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Abstract
Histogram of oriented gradients (HOG) are often used as features for object detection in
images, since they are robust to changes in illumination and environmental conditions. How-
ever, these features are not invariant to changes in the resolution of input images. A 2D
representation of these features, referred to as 2DHOG features, has been used since it
preserves the relations among the neighboring pixels or cells. In this paper, a new vehi-
cle detection scheme using transform-domain 2DHOG features is proposed. The method is
based on extracting the 2DHOG features from the input image and applying to it 2D discrete
Fourier or cosine transform. This is followed by a truncation process through which only
the low frequency coefficients, referred to as the transform-domain 2DHOG (TD2DHOG)
features, are retained. It is shown that the TD2DHOG features obtained from an image at
the original resolution and a downsampled version from the same image are approximately
the same within a multiplicative factor. This property is then utilized in our scheme for
the detection of vehicles of various resolutions using a single classifier rather than multiple
resolution-specific classifiers. Experimental results show that the use of the single classifier
in the proposed detection scheme reduces drastically the training and storage cost over the
use of a classifier pyramid, yet providing a detection accuracy similar to that obtained using
TD2DHOG features with a classifier pyramid. Furthermore, the proposed method provides
a detection accuracy that is similar or even better than that provided by the state-of-the-art
techniques.
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1 Introduction

Detection of vehicles is used in many applications such as traffic surveillance, driver assis-
tance systems, and autonomous vehicles. There has been a great deal of work carried out in
this field during the past decade, and a survey of several techniques can be found in Buch et al.
(2011), Dollár et al. (2012) and Sivaraman and Trivedi (2013a). For the purpose of object
detection and recognition, there are several types of image features and representations, such
as the histogram of oriented gradients (HOG) (Dalal and Triggs 2005), Haar-like features
(Papageorgiou et al. 1998; Sivaraman and Trivedi 2013b), interest-points based features
(Leibe et al. 2008), local binary patterns (Wang et al. 2009), and 3D voxel patterns (3DVP)
(Xiang et al. 2015), that have been used. HOG features have been investigated widely and
used in the state-of-the-art techniques for object detection and description (Dollár et al. 2012).
Instead of the 1D vector representation of HOG (Dalal 2006; Dalal and Triggs 2005;Wu et al.
2014), several papers have adopted a 2D representation (Dollár et al. 2009; Felzenszwalb
et al. 2010; Maji et al. 2008), since the latter preserves the relations among the neighboring
pixels or cells. In order to distinguish the 2D representation from the 1D one, we will call
it 2DHOG. Both the 1D and 2D representations of HOG capture the edge structure of the
object and are robust against illumination changes and background clutters. However, neither
of these representations is resolution invariant. Thus, detectors employing these representa-
tions require extracting HOG or 2DHOG at each scale from an image pyramid, thus requiring
a costly multi-scale scanning in the testing mode (Dollár et al. 2009; Maji et al. 2008).

Recently, Dollár et al. (2014, 2010) proposed a feature approximation technique, where
gradient histograms and color feature responses generated at one scale of an image pyramid
can be used to approximate the feature responses at nearby scales. This method results in a
speedup of extracting the features from the image pyramid over the methods of Dollár et al.
(2009) and Maji et al. (2008), with only a small reduction in the detection accuracy. In this
technique, the feature responses can be approximated with high accuracy within one octave
of the scales of the image pyramid. Later, authors in Benenson et al. (2012) and Ohn-Bar and
Trivedi (2015) enhanced the detection performance of Dollár et al. (2010) by constructing
a classifier pyramid instead of an image pyramid. However, since the methods in Benenson
et al. (2012) and Ohn-Bar and Trivedi (2015) are based on constructing a classifier pyramid
with multiple classifiers trained at different sizes of the object (For example, in Benenson
et al. 2012 the sizes of the object considered are 64 × 32, 128 × 64, 256 × 128, etc.), they
require a high training and storage cost.

The part-based methods have received a great deal of attention from the research commu-
nity, as these schemes can handle partial occlusion, and represent targets with several views
(Felzenszwalb et al. 2010; Sivaraman and Trivedi 2013b; Takeuchi et al. 2010). For instance,
(Felzenszwalb et al. 2010) have proposed a pictorial structure for HOG features, referred to
as deformable part-based model (DPM). In this method, the locations of the parts are used
as latent variables for a latent support vector machine (LSVM) classifier to find the optimal
object position. Later, several other techniques have adopted DPM (Felzenszwalb et al. 2010)
for vehicle detection (Li et al. 2014; Takeuchi et al. 2010; Wang et al. 2016). These methods
provide high detection accuracy. However, thesemethods require convolutions of the features
of a given level of the image pyramid with a number of part filters, which results in a high
computational cost.

Some of the latest schemes in the area of object detection (Pepikj et al. 2013; Wang et al.
2015; Xiang et al. 2015) have attempted to solve the challenges of scale, aspect ratio or severe
occlusion. For example, the method in Pepikj et al. (2013) has used a detection scheme based
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on the DPM detector (Felzenszwalb et al. 2010) and introduced a method for clustering the
training data into a number of similar occlusion patterns. These patterns have been used
with different occlusion strategies to train the LSVM classifier (Felzenszwalb et al. 2010).
Later, Xiang et al. (2015) have combined 3DVP object representation, which encodes the
appearance, 3D shape, view-point, the level of occlusion and truncation, with a boosting
detector based on the detection scheme in Dollár et al. (2014) in order to learn from the
occluded andnon-occluded3DVPsobtained froma training set.Recently, themethod inWang
et al. (2015) has introduced region-based features with a coordinate normalization scheme,
referred to as regionlet features, and a cascaded boosting classifier to tackle the challenges
of detecting objects of different scales and aspect ratios. Even though these methods have
been effective in tackling these challenges, they require high complexity either in the training
mode, as in Wang et al. (2015) and Xiang et al. (2015), or in the testing mode, as in Pepikj
et al. (2013).

The detection accuracy employing HOG or its variants in the spatial domain has started
to saturate (Dollár et al. 2012). Recently, for the first time, the fast Fourier transform (FFT)
has been used with 2DHOG in order to replace the costly convolution operation in the
spatial domain by multiplication in the FFT domain (Dubout and Fleuret 2012). This scheme
achieves a speedup over the spatial domain counterpart (Felzenszwalb et al. 2010). Later
in Naiel et al. (2015), a method for approximating feature pyramids in the DFT domain
instead of the spatial-domain has been introduced, resulting in a better feature approximation
accuracy compared to the spatial-domain counterpart in Dollár et al. (2014). Despite the fact
that both the methods in Dubout and Fleuret (2012) and Naiel et al. (2015) use a transform
domain with 2DHOG, it is necessary to apply the corresponding inverse transform to classify
the 2DHOG features in the spatial-domain. Thus, the methods in Dubout and Fleuret (2012)
and Naiel et al. (2015) are based on training an object detector in the spatial-domain, which
usually requires large storage and training cost. On the other hand, this paper develops a
scheme that is able to classify the compressed and transformed 2DHOG features directly in
the transform domain.

In this paper, we apply the 2D discrete Fourier transform (2DDFT) or the 2D discrete
cosine transform (2DDCT) on block-partitioned 2DHOG, followed by a truncation process to
retain only a fixed number of low frequency coefficients, which are referred to as TD2DHOG
features. Further, using the 2DDFT downsampling theorem (Smith 2007) and considering the
effect of image resampling on the 2DHOG features Dollár et al. (2014), it is shown that the
TD2DHOG features obtained from an image at the original resolution and a downsampled
version from the same image are approximately the same within a multiplicative factor, with
a similar result holding true when 2DDCT is used. The use of TD2DHOG features simplifies
the classifier training phase, since the classifier trained on high resolution vehicles can be used
to detect the same or lower resolution vehicles in the test image, instead of training multiple
classifiers, each being trained on vehicles with a specific resolution, as done in Benenson et al.
(2012) and Naiel et al. (2014). Next, we employ the two-dimensional principal component
analysis (2DPCA) (Yang et al. 2004) for feature extraction and dimensionality reduction.
The design of the proposed scheme aims to solve the challenging problem of scale variation
that is common in most vehicle detection datasets. Extensive experiments are conducted in
order to evaluate the detection performance of the proposed technique and compare it with
that of the state-of-the-art techniques.

The paper is organized as follows. In Sect. 2, we present a brief background about 2DHOG
features, and the effect of image resampling on these features. In Sect. 3, we study the effect of
downsampling a grayscale image on its DFT and DCT versions. In Sect. 4, a detailed descrip-
tion of extracting the TD2DHOG features is presented. Further, a model for themultiplicative
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factor that approximately relates the TD2DHOG features at two different resolutions of a
given image is established. In Sect. 5, the model derived in Sect. 4 is used in proposing a
scheme for vehicle detection of different resolutions using a single classifier rather than a
classifier pyramid. In Sect. 6, we first validate experimentally the proposed model for the
multiplicative factor in both the 2DDFT and 2DDCT domains. Then, the performance of the
proposed vehicle detection scheme is studied by carrying out extensive experiments using
a number of publicly available vehicle detection datasets and compared with that of the
state-of-the-art techniques. Finally, Sect. 7 highlights the work of this paper.

2 Background

In this section, we present some background material required for the development of the
proposed detection scheme using TD2DHOG features in subsequent sections.

2.1 Two-dimensional HOG features

2DHOG features are similar to the HOG features of Dalal and Triggs (2005), the difference
being the way in which the features are represented, namely, in a 2D matrix format in the
case of the former and a 1D vector format in the case of the latter. The 2DHOG features have
been used in a number of papers (Dollár et al. 2009; Felzenszwalb et al. 2010; Maji et al.
2008).

