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Abstract

An encryption algorithm based on sparse coding and compressive sensing is proposed. Sparse
coding is used to find the sparse representation of images as a linear combination of atoms
from an overcomplete learned dictionary. The overcomplete dictionary is learned using K-
SVD, utilizing non-overlapping patches obtained from a set of images. Compressed sensing
is used to sample data at a rate below the Nyquist rate. A Gaussian measurement matrix
compressively samples the plain image. As these measurements are linear, chaos based per-
mutation and substitution operations are performed to obtain the cipher image. Bit-level
scrambling and block substitution is done to confuse and diffuse the measurements. Sim-
ulation results verify the performance of the proposed technique against various statistical
attacks.

Keywords Chaotic map - Compressive sensing - Dictionary learning - Encryption -
Measurement matrix - Sparse coding

1 Introduction

Multimedia data communication plays a vital role in ecommerce, navigation and informa-
tion systems, entertainment, education, military communication and industries. All these
applications require fast and secure transmission of the data, which in turn necessitates the
use of encryption as well as compression. With the incessant use of multimedia in mobility
communication and the ease of accessibility, the security of data is of paramount impor-
tance. Security can be achieved by the encryption of data. Chaos has been widely used in
the encryption of data because of its inherent properties. Chaotic systems are periodic and
highly sensitive.

Several chaos based image encryption schemes have been proposed. Zahmoul et al.
(2017) proposed a new chaotic map based on Beta function. The new map was used
to generate pseudo random sequences utilized to perform permutation and substitution
operations. The experimental results showed that the proposed method is highly secure
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compared to other chaos based encryption schemes. Xu et al. (2016) proposed a bit-
level image encryption algorithm based on piecewise linear chaotic maps. Plain image is
converted into two equal sized binary sequences. Then permutation is done at bit-level
by interchanging the binary elements of the sequences. In Hanis and Amutha (2019) a
modified logistic map based authenticated image encryption scheme is proposed. The mod-
ified logistic map is used to construct key matrices, which are then used to encrypt the
images.

Encryption provides data security whereas compression of data assist in easy storage and
transmission. Compression and encryption can be done separately, or they can be performed
simultaneously reducing the computational overhead. Compressive Sensing (CS) (Donoho
20006) is a technique for compressively sampling sparse data. In CS, a sparse signal can be
recovered from few linear measurements (Candes and Wakin 2008). Several CS based image
compression-encryption schemes are available in literature.

Zhang et al. (2016) showed the relation between CS and symmetric key encryption.
The random projection using sensing matrix is associated with encryption and the sig-
nal recovery to decryption. The parameters used to generate the measurement matrix acts
as the shared secret key between the communicating entities. The robustness of the CS
based encryption schemes against brute-force attack, noise attacks, packet loss and shear
attacks are demonstrated in Cambareri et al. (2015), Huang and Sakurai (2011) and Ors-
demir et al. (2008). Huang et al. (2014) employed a block cipher structure to break the
linearity in the CS measurements. They also used a parallel computing environment, which
greatly increased the encryption speed. In papers (Chen et al. 2016; Ponuma and Amutha
2018a,b,c; Zhou et al. 2016, 2014a) compressive sensing is employed to obtain joint image
compression-encryption. Zhou et al. (2014b) proposed a novel hybrid image compression-
encryption scheme using circulant measurement matrix. The seed for the circulant matrix
is generated using a logistic map and the chaotic map parameters acts as the shared secret
key.

In this paper, a sparse coding and compressive sensing based image encryption technique is
proposed. Digital image possess some intrinsic features like bulk data capacity, redundancy
of data and strong correlation among pixels, which can be exploited to achieve superior
compression. Natural images can be sparsely represented using over complete dictionary
(Olshausen and Field 1997). The dictionary can be a fixed dictionary or a learned dictionary.
The fixed basis like DCT, wavelets, curvelets are not adaptive. A learned dictionary trained
from a set of input images, provides better sparse representation of the image. The dictionary
learning can be performed using algorithms like K-SVD (Aharon et al. 2006), MOD (Engan
etal. 2007), RLS-DLA (Skretting and Engan 2010) etc. K-SVD is widely used for dictionary
learning. In the proposed scheme, the inherent sparsity of the image is represented using
a learned basis obtained using non-overlapping patches from a set of images. The sparse
coefficients are then subjected to the compressive sensing process. The image recovery is
done using Orthogonal Matching Pursuit (OMP) algorithm (Tropp and Gilbert 2007). The
remainder of the paper is organized as follows. Section 2 reviews the concepts of CS theory
and dictionary learning. The proposed framework for image encryption scheme is provided
in Sect. 3. The experimental results and analysis are given in Sect. 4. Section 5 concludes the

