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Abstract
This paper proposes an analytic design method for a class of 2D recursive filters, namely
with directional and square-shaped frequency response. The design technique is based on
a specified 1D digital prototype filter and a complex frequency transformation which is
determined using various rational approximations. Several design examples are presented for
given specifications. The resulted filters are efficient and adjustable, being at the same time
of low complexity and relatively high selectivity. These filters may have useful applications
in image processing, like detecting lines with a given orientation from an image, as shown
through simulation results on test images. The novelty of the proposed method consists in
deriving the transfer function of the desired 2D filter only by applying successive frequency
transformations to a prototype filter. Its advantages overmost state-of-the-art designmethods,
which generally use global optimization numerical algorithms, is the filter tunability, and also
its versatility; since the filter parameters, namely orientation and selectivity appear explicitly
in the 2D filter matrices, they result directly for any specified parameters, therefore the design
procedure does not need to be resumed every time from the start.

Keywords Approximations · Frequency transformations · 2D IIR filters · Directional filters

1 Introduction

The field of two-dimensional (2D) filters has emerged almost four decades ago, along with
the development of digital image processing (Dudgeon et al. 1984; Lu et al. 1992; Jain 1989).
The analytic design methods for 2D FIR and IIR filters are generally based on 1D analog or
digital filter prototypes with given specifications, to which various spectral transformations
are applied, in order to derive a 2Dfilter with a desired frequency response. Somewell-known
early works such as Pendergrass et al. (1976), Harn and Shenoi (1986) and Chen and Lee
(1994) have laid the foundations for these analytic methods applied in 2D filter design. There
are a large variety of 2D filters with specific shapes of their frequency response, for instance
circular or elliptically-shaped, fan, square-shaped or orientation-selective filters etc.
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There are several types of filters with directional (orientation-selective) frequency
response, very useful in some image processing tasks, such as edge detection (Paplinski
1998), texture analysis and classification, directional smoothing applied to weather images
(Lakshmanan 2004), motion or optical flow analysis (Austvoll 2000) etc. A very efficient
Gaussian smoothing filter is proposed in Charalampidis (2009), while a recursive anisotropic
2-D Gaussian filter based on a triple-axis decomposition is described in Lam and Shi (2007),
and a recursive implementation of the Gaussian filter in Young and van Vliet (1995). Dia-
mond filters have been mainly used as anti-aliasing filters in the conversion between signals
sampled on the rectangular sampling grid and the quincunx sampling grid.

A symbolic implementation of the McClellan transformation for a 2D diamond-shaped
filter was described in Tosic et al. (1997). In Low and Lim (1997) the authors present a
complex design method based on frequency response masking approach for FIR diamond
filters. An efficient diamond-shaped filter based on singular value decomposition is designed
in Ito (2010) and also diamond and circular filters using semi-definite programming (Hung
et al. 2007). Some other relevant works in this field approach the design of 2D IIR with
approximately linear phase (Xiao andAgathoklis 1279;Wysocka-Schillak 2008) and aunified
design algorithm for complex FIR and IIR filters (Lertniphonphun and McClellan 2001).

The optimization of 2-D IIR filters with separable or non-separable denominator is
approached in Dumitrescu (2005). A design for separable-denominator 2-D IIR by suc-
cessive projection methods using a stability criterion based on the system matrix is proposed
in Miyata (2008). A sequential partial optimization method is presented in Lai et al. (2017)
for minimax design of 2-D IIR filters with separable denominator. Some very recent papers
propose new designmethods using spectral transformations. For instance in Yan et al. (2015),
zero-phase IIR notch filters are designed based on a state-space representation of a 2-D trans-
formation. In Shahanas et al. (2017), a reconfigurable fan-type 2D FIR filter with a tunable
pass-band inclination angle is designed.

Many researchers approached the issue of 2D recursive filter stability and also stabilization
techniques. A comprehensive theoretical analysis for 2D IIR filter stability and some practical
stability tests are given in O’Connor and Huang (1978). A more recent paper (Shao and
Hou 2010) approached a new stability test algorithm based on discriminant systems of real
polynomials. An extension of a stabilization technique for 1D IIR filters to 2D IIR filters
is investigated in Jury et al. (1977). A powerful stabilization technique for unstable 2D IIR
filters, based on planar least-squares inverse polynomials is proposed in Raghuramireddy
et al. (1986).

Some analytic design methods based on frequency transformations were proposed by
the author in previous works: orientation-selective 2D IIR filters (Matei and Matei 2009),
directional Gaussian-shaped FIR filters (Matei 2018), directional IIR filters derived from
digital 1D prototypes (Matei and Matei 2010) and a class of adjustable zero-phase square-
shaped IIR filters (Matei 2013).

Some issues in the general field of 2D nonlinear systems are approached in recent papers
like Xie et al. (2015a), which proposes a control scheme of Roesser type discrete-time 2D
fuzzy systems andXie et al. (2015b),where less conservative global asymptotic stability of 2D
Roesser state-space digital filter is studied. The classical,well-known rational approximations
used in this work, namely Padé and Chebyshev–Padé, are described in works like Brezenski
(1996), Trefethen et al. (2013).

In this paper an analytic design method is proposed for 2D directional filters, which select
narrow domains along given directions in the frequency plane, and also square-shaped filters.
The design is achieved in the spatial frequency domain, starting from an efficient 1D digital
prototype filter, to which specific frequency transformations are applied, in order to obtain
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a 2D filter with the desired shape in the frequency plane. The novelty and major advantage
of the method is that the resulted 2D filter coefficients depend explicitly on the imposed
specifications (orientation, bandwidth etc.) and can thus be tuned and adjusted according
to the desired characteristics, without the need to resume each time the design procedure.
The design method is mainly analytical and uses approximations, but not any numerical
optimization algorithms.