Let us consider an image, I , of size (M1 × M2), and divide it into non-overlapping cells
of size (η1 ×η2) pixels. The 2DHOG features are computed from the input image as follows.
First, we convolve the image I with the filter L = [−1, 0, 1] and its transpose L� to obtain
the gradients gx (i, j) and gy(i, j), in the x and y directions, respectively, where i and j
denote the pixel indices. Then, we compute the magnitude Γ (i, j) and the orientation θ(i, j)
of the gradient at (i, j) as

Γ (i, j) =
√
gx (i, j)2 + gy(i, j)2

θ(i, j) = arctan
(
gy(i, j)/gx (i, j)

) (1)

Next, the orientation θ(i, j) at the (i, j)th pixel is quantized into β bins to obtain the corre-

sponding quantized orientation θ̂ (i, j) ∈ {Ωl}, Ωl = (l − 1)
π

β
, l = 1, 2, . . . , β. Then, the

2DHOG features for the lth layer, hl(î, ĵ), can be computed using the following equation

hl(î, ĵ) = ∑îη1
i=(î−1)η1+1

(∑ ĵη2
j=( ĵ−1)η2+1

Γ (i, j)δl(i, j)

)
(2)

where

δl(i, j) =
{
1, if θ̂ (i, j) = Ωl

0, otherwise
(3)

î and ĵ being the cell indices, 1 ≤ î ≤ M̃1 = M1/η1, 1 ≤ ĵ ≤ M̃2 = M2/η2, such that M̃1

and M̃2 are integers. Thus, the 2D representation for the HOG features results in β-layers,
hl (l = 1, 2, . . . , β), where the spatial relation between neighboring cells is maintained, and
the size of each layer is (M̃1 × M̃2).
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2D Feature 
Extractor

2D Feature 
Extractor

Fig. 1 Block diagram illustrating the approximate relationship between the resampled features of an image at
a given resolution and the features extracted from a resampled version of the same image

2.2 Effect of image resampling on 2DHOG features

Statistics of resampled images in the spatial domain have been studied inHuang andMumford
(1999) and Ruderman (1994). Recently, the effect of image resampling on 2DHOG features
in the spatial domain has been studied by Dollár et al. (2014, 2010). In this section, we give
a brief description of the work in Dollár et al. (2014), which will be used later in studying
the effect of image resampling on the features in the transform domain.

Let Is = P(I , s) denote the input image I resampled by a factor s, where s < 1 represents
downsampling, s > 1 represents upsampling, andP represents the resampling operator in the
spatial domain. The exact channel features extracted from the image at the original resolution,
and the same image at a different resolution can be represented by z = Λ(I ), and zs = Λ(Is),
respectively, where Λ denotes a 2D spatial-domain feature extractor. It has been shown in
Dollár et al. (2014) that resampling the image I by a factor s, Is = P(I , s), followed by
computing the exact 2D channel features, zs = Λ(Is), can be approximated by resampling
the channel feature, z, followed by a multiplicative factor, γ , that is modeled by using the
power law as

zs = Λ(P(I , s)) ≈ z̃s = γP(z, s) (4)

where
γ = a0s

−λ (5)

and a0 and λ depend on the type of channel features, which could be gradient, color or
2DHOG, and are empirically determined. This relationship is illustrated by the block diagram
of Fig. 1. The values of a0 and λ are not necessarily the same for the case of upsampling and
downsampling for the same type of channel features.

For object detection using a single detection window, one constructs an image pyramid
encompassing different scales, and then extracts the features from every scale in the pyramid.
The use of the approximation in (4) allows the features generated at one scale from the
image pyramid to approximate the features at nearby scales, thus reducing the cost of feature
computation.

3 Effect of downsampling a grayscale image on its transformed version

In this section, we study the effect of downsampling a grayscale image on its DFT and
DCT versions, and these results are then used in Sect. 4 to investigate the effect of image
downsampling on transform-domain 2DHOG features.
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(a)

(b)

Fig. 2 a Magnitude of a signal in the DFT domain ZN [k], where a low pass filter with cutoff frequency Nc
is used to bandlimit the signal. b Magnitude of the downsampled signal in the DFT domain Ẑ N̂ [k], where
N = 16, K = 2, N̂ = 8, and Nc = 4 (Color figure online)

3.1 Effect on the DFT version

Let the N-point 1DDFT for the discrete time sequence, z[n] ∈ R, be denoted as ZN [k], where
n = 0, 1, . . . , N − 1, k = 0, 1, . . . , N − 1, N is an even integer multiple of K , and K being
an integer. Let an ideal low pass filter of unity gain and a cutoff frequency Nc ≤ N/(2K )

be used in order to bandlimit the signal. By downsampling z by K in the time domain,
the downsampled signal ẑ of length N̂ = N/K is obtained. Then, the N̂ -point 1DDFT is
employed on the downsampled signal, ẑ, in order to obtain the downsampled signal in the
frequency domain, Ẑ N̂ . Now, the relations between the original signal and its downsampled
version in the time domain and that in the frequency domain are given by

ẑ[n] = z[Kn] (6)

Ẑ N̂ [k] = 1

K

K−1∑
i=0

ZN

[
k + i N̂

]
(7)

where n = 0, 1, . . . , N̂−1, and k = 0, 1, . . . , N̂−1. It is clear from (7) that the downsampled
signal in the 1DDFT domain, Ẑ N̂ , is represented by a sum of K shifted copies of the original
signal in the 1DDFT domain, ZN , scaled by the factor 1/K (Smith 2007). Figure2 illustrates
an example of this in the DFT domain, when N = 16, N̂ = 8, K = 2, and Nc = 4. Since
the original signal is bandlimited, then for k = 0, 1, . . . , c1 − 1, c1 ≤ Nc, the contribution
of the summation shown in (7) is only coming from the first copy of ZN at i = 0, and so we
have

ZN [k] = K Ẑ N̂ [k] (8)
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This result is supported by that presented in Bi and Mitra (2011). We now consider a 2D
signal. Let g ∈ R

2 represent a grayscale image in the spatial domain of size (N1×N2), where
N1 and N2 are even integer multiples of K1 and K2, respectively, K1 and K2 being integers.
Assume that an ideal low pass filter of unity gain and cutoff frequencies Nc1 ≤ N1/(2K1) and
Nc2 ≤ N2/(2K2) is used to bandlimit the original signal. Downsampling g by a factor K1 in
the y direction, and K2 in the x direction results in ĝ[n,m] = g[K1n, K2m] of size (N̂1× N̂2),
where n and m represent the spatial domain discrete sample indices, 0 ≤ n ≤ N̂1 − 1,
0 ≤ m ≤ N̂2 − 1, N̂1 = N1/K1 and N̂2 = N2/K2. We now take the 2DDFT of g and ĝ to
obtain GN1,N2 and Ĝ N̂1,N̂2

corresponding to the 2DDFT coefficients of the original image
and that of its downsampled version, respectively. Similar to the case of 1DDFT, the relation
between GN1,N2 [u, v] and Ĝ N̂1,N̂2

[u, v] can be expressed as

Ĝ N̂1,N̂2
[u, v] = 1

K1K2

∑
i

∑
j

GN1,N2 [u + i N̂1, v + j N̂2] (9)

where u = 0, 1, . . . , N̂1 − 1, v = 0, 1, . . . , N̂2 − 1, i = 0, 1, . . . , K1 − 1, and j =
0, 1, . . . , K2 − 1. It is seen from this equation that the downsampled image in the 2DDFT
domain is represented by a sum of K1×K2 shifted copies of the original image in the 2DDFT
domain and scaled by the factor 1/(K1K2). Let c1 and c2 denote the maximum frequencies
retained by the truncation operator. For u = 0, 1, . . . , c1−1, v = 0, 1, . . . , c2−1, c1 ≤ Nc1 ,
and c2 ≤ Nc2 the contribution of the summation shown in (9) is from the copy corresponding
to i = j = 0, and we can obtain the following relation

GN1,N2 [u, v] = K1K2Ĝ N̂1,N̂2
[u, v] (10)

From the above equation it is seen that the ratio between a grayscale image in the 2DDFT
domain and that of its downsampled version is K1K2.

3.2 Effect on the DCT version

In Ahmed et al. (1974) the N-point 1DDCT, XN , for the discrete time sequence, x ∈ R, is
given by

XN [k] = Γ̂N [k]
N−1∑
n=0

x[n] cos π(2n + 1)k

2N
(11)

where Γ̂N [k] = √
1/N for k = 0, and Γ̂N [k] = √

2/N for 0 < k ≤ N − 1. The N-point
1DDCT can be computed by 2N-point 1DDFT for a sequence, y[n], as follows. First, let
x[n] be a bandlimited signal and y[n] be defined as

y[n] =
{
x[n], 0 ≤ n ≤ N − 1

0, N ≤ n ≤ 2N − 1
(12)

The 1DDFT is employed on y in order to obtain Y2N . It has been shown in Ahmed et al.
(1974) that the signal XN [k] in the 1DDCT domain is related to Y2N [k] by

XN [k] = Γ̂N [k]Re
(
Y2N [k]e− j πk

2N

)
(13)

where k = 0, 1, . . . , N − 1, and Re() is a function which returns the real part of an input
complex number. Let an ideal low pass filter of gain unity and a cutoff frequency Nc ≤ N/K
be used in order to bandlimit the signal Y2N , where N is an even integer multiple of K ,
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(a)

(b)

Fig. 3 a Magnitude of the signal E2N [k] defined as E2N [k] = Y2N [k]e− j πk
2N , where a low pass filter with

cutoff frequency Nc is used to bandlimit the signal. b Magnitude of the downsampled signal in the DFT
domain Ê ˆ2N [k], where N = 8, K = 2, N̂ = 4, and Nc = 4 (Color figure online)

and K being an integer. Let E2N [k] be a 1D signal in the 1DDFT domain, and be defined

as E2N [k] = Y2N [k]e− j πk
2N . From the downsampling theorem given by (7), downsampling

E2N [k] by a factor K in the 1DDFT domain is obtained as:

Ê2N̂ [k] = 1

K

K−1∑
i=0

E2N

[
k + i2N̂

]
(14)

where Ê2N̂ is of length 2N̂ = 2N/K , and k = 0, 1, . . . , N − 1. Figure3a and b illustrate an

example for E2N [k] and Ê2N̂ [k], respectively, where N = 8, K = 2, N̂ = 4, and Nc = 4.