paper.
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2 Methodology
2.1 Compressive sensing

Compressive sensing (Baraniuk 2007) states that a sparse signal can be reconstructed from a
set of undersampled data with high probability. For asignal x € R, the sparse representation
« is given by

a=wlx. (1

where ¥ is the basis. The basis can be an orthogonal matrix (discrete cosine transform,
discrete wavelet transform etc.) or a learned dictionary. If the signal can be represented
as a linear combination of few vectors from the sparsifying basis, then the signal can be
recovered successfully. The signal is recovered from linear measurements obtained by using
the measurement matrix @ € R™*N . The linear measurement y is represented as

y = b @)

where 6 = @V is the sensing matrix. A s-sparse signal can be reconstructed from M
measurements (M << N), if the sensing matrix 6 satisfies the Restricted Isometry Property
(RIP) (Candes 2008). By assuming that x can be expressed in the basis ¥, « can be estimated
by solving the following L norm minimization problem.

min||a||; subjectto y = 6a 3)

Iterative greedy algorithms can be used to solve the above convex optimization problem.

2.2 Dictionary learning

For a compressively sensed data to be recovered successfully the signal should be sparse in a
domain, i.e. in a dictionary. The dictionary can be a fixed dictionary or a learned dictionary.
The dictionary learning algorithm aims to find a dictionary, that sparsely represents the signal.
In Olshausen and Field (1997), it is shown that an overcomplete dictionary D containing K
prototype signal atoms for columns {d;}, j = 1,2, ..., K can be used to represent a signal
X as a sparse linear combination of these atoms. The representation of x may be either exact
x = Da or approximate x ~ Da, satisfying | x — Da||, < €. The vector « € RX contains
the representation coefficients of the signal x.

In dictionary learning the goal is to find a dictionary D that yields a better sparse represen-
tation for a set of images. The K-SVD technique of dictionary learning is used in this paper.
This iterative method alternates between a sparse coding stage and a dictionary update stage.
The dictionary is learned using the patches x; extracted from the grayscale image set.! Each
image of size H x W is first divided into non-overlapping blocks (B;) of size /N x /N.
The blocks are then vectorized to form the training patches of size N x 1. The Dictionary D is
first initialized with K randomly extracted patches from the training set based on a threshold
(thr) obtained using spatial frequency (SF) of the image blocks. The spatial frequency of
the blocks (Bi) is taken as the threshold. In Huang and Jing (2007) the Spatial Frequency is

defined as
SF =/(RF)? + (CF)?

1 http://decsai.ugr.es/cvg/CG/base.htm.
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1 JN VN
RF = | =7 2 kZQ[Bi(j,lo — Bi(j.k+ D]
VN VN
CF = ﬁxfgglwi(j,k)—m(j—l,knz )

where RF and CF are the row and column frequency respectively. The patches for the initial
dictionary are selected as given in Ashwini and Amutha (2018). The patches (p;) are sorted
in ascending order based on spatial frequency and divided into five sets as follows,

SF(p;) < ', pi € Set 1
thr < SF(pi) <'4-,  pi€Set2
”’7’ < SF(p;) < thr, pi € Set 3 ©)
thr < SF(p;) < 2thr, p; € Set4
SF(p;) > 2thr, pi € Set 5

From the five sets, K patches are selected to initialize the dictionary. The first K/5 and
last K/5 patches are selected from the first and second set respectively. From the sets 3, 4
and 5 the first K/10 and last K/10 patches are selected. Using these K selected patches as the
atoms of the initial dictionary and K-SVD algorithm, the learned dictionary D is trained. The
dictionary is learned using a sparsity parameter 77 = 10 i.e. the sparsity of each atom in the
dictionary is 10. The size of the resulting dictionary is N x K. As both smooth and textured
patches are selected uniformly the learned dictionary provides better approximation of the
image.