As regards relationship to prior work in the field, while many design methods rely on
optimization algorithms and usually yield filters of minimum order for given specifications,
as in Wysocka-Schillak (2008), Dumitrescu (2005) and Lai et al. (2017), entirely analyti-
cal methods like the one proposed here were less approached, at least in this form. Some
researchers used McClellan transform (Chen and Lee 1994; Tosic et al. 1997; Yan et al.
2015), state-space representation (Yan et al. 2015) or impulse response Gramians (Xiao and
Agathoklis 1998). Since all these design techniques are very different, it is quite difficult to
make a rigorous comparison with the proposed method, in terms of efficiency, performance
in image filtering and computational complexity. For instance, most of the designed direc-
tional filters are Gaussian-shaped, like in Lakshmanan (2004), Charalampidis (2009), Young
and van Vliet (1995), while the directional filter proposed here is based on a narrow elliptic
prototype. The computational complexity of our directional filter is of the order obtained in
Lakshmanan (2004).

The paper is organized as follows. In Sect. 2, the 1D prototype digital filters used in
design are presented. Section 3 presents the proposed analytic design method, including
filter shape specifications in the frequency plane and themathematical derivation of frequency
transformations. A correction filter which removes undesired parts of the resulted 2D filter
characteristic is introduced as well. Further in Sect. 4 a few design examples of typical filters
from this class for given specifications are provided. Section 4 also includes a distortion
analysis of the designed filters and a discussion paragraph. In Sect. 5, simulation results are
given for directional filtering of two types of test images.

2 Low-pass digital filter prototypes

In designing the 2D orientation-selective filter, a very efficient 1D IIR digital filter prototype
will be used. Themost efficient analog or digital filter approximation for a specified steepness
or selectivity is the elliptic filter, which results of a lower order than other approximations like
Butterworth or Chebyshev, for the same specifications. Let us consider next a digital elliptic
filter with order N � 6, peak-to-peak ripple RP � 0.1 dB, minimum stop-band attenuation
RS � 36 dB and normalized pass-band edge frequency ωP � 0.01π (value 1 corresponding
to half the sample rate). The specifications given above lead to the following transfer function
in the complex frequency variable z:

HP1(z) � 0.012277 ·
(
z2 − 1.0202 · z + 1

)

(
z2 − 1.850147 · z + 0.862316

) (1)

The magnitude of the transfer function (1) is displayed in Fig. 1a on the frequency range
ω ∈ [− π, π]; it has a steep transition and very small ripple in the pass-band and stop-band.
This narrow filter will be the prototype for the designed 2D orientation-selective filters.

As the second prototype let us consider a digital elliptic filter with the following speci-
fications: order N � 6, peak-to-peak ripple RP � 0.1 dB, minimum stop-band attenuation
RS � 36 dB and normalized pass-band edge frequency ωP � 0.5π , therefore a much wider
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Fig. 1 Magnitudes of the prototype filter transfer functions given by (1), (2) and (3)

bandwidth than prototype (1). These specifications give the following transfer function in
variable z, in a factored form:

HP2(z) � 0.11395 ·
(
z2 + 1.6501747 · z + 1

)

(
z2 + 0.057838 · z + 0.916863

) ·
(
z2 + 0.627297 · z + 1

)

(
z2 − 0.072837 · z + 0.63421

)

·
(
z2 + 0.289093 · z + 1

)

(
z2 − 0.32878 · z + 0.14951

) � k · HB1(z) · HB2(z) · HB3(z) (2)

We can also use a 1D prototype with a narrower bandwidth than (2), for instance with
normalized pass-band edge frequency ωP � 0.25π . In this case the factored prototype
transfer function is the following:

HP3(z) � 0.030383 ·
(
z2 + 0.636496 · z + 1

)

(
z2 − 1.167161 · z + 0.399423

) ·
(
z2 − 0.970289 · z + 1

)

(
z2 − 1.262708 · z + 0.724874

)

·
(
z2 − 1.230289 · z + 1

)

(
z2 − 1.336221 · z + 0.934522

) � k · HB1(z) · HB2(z) · HB3(z) (3)

The low-pass elliptic transfer functions given in (1), (2) and (3) were obtained numerically
from filter coefficients returned by theMATLAB function “ellip” for the given specifications;
they result of low order, namely 2 and 6, finally leading to a low complexity 2D filter. The
transfer functions in variable z given by (2) and (3) are factored into three bi-quad functions
HB1(z), HB2(z) and HB3(z). The factors from the numerator and denominator in (2) and
(3) can be coupled in pairs in several ways. The magnitude responses corresponding to the
transfer functions in (2) and (3) are plotted in Figs. 1b and c, respectively over the frequency
range [0, π].

3 Design of directional and square-shaped 2D IIR filters

In this main section, the analytical design method is described in detail for the two types
of 2D filters, namely the directional and square-shaped filters. The 2D filters are specified
in the frequency plane, then frequency transformations are found for each type of filter and
finally the 2D filter matrices are obtained. A correction filter, necessary to eliminate marginal
distortions, is also designed.

In this section, our proposed method will be compared to the one used in Chen and Lee
(1994), where the frequency transformation is z → z1 · zβ/ α

2 , where α and β are integers. The
rotation angle in this case would be ϕ � arctan(β

/
α). Using suitable interpolation functions,
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an interpolated array is generated, where signal values are defined on the new grid points.
The whole scheme requires an input and an output interpolator. For an arbitrary angle, the
values of α and β may result inconveniently large, which might complicate the interpolation
process.

3.1 Orientation specification for 2D directional filters

Starting from a zero-phase 1D prototype filter with a real transfer function H (ω 1) (which
varies on one axis only), a two-dimensional oriented filter may be obtained by rotating the
axes of the plane (ω 1, ω2)with an angleϕ. The rotation is defined by the linear transformation:

[
ω 1

ω2

]
�

[
cosϕ sin ϕ

− sin ϕ cosϕ

]
·
[

ω̄ 1

ω̄2

]
(4)

where ω 1, ω2 are the original frequency variables and ω̄ 1,ω̄2 the transformed variables.
The spatial orientation is specified by angle ϕ with respect to ω 1− axis and is defined by
the following 1D to 2D spatial frequency transformation applied to the frequency response
H (ω): ω → ω 1 cosϕ +ω2 sin ϕ. By substitution, the transfer function Hϕ(ω 1, ω2) of the 2D
oriented filter results as:

Hϕ(ω 1, ω2) � H (ω 1 cosϕ + ω2 sin ϕ) (5)

The directional filter Hϕ(ω 1, ω2) has the magnitude section along the line ω 1 cosϕ +
ω2 sin ϕ � 0 identical with its prototype H (ω), and is constant along the perpendicular line
ω 1 sin ϕ − ω2 cosϕ � 0 (the filter longitudinal axis). In Sect. 3.3 a convenient 1D to 2D
frequency transformation is derived, which allows an oriented 2D filter to be obtained from
a 1D prototype.