Now, the downsampled signal in the 1DDCT domain, X̂ N̂ of length N̂ , can be obtained as
follows:

X̂ N̂ [k] = Γ̂N̂ [k]Re(Ê2N̂ [k]) (15)

= Γ̂N̂ [k]Re
(

1

K

K−1∑
i=0

Y2N [k + i2N̂ ]e− j π(k+i2N̂ )
2N

)
(16)

Let c1 denote the maximum frequency retained by the truncation operator. Since Y2N is
bandlimited to the maximum frequency Nc ≤ N/K , then for k = 0, 1, . . . , c1 − 1, where
c1 ≤ Nc, the contribution of the summation shown in (16) is coming only from i = 0 copy,
and so we can simplify the above relation as
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X̂ N̂ [k] = 1

K
Γ̂N̂ [k]Re

(
Y2N [k]e− j πk

2N

)
(17)

= Γ̂N̂ [k]
K Γ̂N [k] Γ̂N [k]Re

(
Y2N [k]e− j πk

2N

)
=

√
1/N̂

K
√
1/N

XN [k] (18)

= 1√
K

XN [k] (19)

Thus, the relation between a 1DDCT transformed signal and its downsampled version in the
1DDCT domain can be expressed as

XN [k] = √
K X̂ N̂ [k] (20)

where 0 ≤ k ≤ c1 − 1. Similar to the case of 1DDCT, the 2DDCT can be related to the
2DDFT. Let c1 and c2 denote the maximum frequencies retained by the truncation operator.
Then, the relation between a grayscale image GN1,N2 in the 2DDCT domain and that of its
downsampled version Ĝ N̂1,N̂2

can be represented as

GN1,N2 [u, v] = √
K1K2Ĝ N̂1,N̂2

[u, v] (21)

where N̂1 = N1/K1, N̂2 = N2/K2, u = 0, 1, . . . , c1−1, v = 0, 1, . . . , c2−1, c1 ≤ N1/K1,
and c2 ≤ N2/K2. In the appendix, the derivation of the above expression is provided.

4 Transform-domain 2DHOG features

In this section, we first define 2DHOG features in the transform domain. Then, utilizing
the results derived in Sect. 3, we investigate the relationship between the transform-domain
2DHOG features obtained from an image of a given resolution and those obtained from a
downsampled version of the same image.

4.1 Extraction of TD2DHOG features

Consider an input image I of size (M1 × M2). Let it be divided into non-overlapping cells
of size (η1 × η2), where M1 and M2 are integer multiples of powers of 2, and η1 and η2 are
integer powers of 2. Now, 2DHOG features are computed by following the steps explained in
Sect. 2.1, resulting in β layers, where each layer corresponds to a certain quantized gradient
orientation from 0◦ to 180◦. The 2DHOG features of the lth layer, denoted by hl , is of size
(M̃1 × M̃2), M̃1 and M̃2 being integer multiples of powers of 2. Each 2DHOG layer, hl , is
partitioned into a number of non-overlapping blocks, Nx and Ny in the x and y directions,
respectively, where Nx and Ny are integers. Let xlıj , of size (b × b), represent the 2DHOG
features of the (ı, j)th block of the lth layer, where 1 ≤ ı ≤ Ny , 1 ≤ j ≤ Nx , b being an
integer power of 2. The block-partitioned 2DHOG features in the lth layer can be represented
as

hl =

⎡
⎢⎢⎣

xl11 . . . xl1Nx
...

. . .
...

xlNy1
. . . xlNy Nx

⎤
⎥⎥⎦ (22)

This block partitioning is known to offer a robustness to partial occlusion (Wang et al. 2009;
Wu et al. 2014). To illustrate let us consider an image of size 32×96, a cell size of 4×4, and
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Fig. 4 Scheme for obtaining the DCT2DHOG features for an input car image of size 32 × 96 using β = 5,
cell size 4 × 4, 2DDCT block size b = 8 and c1 = c2 = 4 (Color figure online)

β = 5. If b = 8, then Nx = M̃2/b = M2/(η2b) = 3, and Ny = M̃1/b = M1/(η1b) = 1.
Hence, each of the five layers is partitioned into 3 blocks of size 8 × 8. However, if b = 4,
then Nx = 6 and Ny = 2; that is, each of the layers is partitioned into 12 blocks of size 4×4.

Next, we apply the appropriate 2D transform, 2DDFT or 2DDCT, on each block resulting
in 2DHOG of the corresponding block in the transform domain. Let xlıj = T (xlıj ), where
T (.) represents the transform. The corresponding 2DHOG features in the transform domain
can be represented as

Hl =

⎡
⎢⎢⎣

xl11 . . . xl1Nx
...

. . .
...

xlNy1
. . . xlNy Nx

⎤
⎥⎥⎦ (23)

Let φc1c2(.) denote the 2D truncation operator in the transform domain that truncates
the coefficients corresponding to the frequencies greater than the frequencies c1 and c2. By
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2DDFT/
2DDCT

Truncation2DHOG 
Feature Extractor

2DDFT/
2DDCT

Truncation2DHOG 
Feature Extractor

Fig. 5 Block diagram showing the effect of downsampling an input image by an integer factor K in both the
x and y directions on the transform-domain 2DHOG features, where α is a multiplicative factor that allows
the features extracted from the lower resolution image to approximate the features extracted from the image
at the original resolution

applying φc1c2(.) on each block, x
l
ıj , we can obtain the truncated features as x̂

l
ıj = φc1c2(x

l
ıj )

of size (c1 × c2). Then, these features can be represented as

Ĥ l =

⎡
⎢⎢⎣

x̂l11 . . . x̂l1Nx
...

. . .
...

x̂lNy1
. . . x̂lNy Nx

⎤
⎥⎥⎦ (24)

where the size of Ĥ l is (M̂1× M̂2), M̂1 = c1Ny and M̂2 = c2Nx . We call the above truncated
transform-domain 2DHOG features given by Ĥ l as TD2DHOG features. We refer to the
TD2DHOG features as DFT2DHOG and DCT2DHOG features when the 2D transform used
is 2DDFT and 2DDCT, respectively. The scheme for obtaining the DCT2DHOG features is
illustrated in Fig. 4 for an image of size 32× 96 with a cell size of 4× 4, β = 5, and 2DDCT
is employed with block size b = 8, and c1 = c2 = 4. It is noted that for this example the
size of Ĥ l is 4 × 12.

4.2 Effect of image downsampling on TD2DHOG features

In Sect. 3, we obtained the relation between the original image and its downsampled version
when they are transformed by 2DDFT or 2DDCT. Now, in order to study the effect of
image downsampling on the features in the transform domain, we use the block diagram
shown in Fig. 5. For the original image I , a 2DHOG feature extraction operator Λ(.) is
employed to obtain z = Λ(I ). Then, we apply to z an appropriate 2D transform (2DDFT or
2DDCT), with a block size b× b, followed by a truncation operation retaining the c× c low
frequency coefficients for each block. The TD2DHOG features so obtained are denoted by
Ẑ = T̂ (z), where T̂ represents the transform operation followed by the truncation operation.
Let I1/K denote the image I downsampled by a factor K in both the x and y directions. Since
I1/K = P(I , 1/K ), P representing the downsampling operator, the features extracted from
the downsampled image are given by z1/K = Λ(P(I , 1/K )). We now obtain the features
Ẑ1/K = T̂1/K (z1/K ) in the transform domain, where the features z1/K = Λ(I1/K ), and
T̂1/K represents the transform operation with a block size (b/K ) × (b/K ) followed by the
truncation operation to retain the (c × c) low frequency coefficients.

The relationship between the transform coefficients of the features obtained from the
image at the original resolution Ẑ and that of its downsampled version Ẑ1/K can now be
obtained as follows. Equations (4) and (5) are now used to approximate z1/K as

123



1708 Multidimensional Systems and Signal Processing (2019) 30:1697–1729

z1/K ≈ P(z, 1/K )a′
0K

λ (25)

where a′
0 and λ are computed empirically for each type of channel features. Next, performing

the transform operation T̂1/K on both sides of (25), we obtain

T̂1/K (z1/K ) ≈ T̂1/K (P(z, 1/K ))a′
0K

λ

i.e.,
Ẑ1/K ≈ T̂1/K (P(z, 1/K ))a′

0K
λ (26)

Then, the ratio between the features in the transform domain obtained from the original image
and its resampled version is

Ẑ

Ẑ1/K
≈ 1

a′
0K

λ
× T̂ (z)

T̂1/K (P(z, 1/K ))
(27)

where the first term, 1/(a′
0K

λ), represents the power law effect, while the second term,
T̂ (z)/T̂1/K (P(z, 1/K )), represents the transform domain resampling effect which is the
ratio of the transform-domain coefficients of the channel feature, z, and that of its resampled
version, P(z, 1/K ).

Let a0 = 1/a′
0 and assume the term T̂ (z)/T̂1/K (P(z, 1/K )) can be represented by (10) and

(21), in case of 2DDFT and 2DDCT, respectively. Then, the transform-domain coefficients of
the original resolution, Ẑ , can be approximated by using the transform-domain coefficients
at a lower resolution, Ẑ1/K , as

Ẑ ≈ α(K )Ẑ1/K (28)

where

α(K ) =
{
a0K 2−λ, for 2DDFT

a0K 1−λ, for 2DDCT
(29)

In order to improve the approximation accuracy of expression in (28),we introduce an additive
correction term a1, such that α is of the form

α(K ) =
{

a0K
2−λ + a1, for 2DDFT (30a)

a0K
1−λ + a1, for 2DDCT (30b)

The constants a0, a1, and λ are computed empirically in the training mode for the 2DHOG
channel. The usefulness of α(K ) given by (30) lies in the fact that the features extracted from
a lower resolution test image can be utilized to approximate the features of the test image
extracted at a higher resolution by multiplying the former by α(K ), which is a function of
the downsampling factor, K , and the type of transform.

4.2.1 Estimation of a0, a1, and �

Given a training set of Nt images, the parameters a0, a1, and λ for the 2DHOG channel can
be estimated as follows. First, at each value of the downsampling factor, K = 1, 2, 4, . . ., the
multiplicative factor of the i th image sample, α̂i (K ), is obtained as the factor that minimizes
the mean square error (MSE) as

min
α̂i (K )

1

NyNxc2β

∑
l, j,k,u,v

(Ẑ i, j,k,l [u, v] − α̂i (K )Ẑ i, j,k,l
1/K [u, v])2 (31)
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where i = 1, . . . , Nt , 0 ≤ u, v ≤ c−1, u and v are the frequency indices of the ( j, k)th block,
1 ≤ j ≤ Ny , 1 ≤ k ≤ Nx , and l = 1, 2, . . . , β. Then, the average value of the estimated

multiplicative factor α̂(K ) is obtained as α̂(K ) = (1/Nt )
∑Nt

i=1 α̂i (K ). Finally, the values
of the estimated multiplicative factor α̂(K ) are used to obtain the model parameters, a0, a1,
and λ, of α(K ) by using the least squares curve fitting. In Sect. 6.1, we compute empirically
the values of a0, a1, and λ.