2.3 Measurement matrix

In CS, generally a random measurement matrix provides dimensionality reduction. The mea-
surement matrix construction must ensure the reconstruction of the sparse signal from the
reduced measurements. The commonly used measurement matrices are constructed from
random variables that follow Gaussian, Bernoulli distribution etc. The measurement matrix
can also be structurally random like Hadamard , Circulant etc. In this paper, a measurement
matrix constructed using Gaussian random variables is used to obtain compressed measure-
ments. The Gaussian matrix is of size M x N and matrix elements are zero mean and variance
1/M Gaussian random variables. The whole matrix is used as the key and it is shared between
the sender and the receiver using a secured channel. By employing the measurement matrix
as the secret key, security is embedded in compressive sensing technique.

3 The proposed encryption algorithm

The block diagram of the sparse coding and compressive sensing based image encryption
scheme is shown in Fig. 1. The encryption is implemented using four keys. The measurement
matrix acts as the first key. The other three keys are the parameters of the three logistic maps
used for scrambling and substitution operations. The encryption algorithm is as follows:
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Fig. 1 Block diagram of the sparse coding and compressive sensing based encryption

1. The input image of size H x W is divided into b blocks of size /N x «/N. The blocks
are non-overlapping. Each block is then vectorized to form a sequence x of size N x 1.
2. The sparse code («) of x is computed using the learned dictionary D and OMP algorithm.
The sparsity is set at 7 = 12. The sparse code () of dimension K x 1, sparsely represents

x such that
x = Da 6)

3. CS is used to compressively sample o using the Gaussian measurement matrix @.
The measurements are of dimension M x 1 and the number of measurements M =
|Sampling Ratio x N |.

Ym = Pa (7

4. The measurements for all the b blocks of the image is computed and the measurement
vectors are concatenated to form an encrypted image (Cimg) of size M x b.

5. The encrypted image (Cimg) is mapped to the interval [0, 255] using the following
mapping

®)

Cim i, J _Cim min
Crnap(i, j) = { 5@ J) £ J x 255

Cimgmax - Cimgmin

6. The mapped image is then encrypted using a logistic map by scrambling and substitution
operations. The logistic map is generated based on the following equation,

tiy1 = p (1 —1),4 € [0, 1] 9)

The logistic map is used to generate a sequence (#7) of length M x b which is then
converted into integer sequence in the interval [0, 7].

1 = lmod(f; x 10°,8)] 10)

7. Each pixel of Cy,q) is decomposed into an 8-bits binary number. The binary digits of
each pixel are subjected to cyclic right shift operation by using #; and then converted to
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integer value. The encrypted image Cj,, is of size M X b.
Cser (@, J) =biIShif[(Cimg(i’j)vtl(ivj)) (11)

8. The bit scrambled encrypted image is then subjected to a substitution operation. A pseu-
dorandom sequence (P Rp) that is in the interval [0, 255] is generated using the logistic
map. The chaotic sequence (#;) of size M x 1 is converted into an integer sequence as
follows:

PRi = mod(t, x 107, 256) (12)

The substitution operation for each column of Cy,, results in an encrypted image C.The
substitution operation is as follows,

By = {cm(n) ® PR, n=1

A 13
Cser(n) @ PRy @ C(n — 1), otherwise (3)

wheren =1,2,...,b.

9. To further increase the security the encrypted image C, it is first reshaped to form a
cipher image of size H; x W. Then it is divided into four equal sized blocks, followed by
another round of substitution operation as shown in (13) using another random sequence
(P R») generated using logistic map.

The decryption procedure involves the inverse of the techniques performed in the encryption
stage. The ciphered image is decrypted using the parameters of the three logistic maps,
Cimgmax and Cjpgmin. The original image is recovered using the OMP algorithm using the
measurement matrix @.