3.2 Frequency plane specification of square-shaped filters

A particular case of a square-shaped filter is the standard diamond filter; its shape in the
frequency plane is shown in Fig. 2a. It is a square with a side length of π

√
2, while its axis is

tilted by an angle of ϕ � π
/
4 radians about the two frequency axes. The orientation angle

ϕ is measured with respect to ω2 axis. A more general case is approached here, i.e. a 2D
diamond-type filter with a square shape in the frequency plane, but with arbitrary side length
and axis inclination angle, as shown in Fig. 2e. Next they will be referred to as square-shaped
filters, since they are more general than the diamond filter from Fig. 2a, obtained as the
intersection of the wide-band filter oriented diagonally (Fig. 2b) with its version rotated by
90°. In Fig. 2c and d, two wide-band directional responses are shown, whose axes form a 90°
angle, described by the transfer functions HD1(z1, z2) and HD2(z1, z2). The square-shaped
filter transfer function HS(z1, z2) with response shown in Fig. 2e results as the product
HS(z1, z2) � HD1(z1, z2) · HD2(z1, z2). Graphically, the square response with arbitrary
orientation is the intersection of the two directional responses perpendicular to each other.

The frequency response of HD2(z1, z2) is ideally identical to the frequency response of
HD1(z1, z2), rotated by an angle of ϕ � π

/
2. Since this axes rotation implies the frequency

variable change:ω 1 → ω2 and ω2 → −ω 1, the transfer function HD2(z1, z2) can be derived
from HD1(z1, z2) as HD2(z1, z2) � HD1(z2, z−1

1 ). A more general filter belonging to this
class is a rhomboidal filter, as shown in Fig. 2f. In this case the two oriented low-pass
component filters may have different band-widths and their axes are no longer perpendicular
to each other (Matei 2013).
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Fig. 2 a Diamond filter; b wide-band oriented filter; c, d wide-band oriented filters with orientations forming
an angle ϕ � π

/
2; e square-shaped filter resulted as product of the above oriented filters; f rhomboidal filter

3.3 Frequency transformation for 2D directional and square-shaped filters

In this section a design method is proposed, which allows one to obtain a 2D discrete
orientation-selective filter. The desired filter will be derived directly from a 1D prototype
through a complex frequency transformation. A 1D discrete filter is generally described by
a transfer function H (z) like the ones given by Eqs. (1)–(3) from Sect. 2. The complex vari-
able z � e jω � es is mapped into a 2D function Fϕ(z1, z2), where the subscript ϕ denotes
the dependence upon the orientation angle ϕ. Using the linear frequency transformation (4)
which defines the oriented filter, the following mapping results (Matei and Matei 2009):

z → e j(ω1 cosϕ+ω2 sin ϕ) � es1 cosϕ · es2 sin ϕ � (z1)
cosϕ · (z2)sin ϕ � f1(s1) · f2(s2) (6)

Therefore the proposed complex frequency transformation is z → zcosϕ
1 ·zsin ϕ

2 . Our design
methoduses a simple techniquewhich avoids the interpolationprocess, and is basedonfinding
convenient approximations of the complex functions f1(s1) � es1 cosϕ and f2(s2) � es2 sin ϕ .
These can be written as rational functions using the Padé or Chebyshev–Padé approxima-
tions. The Padé approximation is used here, which has the advantage of yielding analytical
expressions of the coefficients, as a function of the orientation angle ϕ. The following approx-
imations are easily derived using symbolic computation in MAPLE, as for real variable
functions (Matei and Matei 2009):

f1(s1) ∼� 1 + 0.5 cosϕ · s1 + 0.08333 · cos2 ϕ · s21
1 − 0.5 cosϕ · s1 + 0.08333 · cos2 ϕ · s21

� fa1(s1) (7)

f2(s2) ∼� 1 + 0.5 sin ϕ · s2 + 0.08333 · sin2 ϕ · s22
1 − 0.5 sin ϕ · s2 + 0.08333 · sin2 ϕ · s22

� fa2(s2) (8)

They result directly using “pade” function, around value 0, and specifying the approxima-
tion order 2. The order of approximation can be chosen higher than 2, for better accuracy, but
the expressions of the coefficients depending on angle ϕ would be more complicated as well.
In our case, the approximation was limited to second order, to obtainmore efficient, low order
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Fig. 3 Plots of exact functions versus their approximations: a cos(ω1 cosϕ); b sin(ω1 cosϕ); c cos(ω1 sin ϕ);
d sin(ω1 sin ϕ)

2D filters. The coefficients for the Padé approximations have closed-form expressions which
are rather complicated for orders larger than 2, and the theory can be found in works like Xie
et al. (2015a, b). Since f1(s1) and f2(s2) are complex functions (s1 � jω1, s2 � jω2), these
approximations hold separately for real and imaginary parts, for instance:

Re[ f1( jω 1)] � cos(ω 1 cosϕ) ∼� Re[ fa1( jω 1)] (9)

Im[ f1( jω 1)] � sin(ω 1 cosϕ) ∼� Im[ fa1( jω 1)] (10)

and similarly for the other two. The real and imaginary parts of the two complex functions
f1(s1), f2(s2) and of their rational approximations fa1(s1), fa2(s2) given by (7) and (8),
are plotted comparatively in Fig. 3. It can be noticed that the proposed approximations are
very accurate in the range [−π, π ] and diverge outside this interval, because for a given
order the Padé algorithm provides a good approximation, with a certain maximum error, on a
limited range of values. The derived approximations (7) and (8) are scalable on the frequency
axes, i.e. substituting the current frequency variable ω by p · ω (p > 0), the approximation
remains valid for a certain range of scaling parameter p (which means stretching for p < 1
and shrinking for p > 1). Thus (7) and (8) can be re-written as:

f1(ps1) ∼� 1 + 0.5p cosϕ · s1 + 0.08333p2 cos2 ϕ · s21
1 − 0.5p cosϕ · s1 + 0.08333p2 cos2 ϕ · s21