5 Scheme for vehicle detection

In this section, we propose a new vehicle detection scheme by using the results of the previous
section concerning TD2DHOG features so as to employ a single classifier trained on vehicles
of high resolution in order to detect vehicles of the sameor lower resolution, instead of training
multiple resolution-specific classifiers, as in Benenson et al. (2012) and Naiel et al. (2014).
In order to detect vehicles of different resolutions in a given test image, an image pyramid
of depth one octave is constructed, and TD2DHOG features are extracted at each scale from
the image pyramid with blocks of different sizes. We now present our methods for training
and testing of the proposed vehicle detection scheme.

5.1 Trainingmode

In order to take advantage of the fact that the transform-domain coefficients of the original
resolution can be approximated by using the transform-domain coefficients at a lower reso-
lution as given by (28), the training data is upsampled by a factor of R, R being an integer
power of 2. Even though upsampling of the training data will cause an increase in the train-
ing cost, it has been observed from our experiments that training a classifier on TD2DHOG
features obtained at a high resolution of images offers a detection accuracy higher than that
achieved by the same classifier when trained on TD2DHOG features extracted from the same
training set at a lower resolution. This is because of the fact that in the testing mode, going
from a higher resolution to a lower resolution results in a smaller approximation error for
TD2DHOG features than when going the other way around.

Figure6a shows the training scheme for the proposed vehicle detector, where the training
data is upsampled by a factor R in both the x and y directions. Let the set of the training data
upsampled by R be denoted as IR = {Ii,R, i = 1, 2, . . . , Nt }, where Nt denotes the number
of training image samples. Then, the size of the i th training image sample is (RM1 × RM2).
Assume the 2DHOG features of the lth layer, hli,R, (i = 1, 2, . . . , Nt and l = 1, 2, . . . , β),
are extracted by using the same cell size for all the resolutions (η1 × η2), then the size of the
lth 2DHOG layer of the i th training image sample is RM̃1×RM̃2, i.e., increased by the same
factor R. Similarly, the block size used to compute the corresponding TD2DHOG features
is increased by the same factor R, i.e., bR = Rb0. We call b0 as the base block size, which
is defined as the block size at R = 1. Let Ĥ l

i,R, i = 1, 2, . . . , Nt , denote the TD2DHOG

features of the lth layer, where the size of Ĥ l
i,R is (M̂1 × M̂2). It is important to note that, in

the training phase we do not multiply TD2DHOG features by the multiplicative factor α(K ),
and we use the value of α(K ) computed from (30) in the detection phase.

After the extraction of the TD2DHOG features, 2DPCA (Yang et al. 2004) is employed
on each layer in order to maintain the relation between the neighboring blocks. Let the
training data consist of Npos and Nneg training image samples, corresponding to the posi-
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TD2DHOG
Extractor Classifier2DPCATraining 

images

Image pyramid

TD2DHOG
Extractor Classifier2DPCA

TD2DHOG
Extractor

(a)

(b)

Positive class Negative class

First detection window
Second detection window

Fig. 6 a The scheme for training the proposed vehicle detector with training images of size 64 × 64, where
R is the upsampling factor in both the x and y directions. b Proposed vehicle detection scheme for a sample
test image, where the different colors in the image pyramid represent different scanning window sizes (here
we have used only two window sizes, 128 × 128 and 64 × 64) (Color figure online)

tive and negative classes, respectively. The training data can be denoted as {(Ĥ l
i,R, yi ), i =

1, 2, . . . , Nt }, l = 1, 2, . . . , β, where yi ∈ {+1,−1} refers to the class label for the i th
image sample. The covariance matrix, of size (M̂2× M̂2), is first obtained for the TD2DHOG
features of the lth layer as

Covl = 1

Nt

Nt∑
i=1

(Ĥ l
i,R − H̄ l

R)�(Ĥ l
i,R − H̄ l

R) (32)

where

H̄ l
R = 1

Nt

Nt∑
i=1

Ĥ l
i,R (33)

Note that Covl is a nonnegative definite matrix. Next, we obtain the rl eigenvectors of Covl

that correspond to the rl dominant eigenvalues. The number of eigenvectors, rl , is chosen
so that the sum of the magnitude of the retained eigenvalues represents at least 90% of the
sum of the magnitude of all the eigenvalues. The eigenvectors are used to form the matrix
V l
R of size (M̂2 × rl). Next, the TD2DHOG features of the lth layer of the i th training

image sample are projected onto the constructed matrix V l
R in order to obtain the matrix

Ql
i,R = Ĥ l

i,RV
l
R of size (M̂1 × rl), and Ql

i,R is vectorized1 to obtain the corresponding

feature vector qli,R of size (1 × M̂1rl). Then, for the i th training image sample, the feature

1 The vectorization function is defined as Mat2Vec: Rμ×ν → R
ρ , where ρ = μν is the dimension of the

vector, and (μ × ν) is the order of the input matrix. The inverse of the vectorization function is defined as
Vec2Mat: Rρ → R

μ×ν .
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vectors from different layers, qli,R , are concatenated to obtain the feature vector, fi,R , of size

(1 × r ), where fi,R = [q1i,R, . . . , qβ
i,R] for i = 1, 2, . . . , Nt .

Let the set of training features obtained after applying 2DPCA be denoted as FR =
{ fi,R, i = 1, 2, . . . , Nt }, and the set of the eigenvectors used to generate these features be
denoted as VR = {V l

R, l = 1, 2, . . . , β}. Then, we train a classifier, TR , for the upsampling
factor R by using the corresponding features FR . We use one of the two state-of-the-art
classifiers: a support vector machine with fast histogram intersection kernel (FIKSVM) (Maji
et al. 2008, 2013) or boosted decision tree classifier (BDTC) (Appel et al. 2013; Dollár 2016).

5.2 Testingmode

In the testing phase, we first obtain an image pyramid of depth of one octave from the given
input test image. The test image at each scale of the image pyramid, is then scanned by
using a number of detection windows of different sizes as ( RM1

K × RM2
K ), where R is the

upsampling factor at which the detector has been trained and K = 1, 2, 4, . . . , an integer
power of 2. Figure6b shows the proposed vehicle detection scheme when applied to a test
image by assuming R = 2 and K = 1 and 2. Now for each detection window, we obtain
the TD2DHOG features for different layers, {Ĥ l

test , l = 1, 2, . . . , β} by using a block size
btest = bR

K ; the size of each Ĥ l
test is (M̂1 × M̂2). Then, the TD2DHOG features of each layer

are multiplied by the multiplicative factor α(K ) as

H̃ l
test = α(K )Ĥ l

test (34)

where H̃ l
test is of size (M̂1 × M̂2), and α(K ) is given by (30), which allows the TD2DHOG

features obtained from a low resolution detectionwindow to approximate the TD2DHOG fea-
tures obtained at a higher resolution, indicating an approximate invariance of the TD2DHOG
features within a multiplicative factor, when the image resolution is changed. Next, the
TD2DHOG features of the lth layer, H̃ l

test , is projected onto the corresponding matrix V l
R

in order to obtain the matrix Ql
test = H̃ l

test V
l
R of size (M̂1 × rl). Then, Ql

test is vectorized
to obtain the corresponding feature vector qltest of size (1× M̂1rl). This is followed by con-
catenating the features, qltest , for different layers to obtain the feature vector, ftest , of size

(1 × r ), where ftest = [q1test , . . . , qβ
test ].

Now, the trained classifier TR , namely, FIKSVM (Maji et al. 2008, 2013) or BDTC (Appel
et al. 2013; Dollár 2016), is used to provide for each feature vector ftest a detection score
corresponding to the input detection window. Finally, similar to Maji et al. (2008), a non-
maximum suppression technique is used to combine several overlapped detections for the
same object. This avoids detecting the same vehicle more than once, and allows detecting
vehicles with different aspect ratios.

Figure7a illustrates the scanning scheme for the proposed vehicle detector in the case of
R = 2, and K = 1 and 2. Hence, in this example, the test image at each scale of the image
pyramid is scanned by using two detection windows of sizes (2M1 × 2M2) and (M1 × M2).
The proposed vehicle detector requires training a single classifier at the highest detection
window size, namely, (2M1 × 2M2). The methods in Benenson et al. (2012) and Naiel et al.
(2014) use a similar scanning strategy; however, they require constructing a classifier pyramid
in order to classify detection windows of different sizes. It is to be noted that the scanning
scheme used in several state-of-the-art object detectors (Dalal and Triggs 2005; Dollár et al.
2009; Maji et al. 2008) requires the extraction of features at each scale of an image pyramid
of depth often more than one octave, even though the scheme employs one detection window
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(a) (b)

Fig. 7 a An illustration of the proposed scheme for scanning an image pyramid of depth one octave with two
detection windows and a single classifier. b An illustration of the scheme for scanning an image pyramid of
depth two octaves with one detection window and a single classifier (Color figure online)

and a single classifier. Figure7b shows an example of this scanning scheme, when the image
pyramid is of depth two octaves. The proposed vehicle detection scheme reduces the cost of
training a classifier pyramid, as a single classifier trained on images of a given resolution can
be used to detect vehicles of the same or lower resolutions. In addition, it reduces the storage
requirements that are associated with training multiple resolution-specific classifiers.

6 Experimental results

We first carry out a number of experiments to validate, as mentioned in Sect. 4, the model for
the multiplicative factor α(K ) using the UIUC car detection dataset (Agarwal et al. 2004).
Then, we study the performance of the proposed algorithm for vehicle detection in images
using theUIUC car detection dataset (Agarwal et al. 2004), theUSCmulti-view car detection
dataset (Kuo and Nevatia 2009), the LISA 2010 dataset (Sivaraman and Trivedi 2010) and
the HRI roadway dataset (Gepperth et al. 2011). We also compare the performance of our
algorithm with that of some of the existing methods.

