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Abstract
Lung cancer is the leading cause of death among cancer-related death. Like other cancers, the
finest solution for lung cancer diagnosis and treatment is early screening. Automatic CAD
system of lung cancer screening from Computed Tomography scan mainly involves two
steps: detect all suspicious pulmonary nodules and evaluate the malignancy of the nodules.
Recently, there are many works about the first step, but rare about the second step. Since
the presence of pulmonary nodules does not absolutely specify cancer, the morphology of
nodules such as shape, size, and contextual information has a sophisticated relationship with
cancer, the screening of lung cancer needs a careful investigation on each suspicious nodule
and integration of information of all nodules. We propose deep CNN architecture which
differs from those traditionally used in computer vision to solve this problem. First, the
suspicious nodules are generated with the modified version of U-Net and then the generated
nodules become an input data for our model. The proposed model is a multi-path CNN
which exploits both local features as well as more global contextual features simultaneously
to automatically detect lung cancer. To this end, the model used three paths, each path
employed different receptive field size which helps to model distant dependencies (short
and long-range dependencies of the neighboring pixels). Then, to further upgrade our model
performance, we concatenate features from the three paths. This balance the receptive field
size effect andmakes ourmodelmore adaptable to the variability of shape, size, and contextual
information among nodules. Finally, we also introduce a retraining phase system that permits
us to tackle difficulties related to the imbalance of image labels. Experimental results on
Kaggle Data Science Bowl 2017 challenge shows that our model is better adaptable to the
described inconsistency among nodules size and shape, and also obtained better detection
results compared to the recently published state of the art methods.
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1 Introduction

Worldwide, the top cause of death among cancer related death is lung cancer (Rebecca et al.
2018; WHO 2018). According to the World Health Organization (WHO) report 2018, lung
cancer is responsible for an estimated 1.76 million deaths (WHO 2018). Only in the United
States of America, among the cancer-related deaths, 83,550 deaths were estimated because of
lung cancer, in 2018 (Rebecca et al. 2018). This number is expected to be higher in developing
countries. Figure 1 shows the leading cancer types for the estimated deaths by sex in the
United States of America, where lung cancer is leading in both sexes. Like other cancers, the
finest solution for lung cancer is early diagnosis and treatment. To this end, the primary and
critical step for early diagnosis and treatment of lung cancer is identifying the lung whether
it is infected by cancer or not, with better screening approaches leading to polished patient
result. The national lung screening trial (NLST) determined that screening with low dose
helical Computed Tomography (CT) scan decreased death rate by 20% contested to single
view radiography in high-risk demographics (The National Lung Screening Trial Research
Team 2011). However, screening for lung cancer is prevalent to false positive, increasing
cost, and causing tension for patients (Patz et al. 2014). Computer-aided diagnosis (CAD) of
lung cancer provides an increased attention in early screening and a decreased false positive
rate in diagnosis.

After its great achievement in natural image recognition and classification,CADofmedical
imaging using deep learning with CNN methods has achieved great success over the other
state of the art for automated medical imaging applications (Alvarez et al. 2012), and are for
example able to detect skin cancer metastases (Liu et al. 2017), obtaining considerably better
sensitivity performance than human. Also, Kingsley et al. 2017 addressed automatic lung
cancer screening using 3D-CNN, and obtained promising performance, with some drawbacks
such as speed inference and memory efficiency.

Because of the various reasons mentioned in this paper, however, the existing automatic
screening of lung cancer methods have not demonstrated sufficiently accurate and robust
result for clinical use. Some of the key challenges of lung cancer detection are

Fig. 1 Leading Cancer types for the estimated deaths by sex in United States, 2018 (Rebecca et al. 2018)
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Fig. 2 Examples of nodules with various size and shape in the KDSB 2017 dataset. Top: the whole slice.
Bottom: their corresponding zoomed images

• The complexity of contextual information among nodules The nodule is a solid clumps of
tissue that exists in and around the lungs. These nodules are visible in CT scan images
and have complex contextual information, they can be cancer (Malignant) or non-cancer
(Benign).Because of their sophisticated contextual information, the existing cancer screen-
ing algorithm faces the problem of accuracy, and typically very tough for Doctors.

• The inherent size and shape of cancer nodules The Morphology of the cancer nodules and
nodules in general, are varying across the CT scan images of a lung. The inconsistency of
cancer nodules shape and size will create an ambiguity on radiologist and/or oncologists
during screening. Due to this, radiologists and/or oncologists recommend for further action
such as monitoring, blood test, and biopsy, and as a result, it becomes a burden for patients.
Not only human, but it is also not easy for an algorithm to localize the cancer properties
with their respective size and shape. Figure 2 demonstrates the mentioned variation among
nodules.