� fa1(ps1) (11)

f2(ps2) ∼� 1 + 0.5p sin ϕ · s2 + 0.08333p2 sin2 ϕ · s22
1 − 0.5p sin ϕ · s2 + 0.08333p2 sin2 ϕ · s22

� fa2(ps2) (12)

As show the design examples from Sect. 4, even using this low-order approximation, a
very good directional filter results. Then the method can be generalized for higher orders for
better performance. From the functions fa1(ps1) and fa2(ps2), two corresponding discrete
functions in the complex variables z1 and z2 can be obtained. This can be achieved in various
ways, for instance using Euler approximations, or the bilinear transform. However, these
introduce relatively large errors, which result in large shape distortions of the designed 2D
filter. Another approach would be to find more accurate discrete approximations for the
variables s1, s2 and s21 , s22 . To find an efficient rational trigonometric approximation of the
linear function ω on the range [−π, π ] the simple change of variable is applied:

ω � arccos(x /π) ↔ x � π cosω (13)

The approximation of the linear functionω is more easily derived indirectly, by finding the
rational trigonometric approximation of ω

/
sinω, an even function of cosω. However, since

we cannot find it directly, the change of variable (13) was used; by substituting in ω
/
sinω
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Fig. 4 a The approximation (red curve) of the linear function (blue curve) on the frequency rangeω ∈ [−π, π ];
b The parabolic function (in blue) and its rational trigonometric approximation (in red) (Color figure online)

the variable ω by ω � arccos(x /π), we find using MAPLE the following function and its
first-order Chebyshev–Padé approximation in variable x:

arccos(x /π )

sin(arccos(x /π ))
� arccos(x /π )

√
1 − (x /π )2

∼� 1.553415 + 0.1099316x

1 + 0.276857x
(14)

Next, substituting back in (14) the variable x � π cosω, the trigonometric approximation
for ω

/
sinω is finally found. Here, x is an intermediate variable needed to obtain the desired

approximations using MAPLE. Substituting back in (14) x � π cosω, the approximation
shown in Fig. 4a results:

ω ∼� sinω · (1.553415 + 0.3451854 · cosω)
/

(1 + 0.869331 · cosω) (15)

For the squared frequency variable, the following rational trigonometric approximation is
used:

ω2 ∼� 2.357534 · (1 − 0.946216 · cosω)
/

(1 + 0.463012 · cosω) (16)

displayed in Fig. 4b. As can be noticed, these are very efficient and accurate approximations
on the frequency range ω ∈ [−π, π ], having a small distortion only at the margins of the
specified interval. Since on the two frequency axes, s1,2 � j · ω 1,2, s21,2 � −ω2

1,2 and

cosω 1,2 � 0.5 · (z1,2 + z−1
1,2), sinω 1,2 � − j · 0.5 · (z1,2 − z−1

1,2), functions (15), (16) can be
expressed as complex frequency mappings:

s1,2 ∼� 0.198441 ·
(

z41,2 + 9.004834z31.2 + 2z21,2 + 9.004834z1,2 + 1
)

z1,2
(

z21,2 + 2.300649z1,2 + 1
) (17)

s21,2 ∼� −4.81788 · (
z21,2 − 2.113682 · z1,2 + 1

)/(
z21,2 − 4.319542 · z1,2 + 1

)
(18)

The approximations (17) and (18) are next substituted into (11) and (12) and finally the
mapping (6) with the expression z → fa1(ps1) · fa2(ps2) may be written in the matrix form:

z → H (z1, z2) � M(z1, z2)

N (z1, z2)
� z1 × M × zT

2

z1 × N × zT
2

(19)

where z1 � [ z61 z51 . . . z1 1 ], z2 � [ z62 z52 . . . z2 1 ] and the matrices M and N result from
the vectors P and Q by outer product (two-dimensional convolution) as M � P ⊗ P and
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N � Q ⊗ Q. The vectors P and Q corresponding to the numerator and denominator of
functions fa1(ps1) and fa2(ps2) from (11), (12) are:

P � p · cosϕ · A1 + p2 · (cosϕ)2 · A2 (20)

Q � p · sin ϕ · A1 + p2 · (sin ϕ)2 · A2 (21)

where the component vectors are A1 � [α1 β1 γ1 δ1 γ1 β1 α1 ], with α1 � 0.0992205,
β1 � 0.464877, γ1 � −3.561694, δ1 � 0.929754 and A2 � [α2 β2 γ2 δ2 γ2 β2 α2 ],
with α2 � 0, β2 � −0.401474, γ2 � −0.075062, δ2 � 1.149356. The matrices M and N
depend only on the angle ϕ. Let us consider a generic bi-quad function HBi (z) in the complex
frequency plane variable z:

HBi (z) � (
z2 + v1 · z + v0

)/(
z2 + u1 · z + u0

)
(22)

Substituting the 1D to 2D mapping (19) into (22), the factor H2Bi (z1, z2) results, corre-
sponding to the generic bi-quad function HBi (z):

HBi (z) → H2Bi (z1, z2) � V (z1, z2)

U (z1, z2)
� z1 × V × zT

2

z1 × U × zT
2

(23)

where × means inner product and the matrices U and V are given by:

V � M ∗ M + v1 · M ∗ N + v0 · N ∗ N

U � M ∗ M + u1 · M ∗ N + u0 · N ∗ N (24)

while the vectors z1 and z2 are: z1 � [ z121 z111 . . . z1 1 ]; z2 � [ z122 z112 . . . z2 1 ]. The
numerator V (z1, z2) and the denominator U (z1, z2) are in fact the Discrete Space Fourier
Transforms (DSFT) of the corresponding matrices V and U.

The resulted 2D filter preserves the characteristics of the 1D prototype filter, like cut-off
frequency, steepness, pass-band and stop-band ripple etc. For instance, if the prototype filter
is maximally flat, the resulted 2D filter will be also maximally flat; if the prototype has a
small pass-band ripple, the 2Dfilter will inherit this ripple. For instance, a 2Dwide-band filter

oriented at ϕ � π
/
4 as in Fig. 2b has a cut-off frequency of ωc1 � π

√
2
/
2 ∼� 0.7071π ;

therefore, the 1D prototype filter should have exactly this cut-off frequency. We can use the
1D LP prototype HP2(z) given by (2), with cut-off frequency ωP2 � 0.5π , which must
be scaled (in this case dilated) on the frequency axis with the parameter p, as detailed in

Sect. 3.3. The scaling parameter p in this case should be p � ωP2/ωc1 � 1
/√

2, and so on.