4 Experimental results and analysis

The proposed scheme is verified using the test images from the USC-SIPI database. The test
image cameraman of size 256 x 256 is shown in Fig. 2a. The learned dictionary is trained
as discussed in Sect. 2. The K-SVD algorithm? is used for training. The size of the learned
dictionary is 64 x 100. The measurement matrix is created as given in Sect. 2. The learned
dictionary D is used to sparsely represent the test images. The test image is divided into non-
overlapping blocks of size 8 x 8. Each block is rasterized to form a sequence of length 64 x 1.
The block sparsity is set at 7 = 12 and the OMP algorithm is used to sparsely represent
the image. The sparse coefficients are of size 100 x 1. The matrix ¢ then measures the
sparse coefficients. The measurements are then scrambled and subjected to a pseudorandom
encryption to obtain the cipher image shown in Fig. 2b. The two chaotic sequences are
generated with initial conditions w190 = 3.99, puao = 3.96, uzp = 3.65, 10 = 0.23 and
tyo = 0.18, 130 = 0.5301. The encryption scheme was tested with several test images. The
sparse coefficients were recovered using the OMP algorithm at the receiver.

4.1 PSNR and SSIM analysis

The Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) is used to
evaluate the reconstruction performance of the proposed scheme. For an image of size N x N
the PSNR is computed using the formula,

2 http://www.cs.technion.ac.il/~ronrubin/software.html.
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(a) (b)

Fig.2 a Original image, b ciphered image, ¢ recovered image

Table 1T PSNR and SSIM analysis

Test image PSNR (dB) SSIM
Proposed Hu et al. (2017) Zhou et al. (2014a) Proposed Hu et al. (2017) Zhou et al. (2014a)

Baboon 20.1637 20.5268 22.1599 0.6657  0.5420 0.4616
Boat 22.3672 222174 22.6369 0.7570  0.5753 0.4767
Lake 21.7285 19.9962 21.5376 0.7671 0.5783 0.4496
Man 22.3528 20.8783 23.0375 0.7247  0.6049 0.4654
Peppers 25.6583 23.0676 24.6136 0.8179  0.6427 0.5242
Average 22.4541 21.3373 22.7971 0.7465 0.5886 0.4755
2552
PSNR = 101log (14)

N
(1/N?) 32 Y2[PIG, j) — PI'Gi, )P

i=1j=I

where PI(i, j) is the plain image and PI’(i, j) is the reconstructed image. The SSIM
between the original and the recovered image is computed by using the mean (u), standard
deviation (o) and cross-covariance (o) of both images.

(ZMPMP, + Cl)(zapp’ + C2)
(3 +p3, + C1)(@F + 0+ C2)

SSIM = (15)

where C; = 0.01 x (28 —1), C» = 0.01 x (28 —1). Fora sampling ratio of 0.5 the PSNR and
SSIM of the test images are computed. The test images are of size 256 x 256. The metrics
are compared with the schemes proposed in Hu et al. (2017) and Zhou et al. (2014a). Table 1
indicates that the proposed scheme achieves better reconstruction quality for the test images
Lakes and Peppers in comparison with other schemes. A 1 dB increase in PSNR is obtained
than that obtained in Hu et al. (2017). The PSNR is approximately same as that of the scheme
in Zhou et al. (2014a). The average SSIM is higher than (Hu et al. 2017; Zhou et al. 2014a)
by 26.83%, 56.99% respectively.
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()
Fig.3 a Cameraman, b Elaine, ¢ house, d peppers, Histogram of e cameraman, f Elaine, g house, h peppers,
i encrypted cameraman, j encrypted elaine, k encrypted house, 1 encrypted peppers

4.2 Histogram analysis

Image statistics can be used by an intruder to determine useful information from a transmitted
image. Histogram represents the distribution of the gray levels in an image. Hence the cipher
image histogram should be dissimilar from the histogram of the plain image. Also, the cipher
image histogram must be uniform. Figure 3, shows the histogram of the test images and their
corresponding cipher. The histogram of the ciphers is relatively uniform, which indicates
that the proposed encryption algorithm has the ability to resist statistical attacks. Also, the
histogram of the cipher image does not resemble the histogram of the plain image.