Cancer and non-Cancer lung nodules detection methods using CNN can be determined
by how neighboring pixels are well modeled, i.e., modeling short (local) and long (global)
range dependencies determine model learning accuracy. Mostly, the traditional CNNmodels
used to detect lung cancer are utilizing 3×3, 5×5, or 7×7 receptive field size to model
distant dependencies in a single pathway (Kingsley et al. 2017; Havaei et al. 2017; Pereira
et al. 2016). Whereas these methods are considerably provided better performance than the
traditional lung cancer detection methods, they lack to jointly integrate local and global
range dependencies. Different receptive field sizes are not considered jointly, rather it acts
on feature maps with fixed receptive field size, and due to this, modeling the neighboring
pixel somehow deteriorate the model performance. On the other way, those aforementioned
problems are not jointly considered, since the size and shape, and contextual information is
all about how modeling neighboring pixels. For example, from Fig. 3, one can observe that
the values gi1, g j1, and gk1 are the outputs of the receptive fields Ri , R j , and Rk respectively,
using convolution. gi1 approximates the receptive field Ri , which means all pixels of Ri are
approximated by gi1 using convolution. The same is true for g j1 and gk1. Accordingly, the
entire feature maps are modeled. However, if we observe what gi1, g j1, and gk1 computes
are quite different, because the receptive field size used are different. The best size depends
on a task. Therefore, it is important to design an architecture which averages the influence
of receptive field size.
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Fig. 3 An illustration of various receptive field size. Left: feature map with three distinct receptive field (Ri ,
R j , Rk ) and right: their corresponding output using convolution. The background image is a nodule sample

In addition, the existing models for automatic lung cancer detection using CNN faces
a shortage and class imbalance of labeled data. For example, the CT scan of Kaggle Data
Science Bowl 2017 challenge dataset is highly data imbalanced, the malignancy to benign
ratio is 1:7.

To address these aforementioned challenges, this paper proposes a multi-path CNNwhich
in general we provide flexible and adaptable model used to detect medical images, and
lung cancer in particular. The model is designed in such a way that those key challenges
are addressed by our method. Also, compared to 3D-CNN which worth much time and
memory, we focus on 2D-CNN with multipath and provided competitive performance. The
proposed multi-path CNN is similar to the traditional CNN architecture, however, it differs in
structure. It has three paths, each path is intended tomodel distant dependencies (neighboring
pixels), where one can relate these distant dependencies with the pointed shape and size
of cancer existing in the lung. The first and the second paths are intended to model local
dependencies (more focus on shape and size), and the third path is intended to model long-
range dependencies (contextual information). In general, our architecture is designed in a
unified form to tackle the distant dependencies.We also address the class imbalance problem.
Our work can be summarized as follows:

• We propose a novel automatic multi-path architecture used to detect lung cancer with
CNN. Our architecture is designed in such a way that various shape and size of cancer and
non-cancer nodules features are learned.

• To deal with the crucial class imbalance problem, we introduce a technical approach with
retraining phase. Details of the contribution are found in Sect. 3.1.

• We also deal with concatenation and averaging features from the three paths to polish the
model performance, where we found better accuracy.

The rest of this paper is organized as follows. Section 2 briefly review related works. In
Sect. 3 we present dataset used and preprocessing (segmentation of the lung, detecting the
suspicious nodule and training U-Net). The detail of the proposed multi-path CNN with its
detail explanations of each path is given in Sect. 4. The experimental results and discussions
are well presented in Sect. 5 and finally, Sect. 6 concludes the paper.
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2 Related works

Automatic lung cancer detection algorithm aids an expert in understanding medical images,
granting for medical image analysis with higher sensitivity and specificity, which is very
crucial for patients. As pointed by Muhammad et al. (2017), the number of publications
contributed to lung cancer detection has grown rapidly in the lastmany years. This observation
not only underlines the importance of automatic lung cancer detection tools but also reveals
that research in that area is still a work in progress.

In general, there exist various image detection approaches (especially those devoted to
lung cancer), and they can be categorized into those based on handcrafted models and those
based on discriminative models. The handcrafted models rely heavenly on domain-specific
knowledge about the existence of both non-cancer nodules and cancerous ones. The nodules
appearance is challenging to characterize, and existing handcrafted models usually miss-
creening as cancerous or non-cancerous nodules which divert from the normal one (Clark
et al. 1998; Lin and Yan 2002). On the other hand, unlike handcrafted models, discriminative
methods exploit little prior knowledge on the lungs anatomy. It mostly focuses on extracting
low-level features, directly modeling the relationship between these features and the label of
the provided value.

A thorough review is beyond the scope of this paper, but we give here the recent dis-
criminative models designed to detect an image. Most of these approaches are designed for
2D image detection. Faster-RCNN (Ren et al. 2015), in which some bounding boxes are
proposed in the first phase and the class decision is computed in the second phase. More
recent approaches have a single stage, in which the bounding boxes and class probabilities
are predicted instantaneously (Redmon and Farhadi 2016) or the class probabilities are esti-
mated for default boxes without proposal generation (Liu et al. 2016). Overall, single stage
approaches are quicker but two-stage approaches are more accurate. In the case of single
class object detection, the second stage in the two-stage approaches is no longer wanted and
the approaches degenerate to single-stage methods.