Depending on the desired 2D filter specifications, like cut-off frequency, we may choose the
most convenient of the prototypes given by (1), (2) or (3) and apply the required scaling.

To summarize the design method, for a specified orientation ϕ of the directional or
square-shaped filter, the matricesM and N are determined as above. Depending on the filter
selectivity, a suitable 1D low-pass prototype is chosen, for instance given by HP1(z), HP2(z)
or HP3(z) as in (1)–(3) or a scaled version with a specified parameter p. As the following
design examples show, an order N � 6 is sufficient for a very good selectivity or steepness.
Each bi-quad factor function HBi (z) of the factored prototype HP (z) is then simply mapped
into H2Bi (z1, z2) according to (23). The numerator and denominator of H2Bi (z1, z2) corre-
spond to matrices U and V given by (24). In the case of directional filters, the entire 2D filter
will have the transfer function given by the product of bi-quads:

HD(z1, z2) �
3∏

i�1

H2Bi (z1, z2) (25)
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For square-shaped filters, using a wide LP prototype, the first partial transfer function
HD1(z1, z2) results as in (25), while its counterpart is given by HD2(z1, z2) � HD1(z2, z−1

1 )
and finally the transfer function of the square filter is HS(z1, z2) � HD1(z1, z2) · HD2(z1, z2),
as shown in Sect. 3.2.

3.4 Correction filter design

For the two types of 2D filters, directional and square-shaped, we may need to remove some
marginal distortions of the 2D filter frequency response by using a wide band low-pass (LP)
filter which has the role of a masking filter and is applied over the desired frequency response;
this means that the transfer functions of the desired filter and mask filter are multiplied in
order to obtain the transfer function of the corrected square filter. A zero-phase correction
filter will be used, which is easy to design and can be made scalable along the two frequency
axes of the frequency plane. A relatively simple smooth function of frequencywith a low-pass
shape is the following:

HPC (ω) � 0.5
(
tanh (10 · (ω + 3π

/
4)) − tanh (10 · (ω − 3π

/
4))

)
(26)

There are also other functions with smooth low-pass shape which could be used. However,
in terms of tanh, HPC (ω) has a very simple expression. Moreover, its rational approximation
can be easily derived usingMAPLE, for the given order. For some functions, the algorithm for
calculating the Chebyshev–Pade approximation does not converge. For the low-pass function
chosen as in (26), the algorithm performs well and the following rational approximation of
order 6 for HPC (ω) is obtained, given in factored form, where q is a scaling parameter:

HC (ω) � 1.691967 ·
(
q2ω2 − 6.65275

)(
q2ω2 − 8.230488

)(
q2ω2 − 9.598568

)

(
q2ω2 − 25.492071

)(
q4ω4 − 11.478865 · q2ω2 + 34.824872

) (27)

This can be regarded as a zero-phase LP filter with cut-off frequency 3π
/
4, being an

accurate approximation of HPC (ω) from (26), in which the tanh argument is shifted to the
left and right by exactly 3π/4. This function is adjustable along the frequency axis through
the parameter q. For q � 1, HC (ω) is a very accurate approximation of HPC (ω). If the
frequency variable ω is replaced by q · ω, the function HC (ω) becomes narrower for q > 1
and wider for q < 1. Figure 5c shows the function HPC (ω) drawn in blue and HC (ω) in
red. In order to find a discrete version of the function (27) the approximation (16) is applied
for ω2. Substituting (16) in each one of the factors of (27), a function in the variable cosω

results. Since cosω � 0.5 · (z + z−1), a factored transfer function in variable z is derived in
the matrix form:

HC (z) � BC (z)

AC (z)
� BC × z

AC × z
(28)

where the vector is z � [ z6 z5 . . . z 1 ], while BC and AC are vectors of size 1× 7 which in
turn can be written as convolution of 1× 3 and 1× 5 vectors as BC � BC1 ∗BC2 ∗BC3 and
AC � AC1 ∗ AC2 where BC1 � [

a1 b1 a1
]
,BC2 � [

a2 b2 a2
]
,BC3 � [

a3 b3 a3
]
, AC1 �[

a4 b4 a4
]
, AC2 � [ a b c b a ] and the vector elements have the expressions depending on

parameter q:

a1 � −1.115368 · q2 − 1.540152; b1 � 2.357534 · q2 − 6.65275; a2 � −1.115368 ·
q2 − 1.905407

b2 � 2.357534 · q2 − 8.230488; a3 � −1.115368 · q2 − 2.222126; b3 � 2.357534 · q2 −
9.598568
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Fig. 5 a Frequency response Hϕ1(ω1, ω2) of the oriented filter with ϕ � π
/
6; b its contour plot; c correction

filter prototype; d correction filter characteristic; e–i frequency responses and contour plots for corrected
oriented filters with various orientation angles: e, f ϕ � π

/
6; g, h ϕ � π

/
8; i ϕ � π

/
4

a4 � −1.115368 · q2 − 5.901567; b4 � 2.357534 · q2 − 25.492071
a � 1.244046 · q4 + 2.964008 · q2 + 1.86644; b � −5.259037 · q4 + 6.538189 · q2 +

16.124333 c � 8.046059 · q4 − 21.133797 · q2 + 38.557752

Once known the 1D transfer function HC (z), the final transfer function of the 2D square-
shaped correction filter results as HC O R(z1, z2) � HC (z1) · HC (z2). This 2D LP filter is
separable and results by applying successively the 1D filter along the two frequency axes.
This correction filter is zero-phase and almost maximally-flat, as required. Its characteristic
HC O R(ω 1, ω2) is displayed in Fig. 5d.