4.3 Correlation coefficient analysis

The adjacent pixels in digital images are redundant and have high degree of correlation. In the
proposed scheme the plain image is encrypted as a noise like random image. Therefore, the
adjacent pixel correlation in the cipher image must be very less. The correlation coefficient is
measured by randomly selecting 2000 adjacent pixels in the horizontal, vertical and diagonal
directions. The correlation coefficient is computed as follows,

P cov(p, q) (16)
T S()S@)

@ Springer



Multidimensional Systems and Signal Processing (2019) 30:1895-1909 1903

Table 2 Correlation analysis

Test image Direction Correlation coef- Correlation coefficient of cipher image
ficient of plain
image

Hu et al. (2017) Zhou et al. (2014a) Proposed

Baboon Horizontal 0.8857 0.0074 —0.0235 0.0108
Vertical 0.8309 0.0164 0.0234 0.0211
Diagonal 0.7956 0.01080 —0.0193 —0.0143
Boat Horizontal 0.9223 0.02003 0.0264 —0.0100
Vertical 0.9440 0.0030 0.0154 —0.0144
Diagonal 0.8742 —0.0443 0.0308 0.0187
Lake Horizontal 0.9587 0.0146 —0.0118 —0.0100
Vertical 0.9570 0.0086 —0.0199 —0.0144
Diagonal 0.9321 —0.0101 0.0005 0.0187
Man Horizontal 0.9455 —0.0038 0.0324 0.0146
Vertical 0.9574 —0.0006 0.0137 —0.0276
Diagonal 0.9071 —0.0045 —0.0152 —0.0011
Peppers Horizontal 0.9636 0.0233 0.0325 0.0023
Vertical 0.9757 —0.0077 —0.0192 0.0014
Diagonal 0.9414 0.0078 0.0133 —0.0212
Average Horizontal 0.9352 0.0124 0.0112 0.0062
Vertical 0.9330 0.0039 0.0027 —0.0347
Diagonal 0.8901 —0.0081 0.0020 0.0107
where
1 2000
cov(p,q) = [pi — E(p)]lgi — E(q)]

2000 “

i=1
1 2000 2000

1
_ o 2 _ .
S(p) = 2000 ;Zl[pl E(p)I-, E(p) = 000 ;:1 Di

The correlation coefficients of the ciphered image are tabulated in Table 2, from which we
know that the correlation between the adjacent pixels is irrelevant. In comparison to the
correlation coefficient achieved by the algorithms (Hu et al. 2017; Zhou et al. 2014a) the
proposed method achieves minimum correlation for the test image Boat in the horizontal and
diagonal directions. The correlation coefficients of other test images are comparable to other
schemes. The Fig. 4 shows the comparison of adjacent pixel correlation for the plain image
cameraman and its corresponding cipher image.

4.4 Entropy analysis

Information entropy can used to determine the randomness of the encrypted image. For a
grayscale image to be random the gray levels has to be uniformly distributed. For a noise
like ciphered image the information entropy must be nearer to 8. The information entropy is
computed using
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Fig.4 Scatter plot for cameraman image. Adjacent pixels in Plain Image a Horizontal, b vertical, ¢ diagonal
direction; Adjacent pixels in Cipher Image d horizontal, e vertical, f diagonal direction

Table 3 Entropy of plain image and cipher image

Test image Entropy of plain image Entropy of cipher image
Proposed Hu et al. (2017) Zhou et al. (2014a)
Baboon 7.5770 7.9972 7.9938 7.9890
Boat 7.5360 7.9967 7.9939 7.9885
Lake 7.2283 7.9969 7.9949 7.9890
Man 7.1583 7.9967 7.9942 7.9883
Peppers 7.4582 7.9971 7.9938 7.9889
Average 7.3916 7.9969 7.9941 7.9887
255
H(m) ==Y Pr(m;)log, Pr(m;) (17)
i=0

where Pr(m;) is the probability of occurrence of gray level m. The information entropy is
presented in Table 3. The average entropy of the proposed scheme is 7.9969 which is better
than (Hu et al. 2017; Zhou et al. 2014a) and also closer to the ideal value.
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4.5 UACI and NPCR analysis

An image encryption algorithm must be highly sensitive. The algorithm should generate a
completely different cipher image, even for a one-bit pixel change. The Number of Pixels
Change Rate (NPCR) and Unified Average Changing Intensity (UACI) are the measures that
verify the sensitivity of the encryption algorithm.