An extension from 2D to 3D CNN of image detection is also considered. For example,
considering a CT scan image of the lung, (Alvarez et al. 2012; Kingsley et al. 2017; Havaei
et al. 2017) introduced3DCNNtodetect lung cancerwithmulti-stageCNNandhaveprovided
relatively promising performance. However, the architecture takes much time to train and
also needs much memory. This is a very typical problem when lung cancer detection is to
be employed in our day-to-day work. Also, these methods do not take into account those
problems described earlier in this paper, but those problems are addressed in this paper.

3 Dataset and preprocessing

3.1 Dataset

To train our model, we used the Kaggle Data Science Bowl (KDSB) 2017 challenge (KDSB
2017). The dataset is provided in DICOM file format having patient Id and labels (as shown
in Table 1). It comprises labeled data for 2101 patients, where a label 0 is for the patient
with no cancer and 1 is for the patient with cancer. For each patient, the CT scan comprises
a variable number of images (normally around 100–400, each image is a 2-D axial slice) of
512×512 pixels. After some preprocesses are applied to these 2D axial slice images, the
model is trained with these images.
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Table 1 Some KDSB 2017
challenge dataset and their
Cancer status

Patient Id. Cancer label

0015ceb851d7251b8f399e39779d1e7d 1

0030a160d58723ff36d73f41b170ec21 0

003f41c78e6acfa92430a057ac0b306e 0

006b96310a37b36cccb2ab48d10b49a3 1

008464bb8521d09a42985dd8add3d0d2 1

0092c13f9e00a3717fdc940641f00015 0

00986bebc45e12038ef0ce3e9962b51a 0

00cba091fa4ad62cc3200a657aeb957e 0

00edff4f51a893d80dae2d42a7f45ad1 1 1

0121c2845f2b7df060945b072b2515d7 0

013395589c01aa01f8df81d80fb0e2b8 0

01de8323fa065a8963533c4a86f2f6c1 0

01e349d34c06410e1da273add27be25c 0

01f1140c8e951e2a921b61c9a7e782c2 0

…. ….

…. ….

Since theKaggle dataset alone proved to be insufficient to accurately classify the validation
set, we used patient lung CT scan dataset with labeled nodules from the Lung nodule analysis
2016 (LUNA16) Challenge (LUNA 2016). The LUNA16 dataset comprises labeled data for
888 patients, where for each patient the data comprises of CT scan data and a nodule label
(list of nodule center coordinates and diameter). Similar to the CT scan images of KDSB,
each patient of the LUNA16 dataset comprises CT scan images of 512×512 pixels.

We divide the images of LUNA16 into a training set of size 710 and a validation set of
size 178 to train a modified U-Net. The trained U-Net helps us to segment suspicious nodules
regions of KDSB CT scan images (i.e., the U-Net is tested with KDSB dataset). Once the
suspicious nodules regions are approximated byU-Net, we divide these approximated images
into a training set, validation set, and test set to train our proposed architecture. Figure 6 shows
the suspicious nodules samples which are segmented by U-Net.

The KDSB 2017 dataset is highly data imbalanced, where 70% of the patients are free
of cancer and 30% of the patients are with cancer. Choosing patches from true distribution
would cause the model to be highly influenced by healthy patches and this will affect the
training accuracy of CNN models.

To circumvent this, we initially build our patches dataset such that the two labels (cancer,
non-cancer) are equiprobable. Tomake they are equiprobable, we perform data augmentation
(Krizhevsky et al. 2012) on images whose label is 1 (i.e., we augment the set of malignant
nodules by filliping and 90-degree rotations) and perform training. Next, we consider the
unbalanced data and retrain only the output layer (i.e., keeping the weight of all other layers
fixed) with a more representative distribution of the labels. In this way, we get the best result.
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Fig. 4 Original 2D CT slice of a sample patient (left) and its segmentation mask by thresholding (right). We
then multiply by full mask we mentioned above. Everything outside the mask is filled with 170, which is a
common tissue of luminance

3.2 Preprocessing

3.2.1 Lung segmentation

A CT scan image of a lung comprises not only the lung but also other tissues, such as bone,
air, blood, and water. These substances are not important, their presence affects the ability
that the model characterizes the nodules, and thus we need to exclude them.

Each CT scan of KDSB consisting of multiple 2D axial slices with pixel values in the
range [−1024, 3071] corresponding to Hounsfield Unit (HU), which is the quantitative scale
for describing Radio-density.

The distribution of pixel HU at different axial slices for sample patient images are shown
in Fig. 5. Typical Radio-densities in HU of various materials in CT scan images of the lung
are given in Table 3.

