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Abstract
Convolutional neural networks (CNNs) have been widely used in computer vision commu-
nity, and significantly improving the state-of-the-art. How to train an intra-class variant and
inter-class discriminative feature is a central topic in face recognition. This paper proposes
to learn an effective feature from face images by a joint loss function which combines the
hard sample triplet (HST) and the absolute constraint triplet (ACT) loss, under the criteria
that a maximum intra-class distance should be smaller than any inter-class distance. With
the joint supervision of HST and ACT loss, CNNs is enable to learn discriminative features
to improve face recognition performance. Experiments on labeled faces in the wild, IARPA
Janus Benchmark (IJB-A) and YouTube Faces datasets achieve a comparable or superior
performance to the state-of-the-arts.

Keywords Triplet loss · Deep learning · Face recognition · Convolutional neural network ·
Absolute constraint

1 Introduction

Recently, deep CNNs (Convolutional Neural Networks) have boosted the FR (Face Recogni-
tion) performance to an unprecedented level. It mainly benefits from the large scale training
data (Deng et al. 2009; Russakovsky et al. 2015) and the advanced network architectures
(Krizhevsky et al. 2012; Simonyan and Zisserman 2014; Szegedy et al. 2015; He et al. 2016).
In contrast to the conventional approaches (Guillaumin et al. 2009; Cao et al. 2010; Yin et al.
2011; Huang et al. 2012a) in face recognition, deep face recognition (Huang et al. 2012b;
Cai et al. 2012; Sun et al. 2013; Liu et al. 2016; Lu et al. 2015; Wang et al. 2018; Ding and
Tao 2018; Ranjan et al. 2017) typically can achieve a better performance.

Since Sun et al. (2014a) and Taigman et al. (2014) reported their work on face recognition
via feature learning, most of the related work focused on how to learn effective features
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from the network. Desired features are expected to be intra-class invariant and inter-class
discriminative.

However, faces of the same identity could look much different when presented in different
poses, illuminations, expressions, ages, and occlusions, and then caused the intrinsically large
intra-class variations and high inter-class similarity that faces exhibit. Therefore, reducing
the intra-class variations while enlarging the inter-class differences is a central topic in face
recognition. There are two main aspects of the work in order to achieve a better performance
in face recognition, focusing on the network structure construction (Simonyan and Zisserman
2014; Szegedy et al. 2015; He et al. 2016) (e.g. VGGNet, GoogLeNet and ResNet) and loss
function design (Sun et al. 2014b; Schroff et al. 2015; Wen et al. 2016b).

Constructing highly efficient loss function for discriminative feature learning in CNNs
is non-trivial. Softmax loss is able to directly address the classification problems. However,
the softmax loss only encourage the discriminative of features. The resulting features are not
sufficiently effective for face recognition. As an alternative approaches, contrastive loss (Sun
et al. 2014b; Hadsell et al. 2006) and triplet loss (Schroff et al. 2015) respectively constructs
loss function for image pairs and triplets. The networks of DeepID (Sun et al. 2014b) was
trained by using a combination of classification and verification loss. The contrastive loss is
used as verification loss and the softmax loss is used as the classification loss. However, the
network structure is too complicated to implement for users.

As alternative approach, triplet loss (Schroff et al. 2015) construct loss function for triplets
which include an anchor, a positive sample with the same label as anchor and a negative
sample. However, non-discriminative triplet samples may be selected, where the distance
of positive pair is much smaller than the negative one. Therefore, the network based on
triplet loss may suffer from slow convergence and instability. By carefully selecting the
image triplets, the problem may be partially alleviated. But it significantly increases the
computational complexity and the training procedure becomes inconvenient.

In this paper, a joint loss function based on triplet loss is proposed which consists of a hard
sample triplet (HST) which selects the triplets carefully and an absolute constraints triplet
(ACT) loss which constrain the maximum intra-class distance is smaller than any inter-class
distance. The loss inherits the advantage of triplet loss that aims to separate the positive
pair from the negative by a distance margin in an embedding space. Meanwhile it directed
against the weakness of triplet loss by imposing an absolute constraint on the loss based on
the criterion that an intra-class distance should be smaller than any inter-class distance, as
verified by the experiments.