The UIUC car detection dataset (Agarwal et al. 2004) consists of 1050 training images
of size 40 × 100 divided into a set of 550 car images with side views, and a set of 500
other images, none of which is the image of a car with a side view. In order to facilitate the
computation of the TD2DHOG features, the training images in this dataset are cropped by
removing pixels from the first and last four rows and from the first and last two columns in
order to reduce the size of each image from 40 × 100 to 32 × 96. The testing images in this
dataset consist of 108 multi-scale images. The dataset consists of partially occluded cars,
objects with low contrast, as well as highly textured background. Since the dataset includes
a balanced number of positive and negative training images, the FIKSVM (Maji et al. 2013)
is used as the baseline classifier for the proposed detector.

The USC multi-view car detection dataset (Kuo and Nevatia 2009) consists of cars with
several views. The training data consists of 2462 positive training images of size 64 × 128,
while the testing data consists of 196 images containing 410 cars of different sizes and views.
In order to complete the training dataset, we collect 9512 negative training image samples
from the CBCL street scenes dataset (Bileschi 2006). Since the USC dataset consists of
cars with different views, BDTC (Appel et al. 2013; Dollár 2016) is chosen as the baseline
classifier.

The LISA 2010 dataset (Sivaraman and Trivedi 2010) consists of test sequences of size
480 × 704 for rear view vehicles of different sizes, and this dataset has been captured under
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several illumination conditions. The first sequence (1600 frames) is taken on a high-density
highway during a sunny day (H-dense), which includes vehicles in partial occlusions, heavy
shadows, and some background structures are confused with the positive class, while the
second (300 frames) on a medium-density highway on a sunny day (H-medium), where this
sequence includes challenges similar to H-dense but at a lower density. The dataset does
not include training data; therefore, we collect training images of size 64 × 64 from other
datasets as follows: (1) 9013 images of vehicles in rear/front views from KITTI dataset
(Geiger et al. 2012), and USC multi-view car detection dataset (Kuo and Nevatia 2009), and
(2) 8415 negative image samples from CBCL street scenes dataset (Bileschi 2006). As in
Sivaraman and Trivedi (2010), we collect a number of hard negative image samples from
the test sequences (229 image samples from H-medium, and 806 image samples from H-
dense). Due to the large number of training samples and the wide variation in the background
structures, BDTC (Appel et al. 2013; Dollár 2016) is used as the baseline classifier on this
dataset.

The HRI roadway dataset (Gepperth et al. 2011) consists of five test sequences of size
600 × 800 for vehicles on urban and highway areas. This dataset has been captured under
several challenging weather and lighting conditions. Sequence I (908 frames) has been cap-
tured during a cloudy day, while Sequence II (917 frames) has been captured during a sunny
day. Sequences III (611 frames), IV (411 frames) and V (830 frames) have been captured
during a heavy rainy day, a dry midnight, and afternoon after a heavy snow, respectively.
Since the HRI dataset does not have its own training set, in order to test the proposed scheme
on a sequence of this dataset, the classifier in the proposed scheme is trained by employing
the training set used in the case of LISA 2010 dataset along with the hard negative samples
collected from the first 100 frames of this sequence of the HRI dataset.

6.1 Validation for themodel of˛(K)

We now validate the model of α(K ) given by (30) by making use of the block diagram of
Fig. 5 and the scheme introduced in Sect. 4.2 for estimating the channel parameters a0, a1 and
λ. For this purpose, we first consider the UIUC car detection dataset (Agarwal et al. 2004)
and choose Nt = 550 car images. Since we do not have access to high resolution versions
of these car images, they are upsampled by a factor R = 8. Now, we give the procedure to
estimate the value of α(K ) for the 2DHOG features in the 2DDFT domain.We first obtain the
2DHOG features of an upsampled image,2 Iu , using the steps outlined in Sect. 2.1, assuming
η1 = η2 = 4, and β = 5, 7 or 9. We then apply 2DDFT on block-partitioned 2DHOG
features given by (22) for each of the layers, assuming the block size to be b = Rb0 = 8b0,
b0 ∈ {4, 8, 16}. This is followed by a truncation operation retaining the (c×c) low frequency
coefficients, where c = 4, to obtain the 2DHOG features in the 2DDFT domain. Then, the
whole operation is repeated after downsampling Iu by a factor K , K = 1, 2, 4, and 8, but
with a block size of b/K . As explained in Sect. 4.2, the multiplicative factor of the i th image
sample, α̂i (K ), is obtained as the factor that minimizes themean square error (MSE) given by
(31). Then, the four values of the estimated multiplicative factor α̂(K ), K = 1, 2, 4, and 8,
are used to obtain the model parameters, a0, a1, and λ, of α(K ) by using the least squares
curve fitting.3 The above procedure is repeated to find the model parameters, a0, a1, and λ,
of α(K ) for the 2DHOG features in the 2DDCT domain.

2 The toolbox (Dollár 2016) has been used to calculate the 2DHOG.
3 The MATLAB function lsqcurvefit is used, http://www.mathworks.com/help/optim/ug/lsqcurvefit.
html.
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Fig. 8 The multiplicative factor α(K ) for K = 1, 2, 4, 8, where (a) and (b) represent the case of the 2DHOG
features in the 2DDFT and 2DDCT domains, respectively (Color figure online)

Table 1 summarizes the values of the parameters, a0, a1, and λ, for the above two cases for
block size b0 = 4, 8, 16 along with the corresponding mean square errors, when the number
of layers, β, is 5, 7, or 9. It is seen from this table that irrespective of the transform used, the
errors are insignificant. Figure8 shows the plots of α(K ) for the 2DHOG features for β = 7.
It is seen from these plots that the proposed model is not sensitive to the block size b0. It has
been observed that α(K ) is insensitive to b0 for the other values of β also.

Similar studies have been conducted using Nt = 1000 positive training images from the
USC multi-view car detection dataset, and Nt = 1000 positive training images, collected as
mentioned earlier in this section, for the LISA 2010 dataset. It has been found that for both
these datasets, α(K ) is insensitive to b0 irrespective of whether β = 5, 7 or 9.

It is to be noted that had we used the same model for α(K ) as given by (30) also for the
case of grayscale (GS) channel in the 2DDFT and 2DDCT domains and repeated the above
procedures, we would obtain the values of a0, a1 and λ. These values for the 2DDFT and
2DDCT domains are also included in Table 1 using the UIUC car detection dataset. It is seen
from this table that for the case of the grayscale channel, λ ≈ 0, a0 ≈ 1 and a1 ≈ 0, and
thus,

α(K ) ≈
{
K 2, for 2DDFT

K , for 2DDCT
(35)

Equation (35) has been found to be equally true in the case of the other two datasets, namely,
the USC multi-view car detection dataset and the LISA 2010 dataset. It is seen that the two
expressions on the right side of (35) are the same as that given by (10) and (21), respectively,
when K1 = K2 = K . Thus, the proposed model for α(K ) given by (30) for the TD2DHOG
features is also valid for the grayscale images in the transform domain. These results show the
versatility of the model for α(K ) in representing channels other than the 2DHOG channel.

6.2 Vehicle detection using TD2DHOG features

In this section, we study the detection performance of the proposed scheme using the datasets
mentioned earlier. Further, the detection performance of the proposed technique is compared
with that of several state-of-the-art techniques. The 2DHOG is obtained assuming η1 = η2 =
4 from which the TD2DHOG features are obtained. In case of using a single classifier, the

123



Multidimensional Systems and Signal Processing (2019) 30:1697–1729 1715

Ta
bl
e
1

T
he

es
tim

at
ed

ch
an
ne
lp

ar
am

et
er
s
fo
r
gr
ay
sc
al
e
im

ag
e
(G

S)
an
d
2D

H
O
G
fe
at
ur
es
,w

he
re

b 0
=

4,
8,
or

16
,a
nd

M
SE

re
fe
rs
to

th
e
m
ea
n
sq
ua
re

er
ro
r
of

th
e
cu
rv
e
fit
tin

g

G
S

2D
H
O
G

2D
D
FT

2D
D
C
T

2D
D
FT

2D
D
C
T

β
=

5
β

=
7

β
=

9
β

=
5

β
=

7
β

=
9

b 0
=

4
λ

0.
00

63
5

−
0.
00

43
6

0.
51

53
8

0.
53

30
5

0.
54

99
2

−
0.
79

61
3

−
0.
85

31
1

−
0.
87

42
2

a 0
1.
00

84
6

0.
99

21
0

0.
51

81
9

0.
52

52
3

0.
53

46
4

0.
01

17
9

0.
00

95
0

0.
00

83
4

a 1
−
0.
01

18
9

0.
00

85
0

0.
52

81
9

0.
52

09
5

0.
51

05
0

0.
98

75
3

0.
99

02
7

0.
99

17
0

M
SE

0.
00

00
1

0.
00

00
0

0.
00

25
1

0.
00

25
2

0.
00

24
3

0.
00

00
0

0.
00

00
0

0.
00

00
0

b 0
=

8
λ

0.
00

06
0

−
0.
00

08
5

0.
51

90
6

0.
53

35
1

0.
54

60
7

−
0.
81

07
2

−
0.
87

07
4

−
0.
89

51
3

a 0
1.
00

05
5

0.
99

83
1

0.
51

11
9

0.
51

55
8

0.
52

16
7

0.
01

04
8

0.
00

84
6

0.
00

75
1

a 1
−
0.
00

06
7

0.
00

18
3

0.
53

83
1

0.
53

41
1

0.
52

74
2

0.
98

90
1

0.
99

13
4

0.
99

24
5

M
SE

0.
00

00
0

0.
00

00
0

0.
00

28
6

0.
00

29
1

0.
00

28
6

0.
00

00
0

0.
00

00
0

0.
00

00
0

b 0
=

16
λ

0.
00

03
6

0.
00

01
1

0.
52

32
4

0.
53

16
8

0.
53

75
8

−
0.
79

48
3

−
0.
83

67
6

−
0.
85

72
6

a 0
1.
00

04
3

1.
00

01
4

0.
51

63
9

0.
51

85
3

0.
52

07
1

0.
01

10
7

0.
00

95
9

0.
00

88
3

a 1
−
0.
00

05
7

−
0.
00

01
4

0.
53

15
3

0.
52

95
8

0.
52

73
1

0.
98

82
4

0.
98

99
1

0.
99

07
7

M
SE

0.
00

00
0

0.
00

00
0

0.
00

26
9

0.
00

27
3

0.
00

27
3

0.
00

00
0

0.
00

00
0

0.
00

00
0

123



1716 Multidimensional Systems and Signal Processing (2019) 30:1697–1729

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

DCT2DHOG DFT2DHOG

E
E

R
β

β

β

β

β

β

β

=5

=6

=7

=8

=9

=10

=11

Fig. 9 Comparing the EER values of the DFT2DHOG-SC and DCT2DHOG-SC on UIUC dataset (Color
figure online)

TD2DHOG featuresmultiplied by the factorα(K ) given by (30) are used, where the classifier
is trained on TD2DHOG features obtained from training images upsampled by a factor R and
used to classify images in the detection windows of the same or lower resolutions. We refer
to this scheme using a single classifier (SC) as TD2DHOG-SC. Also, we consider the case
of using multiple classifiers trained on TD2DHOG features at different values of R in order
to classify images in the detection windows at the same resolution at which the classifier
has been trained. We refer to this scheme using a classifier pyramid (CP) as TD2DHOG-CP.
Unless specified otherwise, each octave of an image pyramid is considered to have 12 scales.
Each scale is scanned by shifting the detection window(s) by 8R pixels in each of the x and
y directions.