To exclude those tissues, some segmentationmethods extract themask of lung and leave all
other tissues in the detection stage. A common approach used by researchers are thresholding
(Alakwaa et al. 2017), clustering (Rao et al. 2016), watershed (Ronneberger et al. 2015) and
k-means (Gurcan et al. 2002). For each 2D slice, we used thresholding to filter 2D image with
Gaussian filter and then normalize the pixel value to [0, 1] using −600 as a threshold. An
original 2D CT slice of a sample patient and the resulting 2D slice of the lung segmentation
mask created by thresholding is shown in Fig. 4.

To prepare the data for the network, we shift the image from HU to UINT8. The raw data
are initially clipped within [−1024, 3071], and linearly shift to [0, 255] (Fig. 5).

3.2.2 Nodule detection

Following Rao et al. (2016), we train a modified version of U-Net (we modify some param-
eters of U-Net, such as input size, kernel size, model depth.) on LUNA 16 data to segment
suspicious nodules. U-Net is a 2Dmodel that is widely applied to various Bio-medical image
segmentation tasks, such as brain tumor segmentation, ultra-sound nerve segmentation, and
retina blood vessel segmentation. For more understanding about U-Net, we refer the reader
to read (Ronneberger et al. 2015). The parameters of the modified U-Net are given in Table 2.
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Fig. 5 HU pixel distribution and sample images of patients at different axial slices. (left first row: Histogram
of patient 315 slice 110, right first row: Histogram of patient 150 slice 75 and left and right second row:
their corresponding axial slices images)

During training, the modified U-Net takes as an input 256×256 2D CT slices, and their
corresponding labels are provided by masking 256×256, where nodule pixels are 1 and the
rests are 0.

The output of the model is an image having the same size with an input. Each pixel of the
output has a value between 0 and 1, showing the probability the pixel belongs to a nodule.
This is utilized by taking the slice belongs to label 1 of the softmax of the final U-Net layer.

Finally, the trained U-Net is then used to segment the KDSB CT scan slices. These
candidates have variable size (small, medium and large) and shape (circular, elliptical and
others), where we categorized them into training set, validation set, and test set to train the
proposed mp-CNN (Table 3).

4 Proposedmulti-path CNNmethod

4.1 CNNs

The core building block used to design a CNN architecture is the convolution layer. Many
layers can be heaped on top of each other creating a hierarchy of features. Each layer can
be understood as extracting features from its previous layer into the structure to which it is
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Table 2 U-Net parameters setup (Dropout with 0.2 Probability after each ‘R’ Conv. Layer during Training,
‘Up’ Indicates Resizing of Image via Bilinear Interpolation, Adam Optimizer, Learning Rate�0.0001, relu
after each conv layers)

Type k. size #ker. Input

conv 1R 3×3 32 256×256×1

conv 1L 3×3 32 256×256×32

max p. 2×2, stride 2 256×256×32

conv 2R 3×3 80 128×128×32

conv 2L 3×3 80 128×128×80

max p. 2×2, stride 2 128×128×80

conv 3R 3×3 160 64×64×80

conv 3L 3×3 160 64×64×160

max p. 2×2, stride 2 64×64×160

conv 4R 3×3 320 32×32×160

conv 4L 3×3 320 32×32×320

up conv 4R 2×2 32×32×320

concat conv4R, conv3R 64×64×320

conv 5R 3×3 160 64×64×480

conv 5L 3×3 160 64×64×160

Up conv 5R 2×2 64×64×160

concat conv5R, conv2R 128×128×160

conv 6R 3×3 180 128×128×240

conv 6L 3×3 180 128×128×80

up conv 6R 2×2 128×128×80

concat conv6R, conv1R 256×256×80

conv 7R 3×3 32 256×256×112

conv 7L 3×3 32 256×256×32

conv8 3×3 3 256×256×32

output 256×256×2

Table 3 Typical radio densities in
HU of various substances in CT
scan images (Lepor 2000)

Substance Radio density (HU)

Lung tissue −500

Water and blood 0

Bone 700

CSF 15

Kidney 30

Liver +40 to +60

associated. A convolution layer takes as input a heap of input patches and gives as output
some number of planes called feature maps. Each feature map f j is associated with one
weight. Basically computing a feature map in a convolution layer has three steps (Fig. 6).