Figure 1 shows the framework of the proposed algorithm. Input datas are sent to the CNN
network, and distance matrix of features extracted by CNN is calculated. The features are
�2-normalized and then they are sent to the proposed loss in which HST is employed to select
the triplets carefully and ACT is employed to further enhance the discriminative power for
learning face representations. Themaximum intra-class distance and theminimum inter-class
distance of one triplet are sent to the loss function.

The main contributions of this paper are summarized as follows:

– A joint loss function which consists of HST and ACT loss is proposed to satisfy the
requirement that maximum intra-class instance is smaller than any inter-class instance
of the deep features. With the supervision of the loss, the highly discriminative features
can be obtained for robust face recognition, as supported by our experimental results.

– The proposed loss function is flexible to implement in the CNNs, and the CNN models
can be directly optimized by the standard SGD (Stochastic Gradient Descent).
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Fig. 1 Illustration of the proposed algorithm training with joint loss

– The comparable performance of our new approach is verified on Labeled Faces in the
Wild (LFW) (Huang et al. 2007) and YouTube Faces (YTF) (Wolf et al. 2011) datasets.

2 Related work

There is a vast corpus of face verification and identification works. Face recognition via
deep learning has achieved a series of breakthrough in these years (Taigman et al. 2014;
Sun et al. 2014b; Schroff et al. 2015; Parkhi et al. 2015a; Yin et al. 2017; Wen et al. 2018).
Sun et al. 2014a addressed the open-set FR using CNNs supervised by softmax loss, which
essentially treats open-set FR as a multi-classification problem. Since then, people mostly
focus on how to learn a discriminative feature from the deep neural network to improve the
verification/identification performance.

Schroff et al. (2015) treated the FR problem using the same loss function as (Sun et al.
2014a), and it also proposed a multi-stage approach that aligns faces to a general 3D shape
model. The author also experimented with a so called Siamese network where they directly
optimize the �1-distance between two face features in face verification problem.

Schroff et al. (2015) used the triplet loss to learn a unified face embedding. Training on
nearly 200 million face images, they achieved current state-of-the-art FR accuracy.

Sun et al. (2014a, b) proposed a compact and therefore relatively cheap method to com-
pute network. Both PCA and a joint Bayesian model that effectively correspond to a linear
transform in the embedding space were employed. The networks were trained by using
a combination of classification (softmax loss) and verification loss (contrastive loss). The
main difference between contrastive loss and triplet loss was that only pairs of images were
compared in contrastive loss, whereas the triplet loss encouraged relative distance constraint.
As can we see, most widely used loss function for deep metric learning are contrastive loss
and triplet loss, and both generally impose Euclidean margin to features.

Inspired by linear discriminant analysis, Wen et al. (2016a) proposed center loss for
CNNs and also obtains promising performance. There are also some loss function which
improved based on the softmax loss. Liu et al. (2016, 2017a) mapped the features to angular
space to obtain the discriminative features, and they have achieved excellent performance
on face recognition. In this paper, an improved loss function based on the triplet loss is
proposed, which is able to get a comparable result on face recognition only with a single
model.
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3 The joint loss

In this section, we elaborate the proposed approach. The brief review of triplet loss and
introduction of the hard sample triplet (HST) loss are referred to Sect. 3.1. In Sect. 3.2, the
ACT loss is presented in detail.

3.1 Brief review of the triplet loss and HST loss

Schroff et al. (2015) proposed to employ the triplet loss to train CNNs for face recognition.
The representation of a face image x is �2-normalized as the input of the triplet loss. The
�2-normalized face representation as f (x) are donated. The designed representation of an
anchor image f (xa) of a specific subject is expected to be closer to the positive image f (xp)
which with the same label than the negative image f (xn) with the different label. These
three features( f (xa), f (xp), f (xn)) compose a triplet. The triplet are expected to satisfy the
formula as below:

‖ f (xa) − f (xp)‖22 + β < ‖ f (xa) − f (xn)‖22 (1)

where β is the margin that satisfy the constraint between the positive pair ( f (xa), f (xp))
and the negative pair ( f (xa), f (xn)). The triplet loss function is formulated as below:

Ltr i plet ( f ) = 1

2N

N∑

i=1

[‖ f (xai ) − f (xpi )‖22 − ‖ f (xai ) − f (xni )‖22 + β
]
+ (2)

where N is the number of the triplets in a batch, and ( f (xai ), f (xpi ), f (xni )) stands for the i-th
triplet. The loss is illustrated in Fig. 2a. However, non-discriminative samples may results in
slow convergence and instability of the network, and the generalization of the model learned
by triplet loss may be poor.