D(, j)
NPCR = E —= x 100% (18)
Iy M x N

2 ICHLG, j) = Ch,
L]
M x N L

UACI = x 100% (19)

CIi(i, j) and CI>(i, j) are the two ciphered images and L is the number of gray levels.
D(i, j) is determined based on the rule

. {o, Ch, j) = Ch, j)

. (20)
1, otherwise

The NPCR and UACI values tabulated in Table 4 indicates that the algorithm can resist
differential attacks as they are close to the theoretical values 99.61 and 33.46 respectively. As
the scheme in Zhou et al. (2014a) does not employ permutation and substitution operations
its NPCR and UACI values are less. The average NPCR and UACI of the proposed scheme
and scheme in Zhou et al. (2014a) are closer to the theoretical value.

4.6 Key space analysis

The Gaussian measurement matrix is used as the K ey; in the encryption process. If the data
precision is 10" and the matrix size is M x N, the keyspace for Key; is (10°)M*N  The
Keyy, Keys and K ey, are the parameters of the three logistic maps i.e. 1, u2, 43, t0, 120
and 130. The key space for Key,, Keys and Keyy is (10'3)°. A large keyspace ensures that
the proposed scheme resists brute-force attack. The brute-force attack becomes infeasible as
the effort required to decipher the key, grows exponentially with increasing key space.

KeySpace = (10")M*N » 1020 (21)

The key space of the proposed scheme is compared with the schemes in Hu et al. (2017) and
Zhou et al. (2014a) and it is shown in Table 5. The key space achieved using the proposed
scheme is larger and hence greater the security.

4.7 Deviation from uniform histogram

The histogram of the cipher must be uniform i.e. the probability of occurrence of each pixel
is uniform. For a cipher image (C) of size M x N the ideal histogram is mathematically
represented as

MxN P
56 -0 =C(@, j) =255
Ideal_Hist(C(i, j)) = { 756 - 0=CG. )

. (22)
0, otherwise

The strength of the algorithm can be verified using the deviation of the cipher image histogram
from the ideal histogram. A lower value of Dy represents a better encryption quality. The
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Table 5 Key space analysis Proposed Hu et al. (2017) Zhou et al. (2014a)

- 9299 ~ 2200 ~l13

Table 6 Deviation from uniform

. Test image Deviation from uniform histogram
histogram

Proposed Hu et al. (2017) Zhou et al. (2014a)

Baboon 0.0498 0.0718 0.0739
Boat 0.0535 0.0724 0.0722
Lake 0.0509 0.0673 0.0664
Man 0.0546 0.0705 0.0713
Peppers 0.0511 0.0698 0.0760
Average 0.0520 0.0704 0.0720

deviation from ideal histogram is given as:

2 lldeal_Hist(C(i, j)) — Hist(C(, j))|

D
" M x N

(23)
Table 6 compares the deviation of the histogram of the cipher from the ideal uniform his-
togram. We infer that the deviation is minimal in the proposed scheme, which indicates that
the cryptanalysis of the histogram for statistical information by the intruder is difficult. The
average DH of the proposed scheme is better than the compared algorithms (Hu et al. 2017;
Zhou et al. 2014a) by 26.14% and 27.78% respectively.

5 Conclusion

In this paper, an encryption technique based on sparse coding and compressive sensing is
proposed. The sparse coding using a learned dictionary provides a better representation of the
image. Compressive sensing is used concurrently encrypt as well as compress data. The data
is compressive sampled and randomly projected using the Gaussian measurement matrix. The
security of the measurements is further enhanced by employing a chaos based bit scrambling
and pseudorandom encryption. The experimental analysis performed shows that the proposed
algorithm provides cryptographically strong cipher image.
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