First, given an i-th input channel xi with w j,i a sub-weight of that channel and biases
term b j , the feature map f j using convolution is computed as

f j �
∑

i

w j,i ∗ xi + b j (1)
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Fig. 6 Suspicious nodule samples image with U-Net

where ∗ is a convolution operation. The key to the achievement of CNN is their capability
to learn the weight and biases of separate features, giving boost to data-driven customized
task-specific compact features. These parameters are optimized through stochastic gradient
descent on an alternate loss function related to the misdetection, with gradient calculated
through backpropagation algorithm (Rumelhart et al. 1988). Second, to get features that are
nonlinear transformation of the input, an element wise operation is applied to the result of
the kernel convolution. There are various choices of such function. Recently, ReLu defined
as

f (x) � max(0, x) (2)

were found to attain better results than the more conventional sigmoid, or hyperbolic tangent
functions, and also help in speeding up the training process (Ramachandran et al. 2017; Jarrett
2009). Sometimes, imposing a constant zero can harm the gradient flowing and subsequent
adjustment of the weights. Due to this some researchers used leaky rectifier linear unit (lrelu)
(Maas et al. 2013)

f (x) � max(0, x) + αmin(0, x) (3)

that presents a small slope on the negative part of the function, where α is the leakiness
parameter. However, during our experimentation we have not obtained substantial change by
the use of lrelu, and thus we used Eq. (2). Third, to shrink the size of feature maps, pooling
is applied on each feature map. Max-pooling and average pooling are commonly used in
medical image detection.

From the inference of neural networks, feature maps are corresponding to a layer of
hidden neurons. Each coordinate of the feature maps is corresponding to an individual units
or neurons, for which the size of its receptive field corresponding to the filter size. The filter
value indicates the weight of the connection between the layer’s neurons in the previous layer.

Finally, to achieve an indicator of the detection labels, one can associate the last con-
volution hidden layer to a convolutional output layer followed by a nonlinearity activation
function without pooling operation. In most CNN detection models, the output layer is nor-
mally fully connected, however one can redesign the CNN architecture subject to a specific
task. In this paper, the last output layer is connected to a convolutional layer without fully con-
nected. With this adapted CNN architecture, contested to the traditional CNN architectures
that employs fully connected layers, we observed that the computational time is improved.
We also made several modifications, and hence observed an improvement over the conven-
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tional one. Many weights are used; these weights acts as the final detector of nodules from
one of the detection labels. We use the softmax which normalize into two distributions over
the labels. Particularly, assume x be the vector of values at a spatial position, it calculates
softmax s(x)

s(x) � ex

z
(4)

where z is normalized constant and

s(x) �
∑

i

exi (5)

Assuming Y as a detection label over the input patch X , we can thus interpret each spatial
position of a convolutional output layer as bringing a model for the likelihood distribution
P(Yi, j |X ) where Yi, j is the label at coordinate Yi, j . We obtain the probability of all labels
easily by accepting the product of each conditional probability P(Y |X ) � ∏

i, j P(Yi, j |X ).
Our method hence performs binary class labeling by assigning to each pixel the label with
the largest probability.

4.2 Multi-path CNN architecture

So far, our explanation of CNN’s suggests a simple architecture belonging to a single heap of
several convolutional layers. In the field of computer vision, this architecture is themost com-
monly implemented architecture. However, one could design other architecture that might
be suitable for the problem at hand.

As we have mentioned earlier, some of the key challenges of lung cancer detection using
CNN are the variability among nodules size, shape, and their contextual characteristics. Due
to these challenges, the existing CNN based lung cancer detectionmodels face the problem of
accuracy. One reason for the aforementioned problems is that the receptive field size influence
while modeling distant dependencies. Most CNN based lung cancer detection relies on fixed
receptive field size (example, the use of 3×3 or 5×5 size throughout the architecture)
which affect the contextual and visual information’s of neighborhood pixels during feature
extraction.

In this paper, to circumvent the problem,wedesign aCNNhavingmulti-path convolutional
layers, i.e., the path considering smaller, medium, and larger receptive field sizes. We call
these paths first, second, and third path, respectively.

The receptive field size of the first path is 3×3, the second path is 5×5, and the third
paths is 7×7. Here one can ask as if the receptive field size 7×7 larger or 3×3 is appropriate
enough? The answer is subjective; it depends on a task. We just focus on these receptive field
sizes to study the task at hand. Moreover, the design of our architecture is supported by the
concatenation of different feature maps from the last convolutional layers of the three paths
which help the model to boost the prediction.

The motivation for this architecture design is that we would like the prediction of the label
of a pixel to be positively influenced by:

• the visual details of the region around neighborhood pixels and
• contextual information.

Also, the concatenation layer helps to determine important features from the three pathway
which helps in modeling long and short-term dependencies, i.e., features in the same areas
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Fig. 7 Multi-pathway CNN architecture. The figure demonstrates the input patch move through three paths of
convolutional operations. The feature maps in the first, second and third paths are shown in blue, red, and
green colors, respectively. The convolutional layers used to output these feature maps are indicated in Table 4
(Color figure online)

are modeled in a better way. We observed that this architecture overcome the effects of
receptive field size and provided better accuracy contested to the traditional CNN’s model
which employ fixed receptive size and one way convolutional layers. The full architecture is
illustrated in Fig. 7 and its parameters are given in Table 4.

We refer to this architecture as multi-path CNN (mp-CNN). We describe these three paths
of mp-CNN architecture that we used in this work one by one.

