, 22} − 1) and 15
(min{16, 25} − 1) sources respectively. However LCA in this scenario can resolve up to 55
(MN = 5 · 11) sources which is much larger than the limits of other array structures.

7 Conclusions

In this paper, a newmethod and an array geometrywhich is anL-shaped coprime array (LCA),
is proposed for 2-D DOA estimation. The major advantage of the proposed approach is to
eliminate the requirement of large number of antennas to resolve more sources than sensors.
The proposed array structure can resolve up to MN sources while using only 2M + N − 1
sensors in each portion. LCA has totally 4M + 2N − 3 real sensor elements which is much
less (especially for large values of K ) than the other coprime-based array structures such as
GCPA and CPA. Another advantage is that the proposed DOA estimation technique provides
automatically paired 2-D DOA angles of the sources. The proposed approach has robust
performance even when one of the azimuth and elevation angles of the sources are the same.
The pairing of the azimuth and elevation angles is performed where the steering matrices
are estimated by utilizing the cross-covariance matrix of data of each portion. Since 1-D
searches are used, the proposed approach enjoys less computational time as compared to the
conventional 2-D grid search techniques. In future work, we reserve to study the performance
of 3-D sparse array geometries for DOA estimation problem (Elbir 2017).
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