(a)

(b) (c)

Fig. 2 Illustration of triplet, HST and ACT loss. a The triplet loss where the three dots with different colors
stand the triplet. bTheHST loss where themaximum intra-class distance and theminimum inter-class distance
are sent to the loss function. c The ACT loss where any inter-class distance is required to be larger than the
maximum intra-class distance (Color figure online)
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The problem can be solved by using an alternative loss function called hard sample triplet
(HST) loss (Hermans et al. 2017) which was proposed for person re-identification. Specif-
ically, there are S subjects with different labels and N images for each subject in a batch.
That is to say, there are S*N images in a batch or the batch size is S*N. We denote the batch
set by χ = ( f (xi ), yi )

S×N
i=1 , where f (xi ) ∈ R is the feature vector extracted from the i-th

image labeled yi . We denote the distance between any two feature vector f (xi ) and f (x) j by
d( f (xi ), f (x j )). For each positive sample pairs ( f (xi ), f (x j )) with yi = y j , we calculate
their distance and compose an intra-class distance set in which the maximum intra-class dis-
tance can be selected. Similarly, for the negative sample pairs ( f (xi ), f (xk)) with yi �= yk ,
we can obtain the minimum inter-class distance which is sent to the loss function, together
with the maximum intra-class distance. The HST loss function is formulated as below:

LHST = 1

S × N

∑

xi

[
max

x j ,yi=y j
d( f (xi ), f (x j )) − min

xk ,yi �=yk
d( f (xi ), f (xk)) + α

]

+
(3)

where α is the margin that satisfy the constraint between maximum intra-class distance and
minimum inter-class distance. Illustration of the HST is shown in Fig. 2b. With the help
of “hard samples” satisfying the criteria that the maximum intra-class distance should be
smaller than any inter-class distance, the HST loss partially alleviated the problem of slow
convergence and instability occurred in the conventional triplet network.

3.2 The ACT loss

In this section, we present the proposed ACT loss as a comparison with triplet loss and HST
loss.

3.2.1 Problem analysis

For triplet loss, the optimization of loss function is based on the selected triplets. However,
the inter- and intra-class distances distribution are not explicit. Randomly selected triplet
training samples without constraints may make the network unstable and hard to converge.
It would be difficult to find an ideal threshold for face verification.

A constraint is imposed on triplet samples in HST loss in which the maximum intra-class
distance and the minimum inter-class distance are sent to the loss function. As illustrated in
Fig. 2b, the selected “hard sample” help to pull samples of the same identity closer while push
samples of the different identity away. However, because HST considers inter- and intra-class
distances relative to a certain identity when constructing a triplet, namely it considers only the
relative distances of positive sample and the negative sample to a special anchor, neglecting
the distance between the other negative pairs. Therefore, some negative pairs may fall into
positive pairs in the distance space due to the different distance distribution of different class,
as illustrated in Fig. 3 where AiB j means the distance between i-th sample of class A and
j-th sample of class B.

3.2.2 The ACT loss

Different from the HST loss, the ACT loss imposes an absolute constraint that the maximum
intra-class distance is smaller than any inter-class distances. In formulation, that is, for each
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Fig. 3 Illustration of distance distribution of positive pairs and negative pairs. The green dots denote intra-class
distances,and other color dots denote inter-class distances.The red dot stands the case that the negative pair
fell into the positive pair (Color figure online)

batch, we aim to minimize a loss function as follows:

∑

xi

[
max

x j ,yi=y j
d( f (xi ), f (x j )) − min

xm ,xn ,ym �=yn
d( f (xm), f (xn)) + β

]

+
(4)

where β is a slack parameter. As illustrated in Fig. 2c, with the absolute constraint, the ACT
loss pushes any two negatives apart while pull the positives close. Therefore, compared with
the HST loss, it more enhances the discriminating of the learned features.