4.2.1 First path

This CNN path is the path with smaller 3×3 receptive field size intended to model short-
range dependencies of a neighboring pixel. It has four convolutional layers where the first
three layers are followed by 2×2 max pooling and the fourth layer is followed by 4×4 max
pooling. The 4×4 max pooling is applied because we want the same spatial size of feature
maps with other paths. It helps us to easily concatenate feature maps. The first convolutional
layer takes a preprocessed 2D slices of lung images of size 128×128×1 as input and filtered
with 64 filters of size 3×3. The second layer takes the output of the first layer (after max-
pooling) and performs convolution, where 64 kernels of size 3×3 are applied to feature
maps of size 64×125×125. Similarly, after max pooling, the third layer takes the output of
the second layer as an input and perform convolution with 64 filters of size 3×3 on feature
maps of size 64×122×122. Finally, the fourth layer of this path takes the output of the third
layer of size 64×119×119 as input and perform convolution with 64 filters of size 3×3.
Clearly, this layer has 64×114×114 output size, after 4×4 max pooling. The output of the
third layer is then concatenated together with the output of the last layer of the remaining
two paths.

4.2.2 Second path

This is a pathwithmedium5×5 receptive field size intended tomodel average short and long-
range dependencies of neighbor pixels. Themedium sized and various shaped of lung nodules
are better modeled through this path, where the larger and smaller nodules are better modeled
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Table 4 Multi-path CNN parameters setup

Type k. size #ker. act. Input

First path

conv 3×3 64 relu 128×128×1

max p. 2×2 64×126×126

conv 3×3 64 relu 64×125×125

max p. 2×2 64×123×123

conv 3×3 64 relu 64×122×122

max p. 2×2 64×120×120

conv 3×3 64 relu 64×119×119

max p. 4×4 64×117×117

Second path

conv 5×5 64 relu 128×128×1

max p. 2×2 64×124×124

conv 5×5 64 relu 64×123×123

max p. 2×2 64×119×119

conv 5×5 64 relu 64×118×118

max p. 2×2 64×115×115

Third path

conv 7×7 64 relu 128×128×1

max p. 2×2 64×122×122

conv 7×7 64 relu 64×121×121

max p. 2×2 64×115×115

Concatenation

conv 114×114 192 s.max 192×114×114

Output 2×1×1

through larger receptive and smaller receptive field respectively, and also concatenation from
the three paths boost performance. The path has three convolutional layers, each of them are
followed by 2×2 max pooling. Similar to the first path, the first layer of this path takes a
preprocessed 2D slices of lung cancer as an input and 64 filters of size 5×5 are applied to it.
After max poling is applied to the output of the previous layer, the output becomes the input
to the second convolutional layer. It takes 64×123×123 spatial size as input, 64 filters of
size 5×5 are applied to this input which then outputs feature maps of size 64×119×119
(i.e., 64 feature maps each 119×119 spatial size), after max pooling. Then, the next layer
(i.e., layer three) takes the outputs of the previous layer and convolution is applied to it with
64 filters of size 5×5 again.

4.2.3 Third path

This path is aimed to capture long-range dependencies. It has two convolutional layers fol-
lowed bymax pooling of size 2×2. The first layer takes 128×128×1 as inputs, convolution
is applied on this input with 64 filters of size 7×7 and outputs 64×122×122 feature maps.
After max pooling, it becomes the input to the second layer. The second layer also applies
the same operation with 64 filters of size 7×7 and output 64×115×115. After 2×2 max
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pooling, its output is concatenated together with the output of the last convolutional layer of
the other two paths.

4.2.4 Concatenation

To average the effect of receptive field size, we concatenate the output of the last convolution
layer of each path, and this concatenation is convolved with 192 filters of size 114×114 and
then followed by a soft-max function to predict the input.

Generally, the use of multi-path model with concatenation both exploit the efficiency
of CNN’s while also more exactly model the dependencies between neighbor pixels in the
detection task.

Such joint detection model is more computationally expensive than a feedforward passes
via CNN. This is a very crucial step when we should take into consideration if automatic
lung cancer detection is to be used in a day to day work.

Here we explain the CNN model that both feat the efficiency of CNN’s, while model the
distant dependencies. Since wewould like the final prediction to be prejudiced by themodel’s
views about the neighborhoods labels, we put forward to feed the output probabilities of a
third and the secondCNNas additional inputs to the layer of the first CNN.We do this through
a concatenation of convolutional layers. In this case, we concatenate the last convolutional
output layers of each path of CNN.

4.3 Training

By describing the output of the CNN as a model for the distribution over detection labels,
a common training rule is to maximize the probability of all labels in training set or, to
minimize negative log-probability

− log P(Y |X ) �
∑

i, j

− log(Yi, j |X ) (6)

for each labeled lung slice.
To perform this, we use stochastic gradient method by repeatedly choosing labels Yi, j at

a random subset of patches within each lung, calculating the mean negative log-probabilities
for this mini batch of patches and doing a gradient descent step on the CNNs parameters (i.e.,
the weight at all layers). We perform updates only on small subset of patches. This allows
us to avert having to process the whole slice of the lung for each update, at the same time
providing decent updates for learning. Particularly, we perform this method by forming a
dataset of mini batches of smaller slices of lungs image patches, paired with the analogous
detection label as the target.