6.2.1 UIUC car detection dataset

On this dataset the equal error rate (EER) is used for evaluation, EER being the detection rate
at the point of equal precision and recall; we use the methodology given in Agarwal et al.
(2004) to calculate the precision and recall.

Choice of the transform: In this experiment, we evaluate the detection performance of the
proposed TD2DHOG-SC by using 2DDFT or 2DDCT. The TD2DHOG features are obtained
assuming btrain = Rb0, R = 2, b0 = 4, c = 4, btest = 4, 8 and β = 5, 6, . . . , 11. Figure9
shows that DCT2DHOG-SC exhibits a better performance irrespective of β. Similar results
have been obtained for other datasets, but are not included here in view of space constraints.
In view of this, wewill henceforth consider onlyDCT2DHOG features in all the experiments.

Choice of b0, c, and β:We now study the performance of the proposed DCT2DHOG-SC
for different values of b0, c andβ, in order tomake an appropriate choice for these parameters.
Figure10 shows the EER values of the proposed DCT2DHOG-SC for b0 = 4, c = 2 or 4;
b0 = 8, c = 2, 4 or 8 with β = 5, 6, . . . , 11 and btest = b0 and 2b0. It is observed from
this figure that the highest EER value is achieved at three different parameter settings: (b0 =
4, c = 4, β = 7), (b0 = 4, c = 4, β = 9), and (b0 = 8, c = 8, β = 7). We choose the
parameter setting b0 = 4, c = 4, β = 7, since it retains the lowest number of eigenvectors
compared to that of the other two parameter settings and thus it offers the lowest detection
complexity. It has also been observed that in the case of DCT2DHOG-CP, the parameter
setting b0 = 4, c = 4 and β = 7 also provides the best EER value.
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Fig. 10 EER value of the proposed scheme DCT2DHOG-SC at c = 2, 4 or 8 obtained on the UIUC dataset,
where β = 5, 6, . . . , or 11, and the base block size b0 = 4 or 8 (Color figure online)

Table 2 Equal Error Rate on
UIUC car detection dataset

Method EER

DCT2DHOG-SC(b0 = 4, c = 4, β = 7) 99.28%

DCT2DHOG-CP(b0 = 4, c = 4, β = 7) 99.28%

Lampert et al. (2008) 98.60%

Gall and Lempitsky (2009) 98.60%

Ohn-Bar and Trivedi (2015)∗ 98.56%

Wu et al. (2013) 97.80%

Dollár et al. (2014) (ACF-Exact)∗ 97.12%

Dollár et al. (2014) (ACF)∗ 95.68%

Maji et al. (2013)∗ 95.68%

Kuo and Nevatia (2009) 95.00%

Leibe et al. (2008) 95.00%

Mutch and Lowe (2008) 90.60%

∗Denotes the results obtained by utilizing the code provided by the
authors of the paper. The best and the second best results are shown
in boldface and underscored, respectively

Performance evaluation: We first consider the case of the DCT2DHOG-SC scheme. In
this case, the single classifier trained at R = 2 is used to classify the test images in detection
windowswith the same or lower resolutions (bymaking use of α(K ), which is obtained using
Table 1 and (30b)), where the test block sizes used are btest = 8 and 4.

Now, we consider the case of DCT2DHOG-CP. In this case, we construct a classifier
pyramid trained at R = 1 and 2. These two classifiers are used to classify the test images in
detection windows of the corresponding two resolutions, where btest = 4 and 8, respectively.

For each of the above cases, EER values are computed and are given in Table 2. The
EER values corresponding to several state-of-the-art schemes, namely, the Gabor filter-based
technique (Mutch and Lowe 2008), implicit shape model (Leibe et al. 2008), bag of words
with spatial pyramidkernel (Lampert et al. 2008), discriminative partswithHough forest (Gall
and Lempitsky 2009), contour cue-based technique (Wu et al. 2013), HOG-based technique
of Kuo and Nevatia (2009), aggregated channel feature (ACF) and ACF-Exact (Dollár et al.
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#23 #27 #28 #71 #140 #156

Fig. 11 Sample results for the proposed scheme when applied on USC multi-view car dataset, where colors
represent: (blue) true positive, and (red) false positive (Color figure online)

2014), multi-resolution 2DHOG (Maji et al. 2013), and clustering appearance patterns based
technique (Ohn-Bar and Trivedi 2015), are also included in Table 2. It is seen from this table
that the performance of either of the two proposed schemes is better than that of the others
in Dollár et al. (2014), Gall and Lempitsky (2009), Kuo and Nevatia (2009), Lampert et al.
(2008), Leibe et al. (2008), Maji et al. (2013), Mutch and Lowe (2008), Ohn-Bar and Trivedi
(2015) and Wu et al. (2013).

6.2.2 USCmulti-view car detection dataset

For this dataset, as in Kuo and Nevatia (2009), the PASCAL visual object classes (VOC)
criterion (Everingham et al. 2010, 2016) is used for the evaluation purpose with an overlap
threshold of 0.5. To compare the performance of our method to that of some recent schemes,
the average precision (AP) is used as an evaluation metric. In this dataset, the training images
are upsampled by a factor of R = 1 and 2 in the case of using DCT2DHOG-CP, and by a
factor of R = 2 in the case of using DCT2DHOG-SC. The performance of the proposed
DCT2DHOG-SC scheme using this dataset is studied for b0 = 4, c = 4; b0 = 8, c = 4 or 8;
and β = 5, 7 or 9, and btest = b0 and 2b0. It is observed that the highest AP value is achieved
at two parameter settings, b0 = 8, c = 4, β = 9 and b0 = 8, c = 8, β = 9. We choose
the parameter setting b0 = 8, c = 4 and β = 9, since it retains a lower number of 2DDCT
coefficients than that of the other parameter setting, and thus it provides a lower detection
complexity. Therefore, this parameter setting is chosen for both the DCT2DHOG-SC and
DCT2DHOG-CP schemes.

Figure11 shows sample qualitative results for the proposed schemeon this dataset. It shows
that the proposed scheme can detect cars in different views and resolutions. Table 3 shows that
the performance of the proposed technique is better than that of the method in Ohn-Bar and
Trivedi (2015)which is based onACF and trainingmultiple classifiers at different resolutions,
the method in Kuo and Nevatia (2009) which uses HOG with Gentle AdaBoost, and that of
the method in Wu and Nevatia (2007) which is based on using Edgelet feature with cluster
boosted tree classifier, where the latter is evaluated using Kuo and Nevatia (2009). Further,
the performance of the proposed method is slightly better than that of the implementations of
the methods in Dollár et al. (2014), or that of the multi-resolution 2DHOG features presented
in Maji et al. (2013) when used with BDTC. The proposed scheme achieves AP values of
90.44% in the case of DCT2DHOG-SC, and 89.92% in the case of DCT2DHOG-CP. Thus,
DCT2DHOG with a single classifier exhibits a high detection performance, while requiring
the training of only a single classifier, instead of multiple classifiers for each resolution.

6.2.3 LISA 2010

In this dataset, the same evaluation metrics presented in Sivaraman and Trivedi (2010) are
used, namely, true positive rate (TPR) or recall, false detection rate (FDR) or (1-precision),
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Table 3 Average Precision on USC Multi-view Car Dataset

Method AP

DCT2DHOG-SC(b0 = 8, c = 4, β = 9) 90.44%

DCT2DHOG-CP(b0 = 8, c = 4, β = 9) 89.92%

Ohn-Bar and Trivedi (2015)∗ 86.71%

ACF-Exact (Dollár et al. 2014)∗ 89.31%

ACF (Dollár et al. 2014)∗ 89.64%

Multi-resolution 2DHOG (Maji et al. 2013)—BDTC∗ 89.38%

Kuo and Nevatia (2009) 85.61%

Wu and Nevatia (2007) 52.55%

∗Denotes the results obtained by utilizing the code provided by the authors of the paper. The best and the
second best results are shown in boldface and underscored, respectively

average false positive per frame (AFP/F), average false positive per object (AFP/O), and
average true positive per frame (ATP/F). These metrics are computed at the point of equal
precision and recall. True positive detections are computed by using the PASCAL VOC
criterion (Everingham et al. 2010, 2016) with an overlap threshold of 0.5.

On both the H-dense and H-medium sequences, the single classifier trained at R = 2 is
used in the case of DCT2DHOG-SC and two classifiers trained at R = 1 and 2 are used in the
case of DCT2DHOG-CP. As in our experiments on USC multi-view car detection dataset,
the parameter setting chosen for both the DCT2DHOG-SC andDCT2DHOG-CP schemes on
LISA 2010 dataset is b0 = 8, c = 4, β = 9, and btest = 8 and 16, since, these two datasets
contain similar environmental conditions and the same type of classifier, namely, BDTC, is
used in the detection process.