4 Design examples

In this section, design examples of typical directional and square-shaped filters for given
specifications are presented. Then a distortion analysis of their frequency responses is made
and finally an extensive discussion on various design aspects is included.
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4.1 Design examples of directional filters

Using the proposed method let us design a 2D directional filter with an orientation angle
ϕ � π

/
6. The frequency response Hϕ1(ω 1, ω2) of the filter is displayed in Fig. 5a and the

corresponding contour plot in Fig. 5b. As can be noticed, the filter characteristic has a good
linearity, however it twists towards the margins of the frequency plane and some residual
artifacts are also present. These marginal distortions can be corrected using an additional
LP filter, like the one described in Sect. 3.4. Applying this correction filter HC O R(ω 1, ω2),
the undesired marginal parts of the designed filter frequency response are removed, thus
resulting in a correct characteristic as in Fig. 5e, with the corresponding contour plot in
Fig. 5f. The corrected directional filter has the frequency response given by Hϕ1C (ω1, ω2) �
Hϕ1(ω1, ω2) · HC O R(ω 1, ω2). The frequency responses and contour plots of the corrected
directional filters for other orientations, like ϕ � π

/
8 and ϕ � π

/
4 are displayed in Fig. 5g,

h, i. As can be noticed, all filters have very selective directional characteristics with good
linearity along their axes. They are used in the next section in directional filtering of test
images.

4.2 Design examples of square-shaped filters

Using the samemethod let us design some 2D square-shaped filters with specified orientation
and bandwidth. The only difference compared to the directional filters derived previously
is that the design starts from the second prototype filter, namely the wide bandwidth LP
digital filter with transfer function HP (z) given by (2). The prototype, frequency response
and contour plot of the correction filter with q � 1 are shown in Fig. 6a–c. Next, several
examples of square filter design are given. The uncorrected characteristics of four square-
shaped filters resulted directly by applying the steps of the proposed designmethod are shown
in Figs. 6d, g, j and 7a, respectively.

The marginal undesired distortions are clearly visible. The corresponding frequency
responses and contour plots of the corrected filters are displayed in Figs. 6e, f, h, i, k, l
and 7b, c respectively. Also in Fig. 7d–g an uncorrected and corrected wide oriented filter
with p � 1.6, ϕ � π

/
8 is shown. All the corrected filters have small ripple distortions in

the pass band and stop band and are very steep.

4.3 Distortion analysis

As in any design using analytical or numerical optimization techniques, the 2Dfilters obtained
here inherently present some shape distortions, as compared to their ideal counterparts. These
errors appear as a result of the approximations used to determine the specific frequency
transformation, and occur mainly in the expressions (7), (8), (15), (16). The errors are larger
at the limits of the frequency range, which is clearly visible in Figs. 3 and 4. These marginal
errors of the used approximations result in themarginal artifactswhich appear in the frequency
response of the designed filters, both directional and square-shaped, as can be observed in
Figs. 5a, 6b, g, j and 7a, d. These marginal errors in the frequency plane are removed using
the correction LP filter which acts as a mask applied over the designed filter. A higher order
approximation would be needed in order to have smaller distortions, which is not convenient
for implementation, so an optimal trade-off must be reached. The 2D IIR filters designed
using the proposed method can be characterized by a distortion measure which describes the

123



Multidimensional Systems and Signal Processing (2019) 30:2021–2043 2033

Fig. 6 a 1D scalable prototype of the correction filter; b, c characteristic and contour plot of the correction
filter with q � 1; d uncorrected frequency response of a square filter with p � 1 and ϕ � π

/
4; e, f frequency

response and contour plot of the corrected square filter; g uncorrected frequency response of a square filter
with p � 1 and ϕ � π

/
6; h, i frequency response and contour plot of the corrected square filter; j uncorrected

frequency response of a square filter with p � 1.4 and ϕ � π
/
6; k, l frequency response and contour plot of

the corrected square filter

similarity between the frequency response of the designed filter and its ideal counterpart.
This distortion analysis was proposed by the author in Matei (2018) and is used here as well.

For instance, if |HR(ω1, ω2)| and |HI (ω1, ω2)| are the frequency response magnitudes
of the designed filter and ideal filter, their difference defines the error 	H (ω1, ω2) �
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Fig. 7 a uncorrected frequency response of a square filter with p � 1.6 and ϕ � π
/
8; b, c frequency response

and contour plot of the corrected square filter; d, e characteristic and contour plot of the uncorrected directional
filter with p � 1.6 and ϕ � π

/
8; f , g characteristic and contour plot of the directional filter after applying a

correction filter with q � 1.1

|HR(ω1, ω2)| − |HI (ω1, ω2)|. The frequency response is usually represented as a mesh or
sampled surface in a convenient number of equally spaced points in the frequency plane,
corresponding to a N × N matrix, where N is the number of points on the [−π, π] range.
A relevant measure of distortion may be the root of average value of the squared differences
over all the sampling points, i.e. the RMS. Taking N sampling points on both axes of the
frequency plane, the distortion factor is defined as Matei (2018):

δ � 1

N 2 ·
√√√√

N∑

m�1

N∑

n�1

(
	H (2mπ

/
N , 2nπ

/
N )

)2 (29)

Using the expression (29), one can obtain the dependence of the distortion factor δ on
the orientation angle ϕ of the oriented square-shaped filter, which is helpful in evaluating
the design accuracy. Let us consider the square-shaped filter displayed in Fig. 6g–i, with
parameter values p � 1, ϕ � π

/
6. Keeping constant the filter bandwidth given by the
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Fig. 8 Distortion factor δ versus orientation angle ϕ for a typical square-shaped filter (Color figure online)

parameter p � 1 and varying the orientation angle ϕ in the range ϕ ∈ [0, π
/
2] with a small

step, the curve drawn in black displayed in Fig. 8 is obtained, for N � 100 points. In this
particular case, the smallest distortion value is δmin ∼� 0.0234 � 2.34% and occurs exactly
at the angle ϕ � π

/
4 (for a diagonally-oriented filter), while the largest distortion value

is δmax ∼� 0.0589 � 5.89%, for values of ϕ close to 0 and π
/
2. Due to symmetry in the

frequency plane, it is sufficient to analyze the filter distortions for ϕ ∈ [0, π
/
2]. The factor

δ depends weakly on the number N of sampling points. For example, taking N � 1000, for
ϕ � π

/
4 the value δ ∼� 0.023 � 2.3% is obtained. The curves plotted in Fig. 8 represent

the variation of the distortion factor δ with orientation angle ϕ for the indicated values of the
parameter p. It can be noticed that the dependence of δ with ϕ is symmetric about the angle
ϕ � π

/
4. A similar analysis can be made for the directional filters.