3.3 The joint loss

To hold the advantage of HST which present CNNs from slow convergence and instability,
we reserve the HST loss in the algorithm. Therefore, the final loss consists of two parts.
The first part is the HST loss, and the second part is the ACT loss which push the maximum
intra-class distance smaller than any inter-class distance. The final loss function is formulated
as follows:

L = μLHST (θ) + (1 − μ)LACT (θ) (5)

where

LHST = 1

S × N

∑

xi

(
max

x j ,yi=y j
d( f (xi ), f (x j )) − min

xk ,yi �=yk
d( f (xi ), f (xk)) + α

)

+
(6)

LACT = 1

S × N

∑

xi

(
max

x j ,yi=y j
d( f (xi ), f (x j )) − min

xm ,xn ,ym �=yn
d( f (xm), f (xn)) + β

)

+
(7)

where d( f (xm), f (xn)) with ym �= yn is the distance between any two images with different
labels in a batch; μ is the parameter to balance the HST loss and the ACT loss. The value
of μ is same to the way of (Cheng et al. 2016) and μ is set to be 0.6; α and β are the
margin force the HST loss and absolute constraint separately. We traverse the value of the
margin parameter α within (0.1, 0.2, 0.3, 0.4, and 0.5), and then we choose 0.4 as the margin.
Similarly, we traverse the value of the margin parameter β within (0.8, 1.0, 1.2, 1.4, and 1.6),
and choose 1.2 as the margin. Equation 5 is optimized using the standard stochastic gradient
descent with momentum (Jia et al. 2014).

In algorithm 1, the learning details in the CNNs with joint supervision is summarized,
where η(t) is learning rate and it starts from 0.01 and divided by 10 every 10,000 iterations.
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Algorithm 1 The discriminative feature learning algorithm
Input:

training set χ = (xi ), yi initialized parameters θ in convolution layers, learning rate η, the

number of iteration t ← 0.

while not converge do

t ← t + 1 samples (xi , x j , xk, xm, xn) from χ

f (xi ) = Conv(xi , θ), f (x j ) = Conv(xi , θ), f (xk) = Conv(xi , θ), f (xm) =
Conv(xi , θ), f (xn) = Conv(xi , θ)

∇ f (xi ) = ∂LHST ( f (xi ), f (x j ), f (xk ),θ)

∂ f (xi )
+ ∂LACT ( f (xi ), f (x j ), f (xm ), f (xn),δ,θ)

∂ f (xi )
, where δ = 1 if

max d( f (xi ), f (x j )) > d( f (xm), f (xn))

∇ f (x j ) = ∂LHST ( f (xi ), f (x j ), f (xk ),θ)

∂ f (x j )
+ ∂LACT ( f (xi ), f (x j ), f (xm ), f (xn),δ,θ)

∂ f (x j )

∇ f (xk) = ∂LHST ( f (xi ), f (x j ), f (xk ),θ)

∂ f (xk )
+ ∂LACT ( f (xi ), f (x j ), f (xm ), f (xn),δ,θ)

∂ f (xk )

∇ f (xm) = ∂LHST ( f (xi ), f (x j ), f (xk ),θ)

∂ f (xm )
+ ∂LACT ( f (xi ), f (x j ), f (xm ), f (xn),δ,θ)

∂ f (xm )

∇ f (xn) = ∂LHST ( f (xi ), f (x j ), f (xk ),θ)

∂ f (xn)
+ ∂LACT ( f (xi ), f (x j ), f (xm ), f (xn),δ,θ)

∂ f (xn)

∇θ =∇ f (xi ) · ∂Conv(xi , θ)

∂θ
+ ∇ f (x j ) · ∂Conv(x j , θ)

∂θ
+ ∇ f (xk) · ∂Conv(xk, θ)

∂θ
+

∇ f (xm) · ∂Conv(xm, θ)

∂θ
+ ∇ f (xn) · ∂Conv(xn, θ)

∂θ

Update θ = θ − η(t) · ∇θ

end while

Output:

The parameter θ

4 Experiment

In Sect. 4.1, we introduced the datasets used in the experiments. The necessary implementa-
tion details are given in Sect. 4.2. In Sects. 4.3 and 4.4, extensive experiments are conducted
on several public domain face datasets to verify the effectiveness of the proposed approach.