Sincemomentum tactic has been fruitful in the past (Krizhevsky et al. 2012),we implement
it to optimize our model. We used this strategy as

vi+1 � η ∗ vi − γ ∗ ∇Wi (7)

Wi+1 � Wi + vi+1 (8)

where Wi represents the CNNs parameters at iteration i , ∇Wi is the gradient of the loss
function at Wi , vi is the integrated velocity where the initial value is set to zero, γ is the
learning rate, and η is the momentum coefficient. We set the initial momentum η � 0.5 and
the final momentum η � 0.9. Also, learning rate γ � 0.005 is decayed exponentially with
decay factor 0.1.

123



Multidimensional Systems and Signal Processing (2019) 30:1749–1768 1763

5 Experimental result and discussion

5.1 Experimental setup

We implement an experiment on one of the deep learning library- tensor flow (Martin 2016)
with Kera backend. It supports GPUs which can highly accelerate the computation of deep
learning algorithm. Hyper-parameters of our model such as filter size, max pooling size,
architecture depth, and others are given in Table 4. These chosen hyper-parameters were the
one for which our models performed best on the validation set. For both convolutional and
max-pooling layers, we used a stride 1. This helps us to keep the per-pixel accuracy. From
our experiment, we observed that adding additional convolutional and max-pooling layers on
the third path does not improve the results, also we found adding additional features does not
give any significant improvement. That is why we limit the layer depth of our model.Weights
are randomly initialized from the uniform distribution U (−0.005,−0.005) and except for
the softmax layer for which we initialized them to the log of the label, biases are set to zero.

5.2 Evaluationmetrics

To measure how our model well perform, we compute the commonly used image detection
performance measures accuracy, A, specificity, S, recall, R:

S � tn

tn + f p
(9)

R � tp

tp + f n
(10)

A � tp + tn

tp + f p + f n + tn
(11)

where tp is the number of true positives, f p is the number of false positives, f n is the number
of false negatives, and tn is the number of true negative. One can multiply these equations
by 100 to give the results in percentage.

5.3 The preprocess stage

Initially, we have trained our model with the raw KDSB dataset without lung segmentation
and nodule detection. In addition to the shortage of images thatKDSBcomprises, unnecessary
substances that exist in the CT scan image of the lung were not removed, and due to these
we obtained bad results. Then we removed tissues like bone, air, water, and trained the mp-
CNN, still, the results were not satisfactory. Hence, to improve our model performance, we
performed lung segmentation and nodules detection on the raw images. Thresholding was
applied to segment the lung, and then, U-Net was used to detect suspicious nodules. The
trained U-Net model was used to detect the region where the suspicious nodules (cancer
or non-cancer nodules) would be available (KDSB dataset was used). Experimental result
shows, the use ofThresholding andU-Net before directly employingmulti-path convolutional
neural network improved the mp-CNN performance. Table 5 and Fig. 8 shows the results
of our model accuracy with and without preprocessing stage. As shown in the table, the
accuracy of mp-CNN improved because of the preprocessing stage applied. Also, from Fig. 8
one can observe that mp-CNN model accuracy is increasing over the number of training
steps when preprocessing stage is performed. mp-CNN trained with the preprocessing stage
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Table 5 mp-CNN accuracy with and without preprocessing stage

Model Accuracy

With preprocessing Without preprocessing

mp-CNNs 0.878 0.673

f-CNNs 0.871 0.643

Fig. 8 mp-CNN model results when preprocessing (pp) stage is applied and when preprocess stage is not
applied (no-pp) on validation data

has on average 3.6% accuracy than mp-CNN that was not trained with the aforementioned
preprocessing. From the experiments, we noticed that the joint segmentation and detection
preprocess exploited were improved the proposed mp-CNN performance.

5.4 Themulti-path architecture

As we have mentioned earlier, unlike the traditional CNN, the mp-CNN has three pathways.
These paths are designed to better approximate local and global dependencies of the neigh-
boring pixels. The first and the second path more focused on the details (local dependency)
and the third path focused on the contextual information (global dependency).

Our focus on both contexts and details lead the model for better performance. To better
interpret how joint training of these paths helps the performance, we address results on each
pathway and also results on averaging the output of each pathwaywhen trained independently.