4.4 Discussion

The idea of the paper was to design two classes of 2D filters, namely directional and square-
shaped filters using the same analytical method applied in each case to the appropriate 1D
prototype filter. The IIR filters were chosen due to their low order (complexity) compared to
the FIR version. It can be shown that FIR filters designed using a similar technique, namely
frequency mappings applied to 1D prototypes, would result much more complicated and
inefficient, of very high order, and the method would no longer be an alternative to numerical
optimization design methods.

The two types of 2D filters approached here belong to the same class in the sense that
the same frequency transformation was used to obtain them, applied to the same type of 1D
prototype, namely an elliptic LP digital filter. The only difference is that a very narrow LP
prototype is used to obtain a very selective directional filter, while a wider LP prototype is
used to obtain the oriented square-shaped filter (in fact its two directional components).

The proposed analytic design method is relatively simple and efficient. Once chosen the
suitable 1D recursive prototype filter, a specific frequency transformation is applied and the
matrices of the 2D filter are determined in a straightforward way. Since the matrices M and
N occurring in the mapping (19) are an outer product of the vectors P and Q given by (20),
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(21), the mapping is separable. Also the matrices U and V from (24) are a sum of three
outer products of M and N, so three separable terms, we can consider that the numerator
and denominator of the bi-quad HBi (z1, z2) in (23) are partially separable. The same is
valid for the entire 2D filter HD(z1, z2) given by (25), which may allow for an efficient
implementation.

Both types of 2D filters designed using the proposed method are efficient, of relatively
low order taking into account their high selectivity and steepness. As shown, both types of
designed 2D filters are derived by applying the same 1D to 2D complex frequency mapping
in matrix form given by (19) to different 1D LP prototypes, very narrow for directional filters
and wide-band for square filters, respectively. Since the order of wide band prototype is 6
and the order of narrow prototype is only 2, the square-shaped filter is roughly speaking
three times more complex than the directional one, since its order results three times higher.
The function H (z1, z2) can be factored into 2 polynomials of order 6 in variables z1 and
z2, corresponding to 2 matrices of size 7 × 7. Finally, the narrow directional filter results of
order 12, corresponding to numerator and denominator matrices of size 13 × 13. However,
both matrices can be written as sums of 3 convolution products of vectors of size 1 × 13.
Thus, if q is the vector size and the image to be filtered is of size N (with N 2 pixels), the
total computational complexity results of the order (6q + 4)N 2, which is comparable with
the one in Austvoll (2000). In our case, for q � 13, we get 82N 2 computations. By contrast,
in the general case, the total number of computations would be roughly 2q2N 2 (in our case
338N 2). Therefore, the proposed method is roughly 4 times more computationally efficient
than in the general case of a non-separable filter.

Taking into account (19) and the prototype expression (1), it is easy to determine that
the total number of multiplications needed in one filtering step is 338. In the same way, for
the square-shaped or diamond filter given by prototype (2), consisting of a product of three
bi-quad functions, the kernel size is 37 × 37 and thus the total number of multiplications is
approximately 2700. This number is smaller than the one reported in Low and Lim (1997)
for a diamond filter using the frequency masking technique, for which approximately 6500
multiplications are necessary. Therefore the implementation in our case would be about three
times more efficient and the filter has a lower complexity.

The proposed directional filter is very selective by comparison to other orientation-
selective filters from literature. Also, it has a straight, linear shape of the response in the
frequency plane, and has a higher directional selectivity compared for instance with the
Gaussian directional filter based on triple axis decomposition (Lam and Shi 2007), which
has an elliptical shape in the frequency plane. The Gaussian directional filters applied in
smoothing remote sensing images in Lakshmanan (2004) and Charalampidis (2009) also
have elliptical shapes in the frequency plane. This method is somewhat related with the one
proposed by the author in Matei (2018), for Gaussian directional FIR filters. The designed
diamond filter has comparable characteristics with the diamond filter in Tosic et al. (1997).
However, at roughly the same complexity, the shape of our proposed filter seemsmore precise
in the frequency plane, it is almost maximally-flat and the transition region is narrower. Our
approach also has comparable performance with the diamond filter with cascaded structure
proposed in Ito (2010). Compared with the diamond filter in Hung et al. (2007), our method
is relatively simpler and more versatile and also the designed filter seems to have a more
precise shape of the frequency response.

The resulted 2D filters are comparable in efficiency with others described in the litera-
ture, while they also have the advantage of being adjustable or tunable, in the sense that
their matrices depend explicitly on the specified parameters, in our case the orientation
angle ϕ and the scaling parameter p which gives the bandwidth. For different parameter
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values, the particular filter matrices result directly. Therefore an advantage of the method
is its versatility; the design need not be resumed each time again from the start for various
specifications.

The stability issue for the designed 2D filters was not approached here, but it will be
studied in detail in further work on this topic. Generally the stability problem for 2D fil-
ters, especially non-separable, is a lot more difficult than for 1D filters. If the prototype
filter is stable, and if the applied frequency transformations preserve stability, the derived
2D filters should also be stable. In the case of an analytical design method for recursive
filters like the one proposed here, where the 2D filter transfer function results from its pro-
totype through successive approximations and frequency mappings, the stability conditions
are difficult to impose from the start. There are however in the literature various stability
criteria (O’Connor and Huang 1978; Shao and Hou 2010) and also stabilization methods
can be applied for unstable 2D filters (Jury et al. 1977; Raghuramireddy et al. 1986). As is
well known, some filters are overall unstable (with poles both inside and outside the unit
circle), but their transfer function can be separated into one stable part and one unstable
part. This unstable part can be implemented using backward filtering. The input sequence is
first filtered in the forward direction by the stable part, then the inverted sequence is filtered
backwards by the unstable part. This technique is applied in Young and van Vliet (1995)
for the implementation of a Gaussian recursive filter and since the 2D Gaussian filter is
separable, this may be applied in principle also for a 2D filter, successively along the two
directions. As a continuation of this work, the author intends to investigate first the sta-
bility of filters obtained through the proposed method, and also the applicability of such
forward–backward filtering techniques in case the filters are not stable. Also further research
envisages an efficient implementation of this class of filters and testing them on various
real-life images.