4.1 Introduction of the LFW andYTF datasets

CASIA-WebFace The CASIA-WebFace Dataset (Yi et al. 2014) is used as the training
data in our experiments. The CASIA-WebFace database contains 494,414 images of 10,575
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subjects. The dataset is collected with a semi-automatically way from Internet, which used
under the unrestricted environment.
LFW LFW (Labeled face in the wild) (Huang et al. 2007) dataset contains 13,233 web-
collected images from 5749 different identities, with large variations in pose, expression and
illuminations. Following the standard protocol of unrestricted with labeled outside data.
YTF YTF (YouTube Faces) dataset (Wolf et al. 2011) consists of 3425 videos of 1595
different people, with an average of 2.15 videos per person. The clip durations vary from 48
frames to 6070 frames, with an average length of 181.3 frames.
IJB-A IJB-A (IARPA Janus Benchmark A) includes 5396 images and 20412 video frames
for 500 subjects, which is a challenging with uncontrolled pose variations. Different from
previous datasets, IJB-A defines face template matching where each template contains a
variant amount of images. It consists of 10 folders, each of which being a different partition
of the full set.

4.2 Implementation details

Preprocessing All the faces in images and their landmarks are detected by the recently
proposed algorithm (Zhang et al. 2016). 5 landmarks (two eyes, nose and mouth corners) for
similarity transformation are used. Finally, the faces are cropped to 112 × 96 RGB images,
and each pixel in RGB images is normalized by subtracting 127.5 then dividing by 128.
Detailed settings in CNNs Caffe (2014) is used to implement ACT loss and CNNs. The
ResNet-50 network is used in the experiments. For fair comparison, we respectively train
four models under the supervision of softmax loss, triplet loss, HST loss and ACT loss (the
latter three all used softmax for the network initialization). These models are trained with
batch size of 128 with 3 blocks of parallel GPUs (1080 Ti). For the softmax loss model, the
learning rate is start from 0.01, and divided by 10 every 10,000 iterations. For the next three
models, it is observed that the model converges slower, and as a result, the max iteration is
set 50,000.
Detailed settings in testing LFW dataset and YTF dataset, and IJB-A dataset are used to
evaluate the proposed algorithm. We follow the protocol of these three datasets. For LFW
dataset, there are 6000 testing pairs for the standard protocol, where 3000 of them are paired
and the rest are unpaired. YTF dataset contains 10 folders of 500 video pairs. We follow the
standard verification protocol and report the average accuracy on splits with cross-validation
in Table 3. The deep features extracted by the network are concatenated as the representation.
The score is computed by the Euclidean Distance of two features. Note that, we only use
single model for all the testing.

4.3 Effectiveness of the HST loss

In this part, the HST loss on two famous face recognition benchmarks under unconstrained
environments is evaluated, namely LFW and YTF datasets. They are excellent benchmarks
for face recognition. Some examples of the datasets are shown in Fig. 4.

The following observations are from the results in Table 1. TheHST loss beats the baseline
(supervised by the softmax loss) and the triplet loss, improving the performance from (96.41%
on LFW and 85.44% on YTF) to (97.25% on LFW and 87.80% on YTF) and (97.25% on
LFW and 87.80% on YTF) to (98.42% on LFW and 89.86% on YTF) respectively. This
shows that the HST loss can learn more discriminative features than the softmax loss and the
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Fig. 4 a Examples from LFW dataset. b Examples from YTF dataset. c Examples from IJB-A dataset

Table 1 The verification rates
(%) at 1% FAR (false accepted
rate) of the ACT loss and the
softmax loss, triplet loss and the
HST loss on LFW and YFT
datasets

Method Dataset LFW (%) YTF (%)

Softmax Webface 96.41 85.44

Triplet loss Webface 97.25 87.80

HST loss Webface 98.42 89.86

Proposed algorithm Webface 99.23 93.14

triplet loss. Figure 5 shows the ROC curve on LFW and YTF datasets respectively, which
verifies the effectiveness of the HST loss function.