Since we also deal with the labeled dataset class imbalance, we retrain the model with
an approach described in Sect. 3.1. To see the consequence of the two-phase of training, we
address the results of both, i.e., the results of the first training phase and the results of the
retraining phase. We refer our CNN model consisting of only first path, second path, and
third path as f-CNN, s-CNN, and t-CNN, respectively. Also, the CNN model averaging the
output of the three paths as a-CNN and the overall multi-path CNN model as mp-CNN. The
second training phase is noted by superscript ‘s’.
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Table 6 mp-CNN model and its
variation performance

Methods Recall Specificity Accuracy

mp-CNNs 0.874 0.891 0.878

f-CNNs 0.862 0.900 0.871

a-CNNs 0.852 0.861 0.854

s-CNNs 0.827 0.831 0.828

mp-CNN 0.786 0.792 0.788

t-CNNs 0.764 0.772 0.766

f-CNN 0.670 0.693 0.676

Table 7 Comparison of our models with the state of the art methods on KDSB 2017 test set

Methods Recall Specificity Accuracy

mp-CNNs 0.874 0.891 0.878

Kingsley et al. (2017) 0.858 0.881 0.864

Alakwaa et al. (2017) 0.840 0.841 0.840

Rao et al. (2016) 0.815 0.801 0.811

Huang et al. (2017) 0.724 0.742 0.728

Table 6 shows the quantitative results of these alterations. The table comprises results for
the mp-CNN and f-CNN with single and retraining phase, and s-CNN, t-CNN and a-CNN
with only retraining phase. As one can observe from the table, the first path with one training
phase ranked as last, however, using a retraining phase provided a substantial improvement to
that model. In addition, if we observe the performance of mp-CNN without retraining phase,
it provided less performance than f-CNNs, s-CNNs, and a-CNNs, but after the retraining
phase, mp-CNN ranked first.

This reveals that:

• collaborative training of the first, second, and third paths delivers better performance
contested to when each pathway is trained independently and the output is averaged.

• the retraining phase plays a substantial role to improve the mp-CNN performance.

Indeed, a-CNNs performs lower than f-CNNs because we believe t-CNN performs badly.
The mp-CNNs is the best performer model.

Table 7 reveals the performance results of our model versus the currently published state
of the art lung cancer detection methods. The table reveals that mp-CNNs outperformed all of
them. It gains 0.016 recall, 0.010 specificity, and 0.014 accuracy values over (Kingsley et al.
2017), and provided greater recall, specificity, and accuracy values over (Alakwaa et al. 2017;
Rao et al. 2016; Huang et al. 2017). Even the f-CNNs determined better recall, accuracy, and
specificity results than (Kingsley et al. 2017; Alakwaa et al. 2017; Rao et al. 2016; Huang
et al. 2017). To make more specific our model has provided competitive results compared to
the winner of the Kaggle Data Science Bowl 2017 challenge.

5.5 Shape and size effect

We selected 50 large cancer nodules and 50 small size cancer nodules having various shapes
fromKDSB2017 challenge and evaluated ourmodel performance. Table 8 shows the obtained
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Table 8 Size and shape context performance of our model and its comparison with other methods

Methods No. of cancer Correctly predicted Wrongly predicted

mp-CNNs Larger (50) 49 (98%) 1 (2%)

Smaller (50) 47 (94%) 3 (6%)

Kingsley et al. (2017) Larger (50) 44 (88%) 6 (12%)

Smaller (50) 43 (86%) 7 (14%)

Alakwaa et al. (2017) Larger (50) 43 (86%) 7 (14%)

Smaller (50) 40 (80%) 10 (20%)

Rao et al. (2016) Larger (50) 41 (82%) 9 (18%)

Smaller (50) 37 (74%) 13 (26%)

Huang et al. (2017) Larger (50) 40 (80%) 10 (20%)

Smaller (50) 37 (74%) 13 (26%)

results. As one can observe from the table, of 50 larger cancer nodules selected, 98% were
correctly predicted with our mp-CNNs model, and of 50 smaller cancer nodules selected,
94% were correctly predicted. Moreover, our model better performs on larger nodules than
the smaller nodules. Compared to some other lung cancer detection methods (Kingsley et al.
2017; Alakwaa et al. 2017; Rao et al. 2016; Huang et al. 2017), our mp-CNNs has better
performance results. In general, we have shown that the proposed mp-CNN for lung cancer
detection better address the problem of variability among lung nodules.

6 Conclusion

In this paper, we introduced an automatic lung cancer detection method using deep convolu-
tional neural networks. We considered various architecture and analyzed their effect on the
detection performance.

Experimental result conducted on KDSB 2017 approves that with our best model weman-
aged to improve on the currently published state-of-the-art method on accuracy, sensitivity
and specificity.

The greater performance is obtained with the help of a novel multi-pathway architecture,
which can model various size and shape of the lung nodules, because short and long-range
dependencies (details and context) aremodeled in an appropriateway. Training procedure has
two phases which helped us to train CNN’s effectively and efficiently when the distribution
of labels class is unbalanced. Because of the nature of CNN models, by GPU machine, the
resulting detection is fast.

In general, compared to other lung cancer detection methods using CNN models, our
model is flexible, can better handle the variation of size and shape of nodules and balance
the labels class imbalance.
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