5 Applications and simulation results

The designed directional filters can be used to select from a given image the lines with
a specified orientation. In order to prove the filtering capability of these filters, two test
imageswere used.A binary image containing straight lineswith gradually varying orientation
is displayed in Fig. 9a. It is known that the spectrum of a straight line is oriented in the
frequency plane (ω1, ω2) at an angle of ϕ � π

/
2 with respect to the line direction. This

can be clearly seen in the 2D FFT spectrum magnitude (b) of image (a), displayed on the
range ω 1, ω 2 ∈ [−π

/
4, π

/
4] for better visibility. It can be noticed that the spectrum of

image (a) consists of straight lines passing through the origin of the frequency plane. For
a given orientation angle, only the lines whose spectrum overlaps with the filter frequency
response remain in the output image, while the rest aremore or less blurred and are practically
eliminated through directional low-pass filtering. For instance, with ϕ � π

/
6 and p � 1.4,

in the output image (c), a single line and its closest neighbors are preserved; for the same
ϕ and p � 2 (a narrower filter), in image (d) practically a single line is detected, while
the others are almost completely blurred. Other output images resulted through directional
filtering are shown in Fig. 9e–i, for specified parameters. In most cases, due to directional
selectivity, only a single line and nearest neighbors are preserved. The low-pass filtering
effect is obvious from the filtered images in Fig. 9c–i. While the original image contains
black lines (here corresponding to value 1) on a white background (associated to zero), in
all the filtered images the background becomes a uniform light grey, which corresponds to
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Fig. 9 a binary test image; b FFT spectrum magnitude; c–i filtered output images for the following parameter
values: c p � 1.4, ϕ � π

/
6; d p � 2, ϕ � π

/
6; e p � 1.6, ϕ � π

/
8; f p � 1.6, ϕ � π

/
9;

g p � 1.6, ϕ � π
/
12; h p � 2, ϕ � π

/
4; i p � 1.6, ϕ � 7π

/
9; j binary test image; k, l filtering result

with directional filter with ϕ � π
/
6 and ϕ � 2π

/
3
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the average pixel value, or zero frequency component. Also it can be noticed in the filtered
images that for a specified orientation angle, one or two lines whose spectrum overlaps with
filter frequency response remain almost unchanged in the filtered image; the other lines
are blurred due to directional low-pass filtering. The larger the difference in angle between
the line spectrum and the filter longitudinal axis, the more pronounced is the blurring. For
instance, the horizontal line is completely blurred in Fig. 9c, d, h, i, while the vertical line is
completely blurred in Fig. 9c–h.

The second binary image shown in Fig. 9j consists in straight lines of various lengths,
roughly oriented along two orthogonal directions, namely with angles ϕ � π

/
6 and ϕ �

2π
/
3 about horizontal axis. Filtering this image with a directional filter with corresponding

orientation angles, we get the images in Fig. 9k and l. The lines with spectra overlapping
with the filter directional response remain almost unchanged, while the orthogonal lines are
completely blurred.

The third test image displayed in Fig. 10a is a real grayscale texture image of 1100×1100
pixels, representing straws with random orientations. This image has the FFT spectrum
magnitude (b) shown in the range ω 1, ω 2 ∈ [−π

/
4, π

/
4], in which a fine structure of

spectral lines is visible, corresponding to the straws which are roughly straight, thin lines.
Applying a directional filtering to image (a), with p � 2 and ϕ � −π

/
6,ϕ � π

/
4 and

ϕ � π
/
2, the filtered images are (c), (d) and (e). It can be noticed that only the straws

roughly corresponding to a given orientation remain visible in the output image, all the
others being more or less blurred. The output images show the good directional resolution
of these filters. Next, applying a convenient threshold to the directionally filtered image, a
binary image results, where the detected objects are clearly visible. For example, the images
(f), (g), (h) result from (c), (d), (e) by a simple thresholding with a convenient threshold value
between 0 and 1. Another filtering example is shown in Fig. 10i–k. A set of such orientation-
selective filters could be designed to form a directional filter bank, useful in detecting such
linear objects in a pattern recognition application. The 2D filters used for filtering directional
patterns (grayscale or binary images containing straight lines with various orientations) are
very selective LP filters since their frequency response contains the origin of the frequency
plane, corresponding to zero frequency. The directional filter passes the objects (in our case
straight, thin lines) whose spectrum more or less overlaps with the filter response in the
frequency plane, while the rest aremore or less blurred, as an effect of directional LP filtering.
We can notice that straws with specified orientation remain, while the others are filtered out.
However, the smaller details, like short straws, are not blurred as clearly as in Fig. 9, because
their spectra are rather narrow around the origin of frequency plane and the low-pass filtering
effect is weaker.

The last example provided is the real grayscale image of size 1000×1000 pixels in Fig. 11
a, showing a group of high buildings (skyscrapers) seen from ground level. Due to perspective
effect, this image presents many straight lines oriented under various angles. The images in
Fig. 11b and c are the result of very selective directional filtering with angles ϕ � π

/
3 and

ϕ � 2π
/
3, respectively. The directional filtering effect is clearly visible in these images.

Depending on filter orientation, different straight lines representing contours or details of the
buildings are outlined, while others are more or less blurred, depending on their orientation.
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Fig. 10 a straw texture image; b typical FFT spectrum magnitude; filtered output images for: c p �
2,ϕ � −π

/
6; d p � 2,ϕ � π

/
4; e p � 2,ϕ � π

/
2; f , g, h binary images obtained by thresholding;

i detail of straw texture image; j filtered output image with ϕ � −π
/
4; k binary image after thresholding
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Fig. 11 a Skyscrapers image; b, c image filtered with directional filter with ϕ � π
/
3 and ϕ � 2π

/
3

respectively

6 Conclusion

An analytical design method is proposed for two types of 2D recursive filters, namely direc-
tional and square-shaped filters. The design is based on a 1D digital prototype, in particular
an elliptic filter, and on a complex frequency transformation, which relies on a Chebyshev—
Padé rational approximation. The designed filters are parametric, in the sense that the filter
coefficients, given in matrix form, depend explicitly on the specifications, in our case the
orientation angle and the scaling parameter. Some relevant design examples were provided
and also some simulation results for directional filtering on test images were included.
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