4.4 Effectiveness of the ACT loss

The verification rates at 1% FAR (False Accepted Rate) of the ACT loss and the softmax
loss, triplet loss and the HST loss on LFW and YTF datasets are compared in Table 1.

From Table 1, it is observed that the performance of the ACT loss on the LFW and YTF
datasets are better than the softmax loss, triplet loss and the HST loss. It illustrates the
feature learned by ACT loss is more discriminative than other three losses, and verifies the
effectiveness of the ACT loss. Figure 5 shows the ROC curve on LFW and YTF datasets of
the softmax loss, triplet loss, HST loss and ACT loss, and equally proves the effectiveness
of the ACT loss.
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Fig. 5 The left is the ROC curves of different losses on LFW dataset, and the right one is the results on YTF
dataset

4.5 Comparison with other algorithmwith different loss functions

The performance of the features learned by the proposed algorithm are verified on LFW
dataset, YTF dataset and IJB-A datasets, and the results are shown in Tables 2, 3 and 4
respectively.

From the results in Tables 2 and 3, one can observes that our algorithm achieve a compa-
rable result. This shows that the ACT loss can enhance the discriminative power of deeply
learned features, demonstrating the effectiveness of the ACT loss. It is worth mentioned that
there only a single CNN model in our experiments, and it is easy to implement. In addition,

Table 2 The verification rates of
different algorithm with different
loss function on LFW dataset

Method Dataset LFW (%)

Deepface (Taigman et al. 2014) 4M 97.35

Deep FR (Parkhi et al. 2015a) 2.6M 98.95

Ding and Tao (2015) 490K 98.43

Liu et al. (2016) 490K 98.71

DeepID (Sun et al. 2014a) 200K 97.45

TL Joint Bayesian (Cao et al. 2013) 100K 96.33

GaussianFace (Lu and Tang 2015) 20K 98.52

High-dim LBP (Chen et al. 2013) 10K 95.17

Range loss (Zhang et al. 2017) 0.29M 98.45

CosFace (Wang et al. 2018) 5M 99.73

Split-Net (Wen et al. 2018) 0.49M 99.02

ReST (Wu et al. 2017) 0.49M 99.03

Proposed algorithm 0.49M 99.23
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Table 3 The verification rates of
different algorithm on YTF
dataset

Method Dataset LFW (%)

Deepface (Taigman et al. 2014) 4M 91.4

LM3L (Hu et al. 2014b) 6K 81.28

L2M3L (Hu et al. 2018) 6K 81.72

DDML(LBP) (Hu et al. 2014a) 6K 81.3

DDML(combined) (Hu et al. 2014a) 6K 82.34

EigenPEP (Li et al. 2014) 9K 84.80

VGG (Parkhi et al. 2015b) 2.6M 91.6

DeepID2+ (Sun et al. 2015) 0.3M 93.2

Softmax Loss (Liu et al. 2017b) 0.49M 93.1

Proposed algorithm 0.49M 93.14

Table 4 The verification rates of
different algorithm on IJB-A
dataset

Method Dataset IJB-A (%)

OpenBR (Klare et al. 2015) 2M 23.6

GOTS (Klare et al. 2015) 2M 40.6

Wang et al. (2017) – 72.9

PAM (Masi et al. 2016) 0.49M 73.3

DCNN (Chen et al. 2016) 0.49M 78.7

DRGAN (Tran et al. 2017) 0.49M 77.4

Proposed algorithm 0.49M 75.1

Fig. 6 The results of different methods on LFW (left) and YTF (right) dataset
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the ROC curve of the different method on LFW and YTF datasets have shown in Fig. 6, and
it also verifies the same statement.

5 Conclusion

In this paper, a new loss function calledACT loss is proposed.Byadding an absolute constraint
to theHST loss,the joint loss functionmake face verification difficulty caused by non-uniform
of inter-class distance distribution of different identities is alleviated. The effectiveness of
proposed method is verified on LFW and YTF datasets respectively. It is worth mentioned
that only with a single model, it can achieve a comparable result in experiments. In addition,
this work is easy to transfer to the face recognition based on videos, so our feature work may
involve the recognition based on videos.
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