Table 4 gives the detection performance of the proposed method, from which it is clear
that the performance of DCT2DHOG using a single classifier is almost as good as that of
using classifier pyramid. Table 4 also lists the performance of some of the other methods,
namely, the Haar-like features-based technique (Sivaraman and Trivedi 2010), ACF and
ACF-Exact (Dollár et al. 2014), multi-resolution 2DHOG (Maji et al. 2013), and clustering
appearance patterns based technique (Ohn-Bar and Trivedi 2015). From this table, it can be
seen that the proposed scheme on H-medium sequence provides a performance better than
that of the schemes of Dollár et al. (2014), Maji et al. (2013), Ohn-Bar and Trivedi (2015)
and Sivaraman and Trivedi (2010), while for the H-dense sequence, our scheme provides
92.67% TPR at 6.03% FDR, which is better than that of the methods in Dollár et al. (2014),
Maji et al. (2013) and Ohn-Bar and Trivedi (2015). The proposed method and the methods
in Dollár et al. (2014), Maji et al. (2013) and Ohn-Bar and Trivedi (2015) are trained with
hard negative samples collected from the CBCL street scenes dataset (Bileschi 2006), while
the method in Sivaraman and Trivedi (2010) is trained on private data from sunny highway
environment. The detection performance of the proposed scheme can be improved by using
an online learning technique to incorporate the false positive samples in the learning process.
Figure12a shows sample qualitative results for the proposed scheme when applied on the
H-dense sequence. As mentioned earlier, this sequence contains heavy shadows, vehicles
in partial occlusions and some background structures are confused with the positive class.
The proposed scheme can detect correctly 92.67% from the vehicles under these challenging
conditions. Figure12b shows the corresponding results for the H-medium sequence, which
includes challenges similar to that of the H-dense sequence but at a lower density. It is
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Table 4 The performance for the proposed scheme on LISA dataset

Method TPR FDR AFP/F ATP/F AFP/O

H-dense DCT2DHOG-SC 92.67% 6.03% 0.26 4.06 0.06

DCT2DHOG-CP 92.67% 6.03% 0.26 4.06 0.06

Sivaraman and Trivedi (2010) 93.50% 7.10% 0.32 4.20 0.07

Ohn-Bar and Trivedi (2015)∗ 87.54% 12.46% 0.61 4.28 0.12

ACF-Exact (Dollár et al. 2014)∗ 87.43% 12.54% 0.55 3.83 0.13

ACF (Dollár et al. 2014)∗ 86.75% 13.23% 0.58 3.80 0.13

Multi-resolution 2DHOG (Maji et al. 2013)∗ 73.24% 26.76% 1.17 3.21 0.27

H-medium DCT2DHOG-SC 98.11% 1.89% 0.06 2.94 0.02

DCT2DHOG-CP 98.22% 1.78% 0.05 2.95 0.02

Sivaraman and Trivedi (2010) 98.80% 10.30% 0.37 3.18 0.11

Ohn-Bar and Trivedi (2015)∗ 96.11% 3.89% 0.12 2.88 0.04

ACF-Exact (Dollár et al. 2014)∗ 93.11% 6.89% 0.21 2.79 0.07

ACF (Dollár et al. 2014)∗ 94.33% 5.67% 0.17 2.83 0.06

Multi-resolution 2DHOG (Maji et al. 2013)∗ 77.44% 19.70% 0.57 2.32 0.19

∗Denotes the results obtained by utilizing the code provided by the authors of the paper. The best and the
second best results on each dataset are shown in boldface and underscored, respectively

(a)

(b)

#277#134#56#40

#1578#510#446#343

Fig. 12 Sample qualitative results for the proposed method on LISA 2010 dataset, such that (a) Highway-
dense sequence, (b) Highway-medium or sunny sequence: (blue) true positive, and (red) false positive (Color
figure online)

clear that the proposed technique can detect vehicles of various resolutions, under different
illumination and background conditions.

6.2.4 HRI roadway dataset

For this dataset, the evaluationmetrics presented in Sect. 6.2.3 are used. As in our experiments
on the USC multi-view car detection dataset and LISA 2010 dataset, the single classifier
trained at R = 2 is used in the case of DCT2DHOG-SC and two classifiers trained at R = 1
and 2 are used in the case ofDCT2DHOG-CP for all the five test sequences of theHRI dataset.

123



Multidimensional Systems and Signal Processing (2019) 30:1697–1729 1721

Also, the same parameter setting is chosen for both the DCT2DHOG-SC and DCT2DHOG-
CP schemes, namely, b0 = 8; c = 4; β = 9, and btest = 8 and 16. The choice of these
parameters is made since these three datasets contain similar challenging conditions and the
type of the classifier used is the same, namely, BDTC.

Table 5 shows the detection performance ofDCT2DHOG-SC,DCT2DHOG-CP, and other
state-of-the-art techniques, namely, the ACF and ACF-Exact (Dollár et al. 2014), multi-
resolution 2DHOG (Maji et al. 2013), and clustering appearance patterns based method
(Ohn-Bar and Trivedi 2015). From this table, it can be seen that for sequences I, II and IV
either of the DCT2DHOG-SC and DCT2DHOG-CP schemes provides TPR values better
than that in case of the schemes in Dollár et al. (2014), Maji et al. (2013) and Ohn-Bar and
Trivedi (2015), whereas for the sequences III and V, the DCT2DHOG-SC scheme yields
TPR values higher than that in case of DCT2DHOG-CP or when the schemes of Dollár et al.
(2014) and (Maji et al. 2013) are used. In the work of Dollár et al. (2014) and Ohn-Bar
and Trivedi (2015), the feature approximation is carried out in the spatial domain to handle
the problem of variation in scale. However, in the proposed scheme, the problem of scale
variation is addressed by carrying the feature approximation in the frequency domain rather
than in the spatial domain.

6.2.5 Discussion

In this section, we present an evaluation of the proposed scheme in terms of the cost for the
training and testing schemes. For a fair comparison, we use 2DPCA and FIKSVM or 2DPCA
and BDTC as the main building blocks when 2DHOG or DCT2DHOG features are used. In
the experiments that follow, the same values of η1, η2, b0, c, and β that have been used to
obtain the detection accuracy on the corresponding dataset are used. It should be noted that
in practical situations, the choice of these parameters depends on the targeted vehicle view.
In case the side view of the vehicles is of interest, the parameter settings recommended for
obtaining DCT2DHOG features are b0 = 4, c = 4, and β = 7 and FIKSVM can provide a
fast and accurate classification scheme. In the case of detecting vehicles with different views,
such as the situations that exist in urban and highway scenarios, the recommended parameter
settings are b0 = 8, c = 4, and β = 9 and BDTC is preferred, since it can be trained on
a large number of samples and can capture large intra-class variations that exist within the
positive class samples.

Training cost: In this experiment, we compare the training cost of the proposedDCT2DHOG
against that of 2DHOGat six different resolutions. Table 6 lists the overall training time4 of the
proposed DCT2DHOG at six resolutions along with that of 2DHOG. It is seen from this table
that the training time for the proposed scheme is less than that of 2DHOG by at least 49.79%
when a classifier pyramid is used, and by at least 74.33% when a single classifier trained at
R = 2 is employed. Table 7 gives the storage requirement of the proposed scheme and that of
the 2DHOG-based scheme for classifiers trained at the six different resolutions considered.
It is seen from this table that the storage requirement for the proposed scheme is lower than
that of 2DHOG-based scheme in case of the UIUC dataset by 64.18% when the size of the
detection window is 64× 192, whereas both these schemes achieve the same storage for the
cases of USC and LISA 2010 datasets. Note that the FIKSVM classifier is used for the UIUC
dataset and BDTC is used for the USC and LISA 2010 datasets. It is observed from Tables
6 and 7, in order to detect vehicles of different resolutions, the proposed DCT2DHOG-SC

4 Using modern computer of 2.9GHz CPU, and 8G RAM.
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Table 5 The performance for the proposed scheme on HRI dataset

Method TPR FDR AFP/F ATP/F AFP/O

Sequence I DCT2DHOG-SC 78.13% 21.88% 0.16 0.56 0.22

DCT2DHOG-CP 78.13% 21.88% 0.16 0.56 0.22

Ohn-Bar and Trivedi (2015)∗ 75.00% 25.00% 0.20 0.60 0.25

ACF-Exact (Dollár et al. 2014)∗ 68.29% 31.71% 0.48 1.04 0.32

ACF (Dollár et al. 2014)∗ 66.67% 33.33% 0.52 1.04 0.33

Multi-resolution 2DHOG (Maji
et al. 2013) - BDTC∗

68.97% 31.03% 0.36 0.80 0.31

Sequence II DCT2DHOG-SC 67.86% 32.14% 0.20 0.42 0.32

DCT2DHOG-CP 67.86% 32.14% 0.20 0.42 0.32

Ohn-Bar and Trivedi (2015)∗ 61.54% 38.46% 0.33 0.53 0.38

ACF-Exact (Dollár et al. 2014)∗ 65.63% 34.38% 0.39 0.75 0.34

ACF (Dollár et al. 2014)∗ 60.61% 39.39% 0.45 0.69 0.39

Multi-resolution 2DHOG (Maji
et al. 2013) - BDTC∗

53.85% 46.15% 0.29 0.34 0.46

Sequence III DCT2DHOG-SC 72.73% 27.27% 0.30 0.80 0.27

DCT2DHOG-CP 66.67% 33.33% 0.37 0.73 0.33

Ohn-Bar and Trivedi (2015)∗ 66.67% 33.33% 0.38 0.77 0.33

ACF-Exact (Dollár et al. 2014)∗ 66.67% 20.00% 0.29 1.18 0.17

ACF (Dollár et al. 2014)∗ 72.41% 19.23% 0.31 1.31 0.17

Multi-resolution 2DHOG (Maji
et al. 2013) - BDTC∗

45.45% 54.55% 0.60 0.50 0.55

Sequence IV DCT2DHOG-SC 73.33% 26.67% 0.20 0.55 0.27

DCT2DHOG-CP 80.00% 20.00% 0.15 0.60 0.20

Ohn-Bar and Trivedi (2015)∗ 65.63% 34.38% 0.55 1.05 0.34

ACF-Exact (Dollár et al. 2014)∗ 63.16% 36.84% 0.50 0.86 0.37

ACF (Dollár et al. 2014)∗ 63.16% 36.84% 0.50 0.86 0.37

Multi-resolution 2DHOG (Maji
et al. 2013) - BDTC∗

73.33% 26.67% 0.20 0.55 0.27

Sequence V DCT2DHOG-SC 66.67% 33.33% 0.22 0.44 0.33

DCT2DHOG-CP 62.16% 37.84% 0.02 0.03 0.38

Ohn-Bar and Trivedi (2015)∗ 70.83% 29.17% 0.26 0.63 0.29

ACF-Exact (Dollár et al. 2014)∗ 64.00% 23.81% 0.36 1.14 0.20

ACF (Dollár et al. 2014)∗ 61.54% 23.81% 0.33 1.07 0.19

Multi-resolution 2DHOG (Maji
et al. 2013) - BDTC∗

51.85% 48.15% 0.32 0.34 0.48

∗Denotes the results obtained by utilizing the code provided by the authors of the paper. The best and the
second best results on each dataset are shown in boldface and underscored, respectively

requires only a single classifier instead of multiple ones, resulting in a reduction in terms of
the training cost by at least 44.63% and the storage requirement by at least 50.00% compared
with that of DCT2DHOG-CP.

It is to be pointed out that the reduction in the training and storage costs is achieved by
the proposed vehicle detector in comparison with that of the 2DHOG counterpart using a
classifier pyramid with almost no loss in the detection accuracy.
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Table 6 Feature extraction and classifier training times (in seconds) for the proposed DCT2DHOG method
and for the 2DHOG method

Dataset UIUC USC LISA 2010

M1 × M2 32 × 96 64 × 192 64 × 128 128 × 256 64 × 64 128 × 128

DCT2DHOG FET 8.00 9.72 245.87 283.91 85.03 107.22

CTT 6.75 5.71 14.32 13.49 7.63 7.76

TT 14.75 15.43 260.19 297.40 92.66 114.98

2DHOG FET 8.53 11.76 604.70 2133.36 291.74 806.56

CTT 7.36 32.46 54.14 170.76 52.01 141.11

TT 15.89 44.22 658.84 2304.11 343.74 947.67

Reduction in TT (CP) 49.79% 81.18% 83.92%

Reduction in TT (SC) 74.33% 89.96% 91.10%

Boldface fonts denote the best results
FET time in seconds for feature extraction, CTT time in seconds for training a classifier, TT average training
time in seconds, Reduction in TT (CP) and (SC) refer to the amount of reduction in TT of DCT2DHOG-CP
method over 2DHOG method, and DCT2DHOG-SC method over 2DHOG method, respectively

Table 7 Storage requirements (inMByte) for the proposed DCT2DHOGmethod and for the 2DHOGmethods

Dataset UIUC USC LISA 2010

M1 × M2 32 × 96 64 × 192 64 × 128 128 × 256 64 × 64 128 × 128

DCT2DHOG 1.51 2.16 0.21 0.21 0.21 0.21

2DHOG 1.51 6.03 0.21 0.21 0.21 0.21

Reduction in
storage (CP)

51.33% 0.00% 0.00%

Reduction in
storage (SC)

71.35% 50.00% 50.00%

Reduction in storage (CP) and (SC) refer to the amount of reduction in storage of DCT2DHOG-CP method
over 2DHOG method, and DCT2DHOG-SC method over 2DHOG method, respectively

Table 8 Average feature extraction and detection time in seconds for Methods A, B and C applied to three
datasets

Dataset UIUC USC LISA 2010

Range of vehicle size 32 × 96 to 128 × 384 64 × 128 to 256 × 512 64 × 64 to 256 × 256

Number of detection windows
per frame

1398 1141 1365

Method A FET 0.061 0.077 0.059

DT 0.143 0.212 0.218

Method B FET 0.064 0.112 0.122

DT 0.174 0.397 0.475

Method C FET 0.073 0.130 0.137

DT 0.301 0.376 0.375

Min. reduction in FET 4.69% 31.25% 51.64%

Min. reduction in DT 17.82% 43.62% 41.87%

Boldface fonts denote the best results
FET feature extraction time in second, DT detection time in second, Min. reduction in FET and DT refer to
the minimum amount of reduction in FET and DT of Method A over those of Methods B and C
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Detection time: Table 8 gives a comparison of the feature extraction time as well as the
detection time (in seconds) of the proposed transform-domain based detector (Method A)
with that of the spatial-domain counterparts (Methods B and C) on the three vehicle detection
datasets, UIUC (Agarwal et al. 2004), USC (Kuo and Nevatia 2009) and LISA 2010 (Sivara-
man and Trivedi 2010). We use test images of size 480×640. We assume that each octave of
an image pyramid consists of 8 scales, and that each scale is scanned by shifting the detection
window(s) by 16 pixels in each of the x and y directions. This generates 1398, 1141 and
1365 detection windows per frame for UIUC, USC and LISA 2010 datasets, respectively.

MethodA inTable 8 corresponds to the proposedmethod,where theDCT2DHOG-2DPCA
features are used to train a single classifier at R = 2. Further, two detection windows of
different sizes are used to scan an image pyramid of depth one octave and the same classifier
is used to classifyDCT2DHOG-2DPCAfeatures obtained from imageswithin these detection
windows after incorporating the multiplicative factor α(K ) given by (30b).

Method B corresponds to the traditional method that uses a single classifier trained on
features obtained in the spatial domain, namely, 2DHOG-2DPCA features, at R = 1. Further,
it uses a single detection window to scan an image pyramid of depth two octaves. Then, the
2DHOG-2DPCA features obtained from an image within a detection window are classified
by the trained classifier.

Method C corresponds to a spatial domain method which uses 2DHOG-2DPCA features
to train two classifiers at R = 1, and 2. Further, two detection windows of different sizes
are used to scan an image pyramid of depth one octave. Then, the two classifiers trained at
R = 1 and 2 are used to classify images within the detection windows of the same resolution
at which the classifier is trained.

For the UIUC dataset, the first detection window is of size 32 × 96 and the second one
of size 64× 192. For this dataset, the range of vehicle size that can be detected by using the
methodA, B or C is 32×96 to 128×384. For USC and LISA 2010 datasets the corresponding
window sizes are 64 × 128 and 128 × 256, and 64 × 64 and 128 × 128, respectively.

It is seen from Table 8 that the proposed transform-based method provides a minimum of
4.69% reduction in the feature extraction time and a minimum of 17.82% reduction in the
detection time over that of the two spatial-domain methods B and C for the UIUC dataset
and very much higher reductions for the other two datasets.

Finally, it is worth mentioning that the classification time of the proposed method repre-
sents on average about 65% of the total detection time. Thus, further gains in the detection
speed could be achieved by reducing the classification time.

7 Conclusion

In this paper, we have introduced transform domain features of two-dimensional histogram
of oriented gradients of images, referred to as TD2DHOG features. Then, we have studied
the effect of image downsampling on the TD2DHOG features. It has been shown that the
TD2DHOG features obtained from a high resolution image can be approximated by using
the TD2DHOG features obtained from the image at a lower resolution by multiplying the
latter by a factor that depends on the downsampling factor. A model for this multiplicative
factor has been proposed and validated experimentally in the case of 2DDFT and 2DDCT
domains. Next, a novel vehicle detection scheme using these TD2DHOG features has been
proposed. It has been shown that the use of TD2DHOG features reduce the cost of training a
classifier pyramid, since a single classifier can be used to detect vehicles of the same or lower
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resolution at which the classifier has been trained, instead of training multiple resolution-
specific classifiers.

Experimental results have shown that when the proposed TD2DHOG features are used
with the multiplying factor and a single classifier for vehicle detection, it provides a detection
accuracy similar to that obtained using these features with a classifier pyramid; however, the
use of a single classifier has a significant advantage over the use of a classifier pyramid
in that the former results in substantial savings in training and storage costs. In addition,
the proposed method provides a detection accuracy that is similar or even better than that
provided by the state-of-the-art techniques.
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Appendix: Derivation of Equation (21)

The 2DDCT for a grayscale image in the spatial domain, x ∈ R
2, is given by

XN ,M [u, v] = Γ̂N [u]Γ̂M [v]
M−1∑
m=0

N−1∑
n=0

x[n,m] cos
(

π(2n + 1)u

2N

)

× cos

(
π(2m + 1)v

2M

)
(1)

where 0 ≤ u ≤ N − 1, 0 ≤ v ≤ M − 1, Γ̂N [k] = √
1/N for k = 0 and Γ̂N [k] = √

2/N for
0 < k ≤ N − 1. Let N and M be even multiples of K1, and K2, respectively, where K1 and
K2 are the downsampling factors in the y and the x directions, respectively. Let x[n,m] be
a bandlimited sequence, and the sequence y ∈ R

2, of size (2N × 2M), be defined as

y[n,m] =
{
x[n,m], 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1
0, otherwise

(2)

The N×M-point 2DDCT can be computed by 2N×2M-point 2DDFT for a sequence,
y[n,m], as follows. First, the 2DDFT is employed on y[n,m] in order to obtain Y2N ,2M . Sim-
ilar to the 1DDCT case, the relation between the signal in the 2DDCT domain XN ,M [u, v],
and Y2N ,2M [u, v] can be expressed as

XN ,M [u, v] = Γ̂N [u]Γ̂M [v]Re
(
Y2N ,2M [u, v]e− j( πu

2N + πv
2M )

)
(3)

where 0 ≤ u ≤ N − 1, 0 ≤ v ≤ M − 1. Let c1, c2 denote the maximum frequencies retained
by the truncation operator, where c1 < N̂ , c2 < M̂ , N̂ = N/K1, and M̂ = M/K2. Assume
Y2N ,2M is bandlimited to the maximum frequencies (N̂ , M̂). Then, the downsampled signal
in the 2DDCT domain, X̂ N̂ ,M̂ , can be obtained as

X̂ N̂ ,M̂ [u, v] = 1

K1K2
Γ̂N̂ [u]Γ̂M̂ [v]Re

(
Y2N ,2M [u, v]e− j( πu

2N + πv
2M )

)
(4)

= Γ̂N̂ [u]Γ̂M̂ [v]
K1K2Γ̂N [u]Γ̂M [v] Γ̂N [u]Γ̂M [v]Re(Y2N ,2M [u, v]

× e− j( πu
2N + πv

2M )) (5)
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=
√
1/N̂

√
1/M̂

K1K2
√
1/N

√
1/M

XN ,M [u, v] (6)

= 1√
K1K2

XN ,M [u, v] (7)

where 0 ≤ u ≤ c1−1 and 0 ≤ v ≤ c2−1. Thus, the relation between the 2DDCT coefficients
of the original image and that of the downsampled version is given by

XN ,M [u, v] = √
K1K2 X̂ N̂ ,M̂ [u, v] (8)
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